Adaptation of Crops to Warmer Climates: Morphological and Physiological Mechanisms

  • Ullah NajeebEmail author
  • Daniel K. Y. Tan
  • Muhammad Sarwar
  • Shafaqat Ali


Increased surface temperature is one of the major reasons for reduced crop productivity in many parts of the world. Response to elevated temperature varies among crop species—a certain threshold temperature has been determined for each crop above which it suffers yield losses. Thus, some crop species, e.g. summer crops (cotton, rice, sorghum), are considered relatively more tolerant to high temperature than winter crops (wheat, barley, chickpeas, faba bean). Heat-induced yield penalties in crops are the result of inhibited vegetative growth or impaired reproductive development. High temperature can cause cellular injury, leading to catastrophic collapse of cellular organization and functioning and ultimately, growth inhibition. Similarly, reproductive structures, especially pollen are highly sensitive to elevated temperatures and a heat shock event at reproductive phase impairs fertilisation and consequently increases fruit or seed abortion. Tolerance to high temperature is associated with a range of physiological and morphological adaptations in plants. For example, plants can tolerate heat-induced damage through foliar orientation, stomatal regulation and stimulation of antioxidative defence systems. These adaptive mechanisms are regulated by stress responsive genes, encoding for specific proteins, e.g. heat shock proteins, which enable plants to survive under extreme environments. This chapter discusses various adaptive, avoidance and acclimation mechanisms of heat tolerance in plants. It also highlights the breeding and management techniques used for inducing heat stress tolerance in crop plants.


  1. Agarie, S., Hanaoka, N., Ueno, O., Miyazaki, A., Kubota, F., Agata, W., & Kaufman, P. B. (1998). Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Production Science, 1, 96–103.CrossRefGoogle Scholar
  2. Ahmed, F. E., Hall, A. E., & DeMason, D. A. (1992). Heat Injury during floral development in Cowpea (Vigna unguiculata, Fabaceae). American Journal of Botany, 79, 784–791.CrossRefGoogle Scholar
  3. Ainsworth, E. A., & Ort, D. R. (2010). How do we improve crop production in a warming world? Plant Physiology, 154, 526–530.CrossRefGoogle Scholar
  4. Akman, Z. (2009). Comparison high temperature stress in maize, rice and sorghum by plant growth regulators. Journal of Animal and Veterinary Advances, 8, 358–361.Google Scholar
  5. Almeselmani, M., Deshmukh, P. S., & Sairam, R. K. (2009). High temperature stress tolerance in wheat genotypes: Role of antioxidant defence enzymes. Acta Agronomica Hungarica, 57, 1–14.CrossRefGoogle Scholar
  6. Almeselmani, M., Deshmukh, P. S., Sairam, R. K., Kushwaha, S., & Singh, T. (2006). Protective role of antioxidant enzymes under high temperature stress. Plant Science, 171, 382–388.CrossRefGoogle Scholar
  7. Azhar, F., Ali, Z., Akhtar, M., Khan, A., & Trethowan, R. (2009). Genetic variability of heat tolerance, and its effect on yield and fibre quality traits in upland cotton (Gossypium hirsutum L.). Plant Breeding, 128, 356–362.CrossRefGoogle Scholar
  8. Bahar, B., Yildirim, M., Barutcular, C., & Ibrahim, G. (2008). Effect of canopy temperature depression on grain yield and yield components in bread and durum wheat. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 36, 34–37.Google Scholar
  9. Balla, K., Bencze, S., Janda, T., & Veisz, O. (2009). Analysis of heat stress tolerance in winter wheat. Acta Agronomica Hungarica, 57, 437–444.CrossRefGoogle Scholar
  10. Barnabs, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31, 11–38.Google Scholar
  11. Basu, P. S., Masood, A., & Chaturvedi, S. K. (2009). Terminal heat stress adversely affects chickpea productivity in Northern India–strategies to improve thermotolerance in the crop under climate change.” W3 Workshop Proceedings: Impact of Climate Change on Agriculture.Google Scholar
