Adaptation to Climate Change Through Adaptive Crop Management

  • Dave Watson


In order to meet the growing needs of the global food system, whilst at the same time mitigating the effects of climate change and other production limiting factors and reducing negative environmental externalities, maize, wheat and rice agri-food systems will be required to sustainably intensify production. In the irrigated systems of developing countries, significant scope exists for increasing water use efficiency through new soil, water and fertiliser management approaches (such as Conservation Agriculture, Direct Seeding, Alternate Wetting and Drying, Site Specific Nutrient Management and Nutrient Expert) and crop diversification. In addition to the development of weather agro-advisory services and weather index insurance, the options available in rain-fed systems differ markedly from those available in irrigated systems, namely, to optimise every drop of available rainfall or to avoid drought stress situations. Whilst breeding for heat tolerance and diversified cropping systems are likely to be the principal short-term responses to increased mean global temperatures and extreme heat events, changes over the longer term are predicted to be quite dramatic, especially with regard to a productive expansion of temperate crops towards the poles. Whilst significant opportunities exist to ameliorate the effects of climate change, these opportunities generally involve risk. In developed countries, the private sector (seed, fertiliser, pesticide, irrigation, credit and insurance suppliers) is generally at hand to advise farmers how to address the challenges posed by climate change. Conversely, in most developing countries, there are few sources of advice and support for smallholder farmers. This situation leaves many smallholder farmers in developing countries without the advice and support that they desperately need. Ultimately, the most vulnerable farmers and communities, namely, smallholder subsistence and market oriented farmers in marginal environments, are those who face the most extreme climate change-related challenges at the same time as being the least able to adapt. Whilst international agricultural research centres (CGIAR), advanced research and development-focused centres of developed countries, and both local and international NGOs strive to both develop and translate evolving crop management approaches; the dissemination of climate smart agricultural practices is extremely slow.


