Drip Irrigation Technology: Analysis of Adoption and Diffusion Processes

  • Francisco AlconEmail author
  • Nuria Navarro
  • María Dolores de-Miguel
  • Andrea L. Balbo


Increasing concerns about water scarcity have promoted the adoption and diffusion of irrigation technologies, such as drip irrigation, which allow farmers to use water in a more efficient way, while saving water resources. While some dry regions have embraced drip irrigation, this technology remains scarcely deployed on a global scale. In this chapter we provide an overview of the processes underlying the adoption and diffusion of innovations, with a focus on the specific context of the adoption and diffusion of drip irrigation technology within the agricultural community of Cartagena, in Southeast Spain. Our final aim is to inform policy makers charged with the designing of initiatives aimed at saving water and at increasing climate change resilience in agricultural contexts. Our main insights suggest that effective policies focused on irrigation technology uptake should consider social, economic, technological and environmental factors affecting adoption and diffusion dynamics, and specifically those factors that define perceptions of water scarcity, such as water prices and availability of water.


Review Analytic framework Irrigation water Water-saving technology Spain 



This work was carried out under the AGRISERVI project: AGL2015-64411-R (MINECO/FEDER, UE). A.L.B. worked on this manuscript during an Experienced Researcher Fellowship from the Alexander von Humboldt Stiftung/Foundation (ARiD – Adaptive Resilience in Drylands).