  12. Bennett, D., Izanloo, A., Reynolds, M., Kuchel, H., Langridge, P., & Schnurbusch, T. (2012). Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theoretical and Applied Genetics, 125, 255–271.CrossRefGoogle Scholar
  13. Bibi, A., Oosterhuis, D., & Gonias, E. (2008). Photosynthesis, quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. Journal of Cotton Science, 12, 150–159.Google Scholar
  14. Bishop, J., Potts, S. G., & Jones, H. E. (2016). Susceptibility of Faba Bean (Vicia faba L.) to heat stress during floral development and anthesis. Journal of Agronomy and Crop Science, 202, 508–517.CrossRefGoogle Scholar
  15. Blum, A., & Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 21, 43–47.CrossRefGoogle Scholar
  16. Blum, A., Klueva, N., & Nguyen, H. T. (2001). Wheat cellular thermotolerance is related to yield under heat stress. Euphytica, 117, 117–123.CrossRefGoogle Scholar
  17. Borrell, A., Hammer, G., & Oosterom, E. (2001). Stay‐green: A consequence of the balance between supply and demand for nitrogen during grain filling? Annals of Applied Biology, 138, 91–95.CrossRefGoogle Scholar
  18. Burke, J. J., Mahan, J. R., & Hatfield, J. L. (1988). Crop-specific thermal kinetic windows in relation to wheat and cotton biomass production. Agronomy Journal, 80, 553–556.CrossRefGoogle Scholar
  19. Burke, J. J., & Chen, J. (2015). Enhancement of reproductive heat tolerance in plants. PLoS One, 10, e0122933.CrossRefGoogle Scholar
  20. Calderini, D. F., Reynolds, M. P., & Slafer, G. A. (2006). Source–sink effects on grain weight of bread wheat, durum wheat, and triticale at different locations. Crop & Pasture Science, 57, 227–233.CrossRefGoogle Scholar
  21. Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 27, 1–5.Google Scholar
  22. Chauhan, H., Khurana, N., Nijhavan, A., Khurana, J. P., & Khurana, P. (2012). The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant, Cell and Environment, 35, 1912–1931.CrossRefGoogle Scholar
  23. Chauhan, S., Srivalli, S., Nautiyal, A., & Khanna-Chopra, R. (2009). Wheat cultivars differing in heat tolerance show a differential response to monocarpic senescence under high-temperature stress and the involvement of serine proteases. Photosynthetica, 47, 536–547.CrossRefGoogle Scholar
  24. Chao, C. C. T., & Robert, R. K. (2007). The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. Hortscience, 42(5), 1077–1082.Google Scholar
  25. Chen, W. R., Zheng, J. S., Li, Y. Q., & Guo, W. D. (2012). Effects of high temperature on photosynthesis, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in fingered citron. Russian Journal of Plant Physiology, 59, 732–740.CrossRefGoogle Scholar
  26. Cossani, C. M., & Reynolds, M. P. (2012). Physiological traits for improving heat tolerance in wheat. Plant Physiology, 160, 1710–1718.CrossRefGoogle Scholar
  27. Cottee, N. S., Bange, M. P., Wilson, I. W., & Tan, D. K. (2012). Developing controlled environment screening for high-temperature tolerance in cotton that accurately reflects performance in the field. Functional Plant Biology, 39, 670–678.CrossRefGoogle Scholar
  28. Covell, S., Ellis, R. H., Roberts, E. H., & Summerfield, R. J. (1986). The influence of temperature on seed germination rate in grain legumes: A comparison of chickpea, lentil, soybean, and cowpea at constant temperatures. Journal of Experimental Botany, 37, 705–715.CrossRefGoogle Scholar
  29. Crawford, A. J., McLachlan, D. H., Hetherington, A. M., & Franklin, K. A. (2012). High temperature exposure increases plant cooling capacity. Current Biology, 22, 396–397.CrossRefGoogle Scholar
  30. Cui, L., Cao, R., Li, J., Zhang, L., & Wang, J. (2006). High temperature effects on ammonium assimilation in leaves of two Festuca arundinacea cultivars with different heat susceptibility. Plant Growth Regulation, 49, 127–136.CrossRefGoogle Scholar
  31. Devasirvatham, V., DKY, T., Trethowan, R. M., Gaur, P. M., & Mallikarjuna, N. (2010). Food security from sustainable agriculture. Proceedings of the 15th Australian Society of Agronomy Conference: Impact of high temperature on the reproductive stage of chickpea (pp. 15–18). Lincoln: Australian Society of Agronomy.Google Scholar
  32. Devasirvatham, V., Tan, D. K., & Trethowan, R. M. (2016). Breeding strategies for enhanced plant tolerance to heat stress. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), Advances in plant breeding strategies: Agronomic, abiotic and biotic stress traits (pp. 447–469). Cham: Springer International Publishing.CrossRefGoogle Scholar
  33. Devasirvatham, V., Tan, D. K. Y., Gaur, P. M., Raju, T. N., & Trethowan, R. M. (2012). High temperature tolerance in chickpea and its implications for plant improvement. Crop & Pasture Science, 63, 419–428.CrossRefGoogle Scholar
  34. Djanaguiraman, M., Prasad, P. V. V., & Seppanen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 48, 999–1007.CrossRefGoogle Scholar
  35. Downton, W., John, S., Joseph, A. B., & Jeffrey, R. S. (1984). Tolerance of photosynthesis to high temperature in desert plants. Plant Physiology, 74, 786–790.CrossRefGoogle Scholar
  36. Driedonks, N., Rieu, I., & Vriezen, W. H. (2016). Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction, 29, 67.CrossRefGoogle Scholar
  37. Dupont, F. M., Hurkman, W. J., Vensel, W. H., Tanaka, C., Kothari, K. M., Chung, O. K., & Altenbach, S. B. (2006). Protein accumulation and composition in wheat grains: Effects of mineral nutrients and high temperature. European Journal of Agronomy, 25, 96–107.CrossRefGoogle Scholar
  38. Edmeades, G. O., Chapman, S. C., & Lafitte, H. R. (1999). Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Science, 39, 1306–1315.CrossRefGoogle Scholar
  39. Endo, M., Tohru, T., Kazuki, H., Shingo, K., Kentaro, Y., Masahiro, O., Atsushi, H., Masao, W., & Makiko, K. K. (2009). High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant and Cell Physiology, 50, 1911–1922.CrossRefGoogle Scholar
  40. Fahad, S., Hussain, S., Saud, S., Hassan, S., Ihsan, Z., Shah, A. N., & Alghabari, F. (2016). Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature. Frontiers in Plant Science, 7, 1250.CrossRefGoogle Scholar
  41. Food and Agriculture Organisation (FAO) of the United Nations. (2009). Declaration of the World Summit on Food Security, Rome, November 16–18, 2009.Google Scholar
  42. Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30, 491–507.CrossRefGoogle Scholar
  43. Fischer, G., Shah, M., & Van, V. H. (2002). Climate change and agricultural vulnerability, world summit on sustainable development. Laxenburg: IIASA.Google Scholar
  44. Fischer, R. (2007). Understanding the physiological basis of yield potential in wheat. Journal of Agricultural Science-Cambridge, 145, 99.CrossRefGoogle Scholar
  45. Füleky, G. (2009). Cultivated plants, primarily as food resources. Encyclopedia of life supper systems (EOLSS) (Vol. I). Paris: UNESCO.Google Scholar
  46. Gate, P., & Brisson, N. (2010). Advancement of phenological stages and shortening of phases. In N. Brisson & F. Levrault (Eds.), Climate change, agriculture and forests in France: simulations of the impacts on the main species. The Green Book of the CLIMATOR project (2007–2010) (pp. 65–78). Angers, France: ADEME.Google Scholar
  47. Gerwick, B. C., George, J. W., & Ernest, G. U. (1977). Effects of temperature on the Hill reaction and photophosphorylation in isolated cactus chloroplasts. Plant Physiology, 60, 430–432.CrossRefGoogle Scholar
  48. Gibson, L. R., & Paulsen, G. M. (1999). Yield components of wheat grown under high temperature stress during reproductive growth. Crop Science, 39, 1841–1846.CrossRefGoogle Scholar
  49. Giorno, F., Wolters-Arts, M., Mariani, C., & Rieu, I. (2013). Ensuring reproduction at high temperatures: The heat stress response during anther and pollen development. Plants, 2, 489–506.CrossRefGoogle Scholar
  50. Gross, Y., & Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Research, 36, 201–212.CrossRefGoogle Scholar