  1. Alcon, F., De Miguel, M. D., & Fernandez-Zamudio, M. A. (2006). Modelización de la difusión de la tecnología de riego localizado en el Campo de Cartagena. Revista Española de Estudios Agrosociales y Pesqueros, 210, 227–245.Google Scholar
  2. Alcon, F., de Miguel, M. D., & Burton, M. (2011). Duration analysis of adoption of drip irrigation technology in southeastern Spain. Technological Forecasting and Social Change, 78(6), 991–1001.CrossRefGoogle Scholar
  3. Alcon, F., Egea, G., & Nortes, P. (2013). Financial feasibility of implementing regulated and sustained deficit irrigation in almond orchards. Irrigation Science, 31, 931–941.CrossRefGoogle Scholar
  4. Alcon, F., Tapsuwan, S., Brouwer, R., & de Miguel, M. D. (2014). Adoption of irrigation water policies to guarantee water supply: A choice experiment. Environmental Science & Policy, 44, 226–236.CrossRefGoogle Scholar
  5. Bass, F. (1969). A new product growth model for consumer durables. Management Science, 15, 215–227.CrossRefGoogle Scholar
  6. Banks. (1994). Growth and diffusion phenomena: Mathematical frameworks and applications. New York: Springer.CrossRefGoogle Scholar
  7. Burton, M., Rigby, D., & Young, T. (2003). Modelling the adoption of organic horticultural technology in the UK using duration analysis. Australian Journal of Agricultural and Resource Economics, 47(1), 29–54.CrossRefGoogle Scholar
  8. Carey, J. M., & Zilberman, D. (2002). A model of investment under uncertainty: Modern irrigation technology and emerging markets in water. American Journal of Agricultural Economics, 84(1), 171.CrossRefGoogle Scholar
  9. Cason, T. N., & Uhlaner, R. T. (1991). Agricultural productions impact on water and energy demand – A choice modeling approach. Resources and Energy, 13, 307–321.CrossRefGoogle Scholar
  10. Caswell, M., Lichtenberg, E., & Zilberman, D. (1990). The effects of pricing policies on water conservation and drainage. American Journal of Agricultural Economics, 72, 883.CrossRefGoogle Scholar
  11. Cramer, J. S. (2003). Logit models from economics and other fields. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Dasberg, S., & Or, D. (1999). Drip irrigation. Berlin: Springer.CrossRefGoogle Scholar
  13. D’Emden, F. H., Llewellyn, R. S., & Burton, M. P. (2006). Adoption of conservation tillage in Australian cropping regions: An application of duration analysis. Technological Forecasting and Social Change, 73(6), 630–647.CrossRefGoogle Scholar
  14. Dieperink, C., Brand, I., & WJV, V. (2004). Diffusion of energy-saving innovations in industry and the built environment: Dutch studies as inputs for a more integrated analytical framework. Energy Policy, 32, 773–784.CrossRefGoogle Scholar
  15. Dinar, A., & Yaron, D. (1990). Influence of quality and scarcity of inputs on the adoption of modern irrigation technologies. Western Journal of Agricultural Economics, 12, 224–233.Google Scholar
  16. Engler, A., Jara-Rojas, R., & Bopp, C. (2016). Efficient use of water resources in vineyards: A recursive joint estimation for the adoption of irrigation technology and scheduling. Water Resources Management, 30(14), 5369–5383.CrossRefGoogle Scholar
  17. Falkenmark, M. (2000). Competing freshwater and ecological services in the river basin perspective: An expanded conceptual framework. Water International, 25, 172–177.CrossRefGoogle Scholar
  18. Feder, G., & Umali, D. L. (1993). The adoption of agricultural innovations: A review. Technological Forecasting and Social Change, 43(3–4), 215–239.CrossRefGoogle Scholar
  19. Foltz, J. D. (2003). The economics of water-conserving technology adoption in Tunisia: An empirical estimation of farmer technology choice. Economic Development and Cultural Change, 51, 359–373.CrossRefGoogle Scholar
  20. Fourt, L. A., & Woodlock, J. W. (1960). Early prediction of market success for new grocery products. Journal of Marketing, 25, 31–38.CrossRefGoogle Scholar
  21. Freeman, C. (1995). The national system of innovation in historical-perspective. Cambridge Journal of Economics, 19, 5–24.Google Scholar
  22. Gatignon, H., & Robertson, T. S. (1991). Innovative decision processes. In T. S. Robertson & H. H. Kassarjian (Eds.), Handbook of consumer behaviour (pp. 316–348). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  23. Green, G., & Sunding, D. (1997). Land allocation, soil quality, and the demand for irrigation technology. Journal of Agricultural and Resource Economics, 22(2), 367–375.Google Scholar
  24. Green, G., Sunding, D., Zilberman, D., & Doug, P. (1996). Explaining irrigation technology choices: A microparameter approach. American Journal of Agricultural Economics, 78(4), 1064–1072.CrossRefGoogle Scholar
  25. IPCC. (2007). Working Group I fourth assessment report ‘the physical science basis’. Geneva: IPCC.Google Scholar
  26. IFC. (2014). Impact of efficient irrigation technology on small farmers. Washington, DC: International Finance Corporation, World Bank Group Retrieved December 19, 2016, from Scholar
  27. Jenkin, S. P. (1995). Easy estimation methods for discrete-time duration models. Oxford Bulletin of Economics and Statistics, 57(1), 129–138.CrossRefGoogle Scholar
  28. Karlheinz, K., & Even, A. L. (2000). Diffusion theory and practice disseminating quality management and software process improvement innovations. Information Technology & People, 13, 11.CrossRefGoogle Scholar
  29. Lancaster, T. (1990). The econometric análisis of transition data. Cambridge: Cambridge University Press.Google Scholar
  30. Lindner, R. (1987). Adoption and diffusion of technology: An overview. In B. R. Champ, E. Highly, & J. V. Remenyi (Eds.), Technological change in porharvest handling and transportation of grain in the humid tropic (pp. 144–151). Bangkok: Australian Centre for International Agricultural Research.Google Scholar
  31. López-Becerra, E. I., Arcas-Lario, N., & Alcon, F. (2016). The websites adoption in the Spanish agrifood firms. Spanish Journal of Agricultural Research, 14(4), e0107. Scholar
  32. Mahajan, V., Muller, E., & Bass, F. N. (1990). New products diffusion model in marketing: A review and directions for research. Journal of Marketing, 54, 1–26.CrossRefGoogle Scholar
  33. Mansfield, E. (1961). Technical change and the rate of imitation. Econometrica, 29(4), 741–766.CrossRefGoogle Scholar
  34. Mohammadzadeh, S., Sadighi, H., & Pezeshki Rad, G. (2014). Modeling the process of drip irrigation system adoption by Apple Orchardists in the Barandooz River Basin of Urmia Lake Catchment, Iran. Journal of Agricultural Science and Technology, 16(6), 1253–1266.Google Scholar
  35. Moreno, G., & Sunding, D. L. (2005). Joint estimation of technology adoption and land allocation with implications for the design of conservation policy. American Journal of Agricultural Economics, 87, 1009–1019.CrossRefGoogle Scholar
  36. Negri, D., & Brooks, D. (1990). Determinants of irrigation technology choice. Western Journal of Agricultural Economics, 15, 213–223.Google Scholar
  37. OECD. (2010). Sustainable management of water resources in agriculture. Paris: OECD Publishing.CrossRefGoogle Scholar
  38. OECD. (2011). A green growth strategy for food and agriculture. Paris: OECD Publishing.Google Scholar
  39. Pannell, D. J., Marshall, G. R., Barr, N., Curtis, A., Vanclay, F., & Wilkinson, R. (2006). Understanding and promoting adoption of conservation practices by rural landholders. Australian Journal of Experimental Economics, 46, 1407–1424.CrossRefGoogle Scholar
  40. Puy, A., García Avilés, J. M., Balbo, A. L., Keller, M., Riedesel, S., Blum, D., & Bubenzer, O. (2016). Drip irrigation uptake in traditional irrigated fields: The edaphological impact. Journal of Environmental Management. Scholar
  41. Rogers, E. M. (2003). Diffusion of innovations. New York: The Free Press.Google Scholar
  42. Shrestha, R. B., & Gopalakrishnan, C. (1993). Adoption and diffusion of drip irrigation technology: An econometric analysis. Economic Development and Cultural Change, 41(2), 407–418.CrossRefGoogle Scholar
  43. Sidibé, A. (2005). Farm-level adoption of soil and water conservation techniques in northern Burkina Faso. Agricultural Water Management, 71, 211–224.CrossRefGoogle Scholar
  44. Skaggs, R. K. (2001). Predicting drip irrigation use and adoption in a desert region. Agricultural Water Management, 51(2), 125–142.CrossRefGoogle Scholar
  45. Van den Bulte, C. (2000). New product diffusion acceleration: Measurement and analysis. Marketing Science, 19, 366–380.CrossRefGoogle Scholar
  46. WWAP (World Water Assessment Programme). (2012). The United Nations world water development report 4: Managing water under uncertainty and risk. Paris: UNESCO.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francisco Alcon
    • 1
    Email author
  • Nuria Navarro
    • 2
  • María Dolores de-Miguel
    • 1
  • Andrea L. Balbo
    • 3
  1. 1.Departamento de Economía de la EmpresaUniversidad Politécnica de CartagenaMurciaSpain
  2. 2.Centro Integrado de Formación y Experiencias Agrarias (CIFEA)Molina de Segura, MurciaSpain
  3. 3.Research Group Climate Change and Security (CLISEC), Center for Earth System Research and Sustainability (CEN)University of HamburgHamburgGermany

Personalised recommendations