  51. Grigorova, B., Vassileva, V., Klimchuk, D., Vaseva, I., Demirevska, K., & Feller, U. (2012). Drought, high temperature, and their combination affect ultrastructure of chloroplasts and mitochondria in wheat (Triticum aestivum L.) leaves. Journal of Plant Interactions, 7, 204–213.CrossRefGoogle Scholar
  52. Hameed, A., Goher, M., & Iqbal, N. (2012). Heat stress-induced cell death, changes in antioxidants, lipid peroxidation, and protease activity in wheat leaves. Journal of Plant Growth Regulation, 31, 283–291.CrossRefGoogle Scholar
  53. Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-Delmotte, V., Russell, G., Tselioudis, G., Cao, J., & Rignot, E. (2015). Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2°C global warming is highly dangerous. Atmospheric Chemistry and Physics, 15, 20059–20179.Google Scholar
  54. Harris, K., Subudhi, P., Borrell, A., Jordan, D., Rosenow, D., Nguyen, H., Klein, P., Klein, R., & Mullet, J. (2007). Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. Journal of Experimental Botany, 58, 327–338.CrossRefGoogle Scholar
  55. Hedhly, A. (2011). Sensitivity of flowering plant gametophytes to temperature fluctuations. Environmental and Experimental Botany, 74, 9–16.CrossRefGoogle Scholar
  56. Hossain, A., Teixeira da Silva, J. A., Lozovskaya, M. V., & Zvolinsky, V. P. (2012). High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. Saudi Journal of Biological Sciences, 19, 473–487.CrossRefGoogle Scholar
  57. IPCC. (2007). In S. Solomon, D. Qin, M. Manning, R. B. Alley, T. Berntsen, N. L. Bindoff, & Z. C. Chen (Eds.), Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  58. IPCC. (2013). In T. F. Stocker Qin, D. Plattner, G. K. Tignor, M. Allen, S. K. Boschung, & J. Naue (Eds.), Summary for policymakers climate change 2013: The physical science basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  59. Islam, M. T. (2011). Effect of temperature on photosynthesis, yield attributes and yield of tomato genotypes. International Journal of Experimental Agriculture, 2, 8–11.Google Scholar
  60. Jha, U. C., Bohra, A., & Singh, N. P. (2014). Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding, 133, 679–701.CrossRefGoogle Scholar
  61. Jones, H. G. (2013). Plants and microclimate: A quantitative approach to environmental plant physiology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  62. Jordan, D. B., & Ogren, W. L. (1984). The CO2/O2 specificity of ribulose 1, 5-bisphosphate carboxylase/oxygenase. Planta, 161, 308–313.CrossRefGoogle Scholar
  63. Kalra, N., Chakraborty, D., Sharma, A., Rai, H. K., Jolly, M., Chander, S., Kumar, P. R., Bhadraray, S., Barman, D., Mittal, R. B., & Lal, M. (2008). Effect of increasing temperature on yield of some winter crops in northwest India. Current Science, 82–88.Google Scholar
  64. Kaur, P., Ghai, N., & Sangha, M. K. (2009). Induction of thermotolerance through heat acclimation and salicylic acid in brassica species. African Journal of Biotechnology, 8, 619.Google Scholar
  65. Kaushal, N., Gupta, K., Bhandhari, K., Kumar, S., Thakur, P., & Nayyar, H. (2011). Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiology and Molecular Biology of Plants, 17, 203.CrossRefGoogle Scholar
  66. Khanna-Chopra, R., & Chauhan, S. (2015). Wheat cultivars differing in heat tolerance show a differential response to oxidative stress during monocarpic senescence under high temperature stress. Protoplasma, 1, 11.Google Scholar
  67. Kim, K., & Portis, A. R. (2005). Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant and Cell Physiology, 46, 522–530.CrossRefGoogle Scholar
  68. Kreslavski, V. D., Lyubimov, V. Y., Shabnova, N. I., Balakhnina, T. I., & Kosobryukhov, A. A. (2009). Heat-induced impairments and recovery of photosynthetic machinery in wheat seedlings. Role of light and prooxidant-antioxidant balance. Physiology and Molecular Biology of Plants, 15, 115–122.CrossRefGoogle Scholar
  69. Krishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy, V. R. (2011). High-temperature effects on rice growth, yield, and grain quality. In Advances in agronomy (Vol. 111, pp. 87–206). Academic Press.Google Scholar
  70. Kuchel, H., Williams, K., Langridge, P., Eagles, H. A., & Jefferies, S. P. (2007). Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction. Theoretical and Applied Genetics, 115, 1015–1027.CrossRefGoogle Scholar
  71. Kumar, R. R., Goswami, S., Sharma, S. K., Singh, K., Gadpayle, K. A., Singh, S. D., & Rai, R. D. (2013). Differential expression of heat shock protein and alteration in osmolyte accumulation under heat stress in wheat. Journal of Plant Biochemistry and Biotechnology, 22, 16–26.CrossRefGoogle Scholar
  72. Kumar, R. R., Goswami, S., Sharma, S. K., Singh, K., Gadpayle, K. A., Kumar, N., Rai, G. K., Singh, M., & Rai, R. D. (2012). Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. International Journal of Plant Physiology and Biochemistry, 4, 83–91.Google Scholar
  73. Kumar, S., Gupta, D., & Nayyar, H. (2012a). Comparative response of maize and rice genotypes to heat stress: Status of oxidative stress and antioxidants. Acta Physiologiae Plantarum, 34, 75–86.CrossRefGoogle Scholar
  74. Kumar, S., Kaushal, N., Nayyar, H., & Gaur, P. (2012b). Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiologiae Plantarum, 34, 1651–1658.CrossRefGoogle Scholar
  75. Kumari, M., Singh, V. P., Tripathi, R., & Joshi, A. K. (2007). Variation for staygreen trait and its association with canopy temperature depression and yield traits under terminal heat stress in wheat. In H. T. Buck, J. R. Nisi, & N. Salomon (Eds.), Wheat production in stressed environments (pp. 357–363). Dordrecht: Springer.CrossRefGoogle Scholar
  76. Larcher, W. (1995). Physiological plant ecology. New York, NY: Springer.CrossRefGoogle Scholar
  77. Lee, J. H., Hubel, A., & Schoffl, F. (1995). Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. The Plant Journal, 8, 603–612.CrossRefGoogle Scholar
  78. Liu, Z., Yuan, Y. L., Liu, S. Q., Yu, X. N., & Rao, L. Q. (2006). Screening for high-temperature tolerant cotton cultivars by testing in vitro pollen germination, pollen tube growth and boll retention. Journal of Integrative Plant Biology, 48, 706–714.CrossRefGoogle Scholar
  79. Lobell, D. B., & Gregory, P. A. (2003). Climate and management contributions to recent trends in US agricultural yields. Science, 299, 1032–1032.CrossRefGoogle Scholar
  80. Lobell, D., & Gourdji, S. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160, 1686–1697.CrossRefGoogle Scholar
  81. Lopes, M. S., & Reynolds, M. P. (2010). Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology, 37, 147–156.CrossRefGoogle Scholar
  82. Lopes, M. S., & Reynolds, M. P. (2012). Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of Experimental Botany, 63, 3789–3798.CrossRefGoogle Scholar
  83. Lotze-Campen, H., Schellnhuber, H. J., et al. (2009). Climate impacts and adaptation options in agriculture: What we know and what we don’t know. Journal für Verbraucherschutz und Lebensmittelsicherheit, 4, 145–150.CrossRefGoogle Scholar
  84. Lujan, R., Fernando, L., Luz, M., Rita, B., Gladys, I. C., & Nieto‐sotelo, J. (2009). Small heat‐shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilana var. Weber. Plant, Cell and Environment, 32, 1791–1803.CrossRefGoogle Scholar
  85. Machado, S., & Paulsen, G. M. (2001). Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant and Soil, 233, 179–187.CrossRefGoogle Scholar
  86. Malik, M. K., Slovin, J. P., Hwang, C. H., & Zimmerman, J. L. (1999). Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. The Plant Journal, 20, 89–99.CrossRefGoogle Scholar
  87. Manske, G. G. B., Ortiz-Monasterio, J. I., Van Ginkel, M., Gonzalez, R. M., Rajaram, S., Molina, E., & Vlek, P. L. G. (2000). Traits associated with improved P-uptake efficiency in CIMMYT’s semi dwarf spring bread wheat grown on an acid Andisol in Mexico. Plant and Soil, 221, 189–204.CrossRefGoogle Scholar
  88. Maryam, M., Fatima, B., Haider, M. S., Abbas, S., Naqvi, M., Ahmad, R., & Khan, I. A. (2015). Evaluation of pollen viability in date palm cultivars under different storage temperatures. Pakistan Journal of Botany, 47, 377–381.Google Scholar
  89. Mason, R. E., Mondal, S., Beecher, F. W., Pacheco, A., Jampala, B., Ibrahim, A. M., & Hays, D. B. (2010). QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica, 174, 423–436.CrossRefGoogle Scholar
  90. McCarthy, J. J. (2001). Climate change: Impacts, adaptation, and vulnerability: Contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  91. McDonald, G. K., & Paulsen, G. M. (1997). High temperature effects on photosynthesis and water relations of grain legumes. Plant and Soil, 196, 47–58.CrossRefGoogle Scholar
  92. Mohammed, A. R., & Tarpley, L. (2011). High night temperature and plant growth regulator effects on spikelet sterility, grain characteristics and yield of rice (Oryza sativa L.) plants. Canadian Journal of Plant Science, 91, 283–291.CrossRefGoogle Scholar
  93. Mondal, S. (2012). Defining the molecular and physiological role of leaf cuticular waxes in reproductive stage heat tolerane in wheat. Doctoral dissertation, Texas A and M University, College Station.Google Scholar
  94. Nobel, P. S. (1988). Environmental biology of agaves and cacti. New York, NY: Cambridge University Press.Google Scholar
  95. Nobel, P. S., & Smith, S. D. (1983). High and low temperature tolerances and their relationships to distribution of agaves. Plant, Cell and Environment, 6, 711–719.Google Scholar
  96. Nobel, P. S., & De la Barrera, E. (2002). High temperatures and net CO2 uptake, growth, and stem damage for the hemiepiphytic cactus Hylocereus undatus. Biotropica, 34, 225–231.CrossRefGoogle Scholar
  97. Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Biology, 49, 249–279.CrossRefGoogle Scholar
  98. Olesen, J. E., & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16, 239–262.CrossRefGoogle Scholar
  99. Ortiz, R., Braun, H. J., Crossa, J., Crouch, J. H., Davenport, G., Dixon, J., Dreisigacker, S., Duveiller, E., He, Z., & Huerta, J. (2008). Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genetic Resources and Crop Evolution, 55, 1095–1140.CrossRefGoogle Scholar
  100. Oshino, T., Abiko, M., Saito, R., Ichiishi, E., Endo, M., Kawagishi-Kobayashi, M., & Higashitani, A. (2007). Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Molecular Genetics and Genomics, 278, 31–42.CrossRefGoogle Scholar
  101. Palta, J. A., Kobata, T., Turner, N. C., & Fillery, I. R. (1994). Remobilisation of carbon and nitrogen in wheat as influenced by postanthesis water deficits. Crop Science, 34, 118–124.CrossRefGoogle Scholar
  102. Patrick, J. W., & Stoddard, F. L. (2010). Physiology of flowering and grain filling in faba bean. Field Crops Research, 115, 234–242.CrossRefGoogle Scholar
  103. Peck, A. W., & McDonald, G. K. (2010). Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant and Soil, 337, 355–374.CrossRefGoogle Scholar
  104. Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G. S., Khush, G. S., & Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101, 9971–9975.CrossRefGoogle Scholar
  105. Pettigrew, W. T. (2008). The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Science, 48, 278–285.CrossRefGoogle Scholar
  106. Pinto, R. S., & Reynolds, M. P. (2015). Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theoretical and Applied Genetics, 128, 575–585.CrossRefGoogle Scholar
  107. Prasad, P., Pisipati, S., Ristic, Z., Bukovnik, U., & Fritz, A. (2008). Impact of nighttime temperature on physiology and growth of spring wheat. Crop Science, 48, 2372–2380.CrossRefGoogle Scholar
  108. Radin, J. W. (1992). Reconciling water-use efficiency of cotton in field and laboratory. Crop Science, 32, 13–18.CrossRefGoogle Scholar
  109. Rahman, H., Malik, S. A., & Saleem, M. (2004). Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crops Research, 85, 149–158.CrossRefGoogle Scholar
  110. Rahman, H., Malik, S. A., & Saleem, M. (2005). Inheritance of seed physical traits in upland cotton under different temperature regimes. Spanish Journal of Agricultural Research, 3, 225–231.CrossRefGoogle Scholar
  111. Rani, B., Dhawan, K., Jain, V., Chhabra, M. L., & Singh, D. (2013). High temperature induced changes in antioxidative enzymes in Brassica juncea (L) Czern and Coss. M. Sc. Dissertations, CCS HAU Hisar, India.Google Scholar
  112. Rauf, S., Khan, T. M., Naveed, A., & Munir, H. (2007). Modified path to high lint yield in upland cotton (Gossypium hirsutum L.) under two temperature regimes. Turkish Journal of Biology, 31, 119–126.Google Scholar
  113. Reddy, V., Baker, D., & Hodges, H. (1991). Temperature effects on cotton canopy growth, photosynthesis, and respiration. Agronomy Journal, 83, 699–704.CrossRefGoogle Scholar
  114. Reynolds, M., & Langridge, P. (2016). Physiological breeding. Current Opinion in Plant Biology, 31, 162–171.CrossRefGoogle Scholar
  115. Reynolds, M., & Trethowan, R. (2007). Physiological interventions in breeding for adaptation to abiotic stress. Frontis, 21, 127–144.Google Scholar
  116. Reynolds, M. P., Pierre, C. S., Saad, A. S., Vargas, M., & Condon, A. G. (2007). Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Science, 47(Suppl 3), S-172–S-189.Google Scholar
  117. Reynolds, M. P., Trethowan, R., Crossa, J., Vargas, M., & Sayre, K. D. (2004). Erratum to physiological factors associated with genotype by environment interaction in wheat. Field Crops Research, 85, 253–274.CrossRefGoogle Scholar
  118. Richards, R. (1996). Defining selection criteria to improve yield under drought. Plant Growth Regulation, 20, 157–166.CrossRefGoogle Scholar
  119. Rodrigo, J., & Herrero, M. (2002). Effects of pre-blossom temperatures on flower development and fruit set in apricot. Scientia Horticulturae, 92, 125–135.CrossRefGoogle Scholar
  120. Saini, H. S., Sedgley, M., & Aspinall, D. (1983). Effect of heat-stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Functional Plant Biology, 10, 137–144.CrossRefGoogle Scholar
  121. Saini, H. S., Sedgley, M., & Aspinall, D. (1984). Development anatomy in wheat of male sterility induced by heat stress, water deficit or abscisic acid. Functional Plant Biology, 11, 243–253.CrossRefGoogle Scholar
  122. Sakata, T., Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y., & Higashitani, N. (2010). Auxins reverse plant male sterility caused by high temperatures. Proceedings of the National Academy of Sciences USA, 107, 8569–8574.CrossRefGoogle Scholar
  123. Sarwar, M., Saleem, M., Najeeb, U., Shakeel, A., Ali, S., & Bilal, M. (2017). Hydrogen peroxide reduces heat‐induced yield losses in cotton (Gossypium hirsutum L.) by protecting cellular membrane damage. Journal of Agronomy and Crop Science, 203, 429–441.CrossRefGoogle Scholar
  124. Schapendonk, A., Xu, H., Van, D. P. P., & Spiertz, J. (2007). Heat-shock effects on photosynthesis and sink-source dynamics in wheat (Triticum aestivum L.). Journal of Life Sciences, 55, 37–54.Google Scholar
  125. Sharkey, T. D., et al. (2005). Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment, 28, 269–277.CrossRefGoogle Scholar
  126. Sharma‐Natu, P., Sumesh, K. V., & Ghildiyal, M. C. (2010). Heat shock protein in developing grains in relation to thermotolerance for grain growth in wheat. Journal of Agronomy and Crop Science, 196, 76–80.CrossRefGoogle Scholar
  127. Singh, R. P., Prasad, P. V. V., Sunita, K., Giri, S. N., & Reddy, K. R. (2007). Influence of high temperature and breeding for heat tolerance in cotton. Advances in Agronomy, 93, 313–385.CrossRefGoogle Scholar
  128. Song, G., Wang, M., Zeng, B., Zhang, J., Jiang, C., Hu, Q., Geng, G., & Tang, C. (2015). Anther response to high-temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton. Planta, 241, 1271–1285.CrossRefGoogle Scholar
  129. Summerfield, R. J., Hadley, P., Roberts, E. H., Minchin, F. R., & Rawsthorne, S. (1984). Sensitivity of Chickpeas (Cicer arietinum) to hot temperatures during the reproductive period. Experimental Agriculture, 20, 77–93.CrossRefGoogle Scholar
  130. Sumesh, K. V., Sharma-Nat, P., & Ghildiyal, M. C. (2008). Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains. Biologia Plantarum, 52, 749–753.CrossRefGoogle Scholar
  131. Suzuki, K., Tsukaguchi, T., Takeda, H., & Egawa, Y. (2001). Decrease of pollen stainability of green bean at high temperatures and relationship to heat tolerance. Journal of the American Society for Horticultural Science, 126, 571–574.Google Scholar
  132. Swindell, W. R., Huebner, M., & Weber, A. P. (2007). Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 8, 125.CrossRefGoogle Scholar
  133. Tan, W., Meng, Q. W., Brestic, M., Olsovska, K., & Yang, X. (2011). Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. Journal of Plant Physiology, 168, 2063–2071.CrossRefGoogle Scholar
  134. Teixeira, E. I., Fischer, G., Van Velthuizen, H., Walter, C., & Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 170, 206–215.CrossRefGoogle Scholar
  135. Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327, 818–822.CrossRefGoogle Scholar
  136. Towill, L. E., & Mazur, P. (1975). Studies on the reduction of 2, 3, 5-triphenyltetrazolium chloride as a viability assay for plant tissue cultures. Canadian Journal of Botany, 53, 1097–1102.CrossRefGoogle Scholar
  137. Uga, Y., Kitomi, Y., Ishikawa, S., & Yano, M. (2015). Genetic improvement for root growth angle to enhance crop production. Breeding Science, 65, 111.CrossRefGoogle Scholar
  138. Van Zanten, M., Voesenek, L. A. C. J., Peeters, A. J. M., & Millenaar, F. F. (2009). Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis. Plant Physiology, 151, 1446–1458.CrossRefGoogle Scholar
  139. Vettakkorumakankav, N. N., Falk, D., Saxena, P., & Fletcher, R. A. (1999). A crucial role for gibberellins in stress protection of plants. Plant and Cell Physiology, 40, 542–548.CrossRefGoogle Scholar
  140. Vignjevic, M., Xiao, W., Jørgen, E. O., & Bernd, W. (2015). Traits in spring wheat cultivars associated with yield loss caused by a heat stress episode after anthesis. Journal of Agronomy and Crop Science, 1, 32–48.CrossRefGoogle Scholar
  141. Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223.CrossRefGoogle Scholar
  142. Wang, J., Gan, Y. T., Clarke, F., & McDonald, C. L. (2006). Response of chickpea yield to high temperature stress during reproductive development. Crop Science, 46, 2171–2178.CrossRefGoogle Scholar
  143. Wang, X., Cai, J., Jiang, D., Liu, F., Dai, T., & Cao, W. (2011). Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology, 168, 585–593.CrossRefGoogle Scholar
  144. Wardlaw, I. F., Dawson, I. A., & Munibi, P. (1989). The tolerance of wheat to high temperatures during reproductive growth. 2. Grain development. Crop & Pasture Science, 40, 15–24.CrossRefGoogle Scholar
  145. Yang, F., Jørgensen, A. D., Li, H., Sondergaard, I., Finnie, C., Svensson, B., Jiang, D., Wollenweber, B., & Jacobsen, S. (2011). Implications of high‐temperature events and water deficits on protein profiles in wheat (Triticum aestivum L. cv. Vinjett) grain. Proteomics, 11, 1684–1695.CrossRefGoogle Scholar
  146. Yang, X., Liang, Z., & Lu, C. (2005). Genetic engineering of the biosynthesis of glycine betaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiology, 138, 2299–2309.CrossRefGoogle Scholar
  147. Yoshida, S. (1981). Fundamentals of rice crop science. Int. Rice Res. Inst.Google Scholar
  148. Zutta, B. R., Nobel, P. S., Aramians, A. M., & Sahaghian, A. (2011). Low-and high-temperature tolerance and acclimation for chlorenchyma versus meristem of the cultivated cacti Nopalea cochenillifera, Opuntia robusta, and Selenicereus megalanthus. Journal of Botany, 2011, 347168. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ullah Najeeb
    • 1
    • 2
    Email author
  • Daniel K. Y. Tan
    • 2
  • Muhammad Sarwar
    • 3
  • Shafaqat Ali
    • 4
  1. 1.Queensland Alliance for Agriculture and Food Innovation, Centre for Plant ScienceThe University of QueenslandToowoombaAustralia
  2. 2.The University of Sydney, Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of ScienceSydneyAustralia
  3. 3.Agronomic Research InstituteAyub Agricultural Research InstituteFaisalabadPakistan
  4. 4.Department of Environmental Sciences and EngineeringGovernment College UniversityFaisalabadPakistan

Personalised recommendations