  1. AGRA. (2014). Africa agriculture status report: Climate change and smallholder agriculture in sub-Saharan Africa (No. 2). Nairobi: Alliance for a Green Revolution in Africa, AGRA.Google Scholar
  2. Andersson, J. A., & D’Souza, S. (2014). From adoption claims to understanding farmers and contexts: A literature review of conservation agriculture (CA) adoption among smallholder farmers in southern Africa. Agriculture, Ecosystems & Environment, 187, 116–132.CrossRefGoogle Scholar
  3. Babel, M. S., & Wahid, S. W. (2008). Freshwater under threat in South Asia. UNEP Report. Nairobi: United Nations Environment Programme (UNEP). ISBN 978-92-807-2949-8. 29 pp.Google Scholar
  4. Balwinder-Singh, Gaydon, D. S., Humphreys, E., & Eberbach, P. L. (2011). Evaluating the performance of APSIM for irrigated wheat in Punjab, India. Field Crops Research, 124, 1–13.CrossRefGoogle Scholar
  5. Balwinder-Singh, Humphreys, E., Gaydonca, D. S., & Yadavb, S. (2015). Options for increasing the productivity of the rice–wheat system of north west India while reducing groundwater depletion. Part 2. Is conservation agriculture the answer? Field Crops Research, 173(2015), 81–94.CrossRefGoogle Scholar
  6. Baudron, F., Thierfelder, C., Nyagumbo, I., & Gérard, B. (2015). Where to target conservation agriculture for African smallholders? How to overcome challenges associated with its implementation? Experience from eastern and southern Africa. Environments, 2(3), 338–357.CrossRefGoogle Scholar
  7. Belder, P., Bouman, B. A. M., Cabangon, R. J., Guoan, L., Quilang, E. J. P., Yuanhua, L., Spiertz, J. H. J., & Tuong, T. P. (2004). Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management, 65, 193–210.CrossRefGoogle Scholar
  8. Belder, P., Bouman, B. A. M., & Spiertz, J. H. J. (2007). Exploring options for water savings in lowland rice using a modelling approach. Agricultural Systems, 92, 91–114.CrossRefGoogle Scholar
  9. Bele, M. Y., Sonwa, D. J., & Tiani, A. M. (2014). Local communities’ vulnerability to climate change and adaptation strategies in Bukavu in DR Congo. Journal of Environment & Development, 23(3), 331–357.CrossRefGoogle Scholar
  10. Biazin, B., Sterk, G., Temesgen, M., Abdulkedir, A., & Stroosnijder, L. (2012). Rainwater harvesting and management in rain-fed agricultural systems in sub-Saharan Africa—A review. Physics and Chemistry of the Earth, 47–48, 139–151.CrossRefGoogle Scholar
  11. Bouman, B. A. M., Peng, S., Castaneda, A. R., & Visperas, R. M. (2005). Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, 74, 87–105.CrossRefGoogle Scholar
  12. Bouman, B. A. M., Lampayan, R. M., & Tuong, T. P. (2007). Water management in irrigated rice: Coping with water scarcity (p. 53). Manila: International Rice Research Institute.Google Scholar
  13. Brooks, S. (2014). Enabling adaptation? Lessons from the new ‘Green Revolution’ in Malawi and Kenya. Climatic Change, 122, 15–26.CrossRefGoogle Scholar
  14. Bryan, E., Deressa, T. T., Gbetibouo, G. A., & Ringler, C. (2009). Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environmental Science & Policy, 12, 413–426.CrossRefGoogle Scholar
  15. Bryan, E., Ringler, C., Okoba, B., Roncoli, C., Silvestri, S., & Herrero, M. (2013). Adapting agriculture to climate change in Kenya: Household strategies and determinants. Journal of Environmental Management, 114, 26–35.CrossRefGoogle Scholar
  16. Bueno, C. S., Bucourt, M., Kobayashi, N., In ubushi, K., & Lafarge, T. (2010). Water productivity of contrasting rice genotypes grown under water-saving conditions in the tropics and investigation of morphological traits for adaptation. Agricultural Water Management, 98, 241–250.CrossRefGoogle Scholar
  17. Burke, M. B., Lobell, D. B., & Guarino, L. (2009). Shifts in African crop climates by 2050, and the implications for crop improvements and genetic resources conservation. Global Environmental Change, 19, 317–325.CrossRefGoogle Scholar
  18. Cabangon, R. J., Lu, G., Tuong, T. P., Bouman, B. A. M., Feng, Y., & Zichuan, Z. (2003). Irrigation management effects on yield and water productivity of inbred and aerobic rice varieties in Kaefeng. In Proc. of the First International Yellow River Forum on River Basin Management (Vol. 2, pp. 65–76). Zhengzhou, Henan: The Yellow River Conservancy Publishing House.Google Scholar
  19. Cairns, J. E., Hellin, J., Sonder, K., Araus, J. L., MacRobert, J. F., Thierfelder, C., & Prasanna, B. M. (2013). Adapting maize production to climate change in sub-Saharan Africa. Food Security, 5, 345–360. Scholar
  20. CCAFS. (2014). Climate-smart villages: A community approach to sustainable agricultural development. Retrieved from
  21. Chahal, G. B. S., Sood, A., Jalota, S. K., Choudhury, B. U., & Sharma, P. K. (2007). Yield, evapotranspiration and water productivity of rice (Oryza sativa L.)–wheat (Triticum aestivum L.) system in Punjab-India as influenced by transplanting date of rice and weather parameters. Agricultural Water Management, 88, 14–27.CrossRefGoogle Scholar
  22. Challinor, A. J., Simelton, E. S., Fraser, E. D. G., Hemming, D., & Collins, M. (2010). Increased crop failure due to climate change: Assessing adaptation options using models and socio-economic data for wheat in China. Environmental Research Letters, 5(2010), 034012 (8pp). Scholar
  23. Critchley, W., & Gowing, J. (Eds.). (2012). Water harvesting in Sub-Saharan Africa. London: Routledge.Google Scholar
  24. Dawe, D. (2005). Increasing water productivity in rice-based systems in Asia—Past trends, current problems, and future prospects. Plant Production Science, 8, 221–230. Scholar
  25. Dawe, D., Dobermann, A., Witt, C., Abdulrachman, S., Gines, H. C., Nagarajan, R., Satawathananont, S., Son, T. T., Tan, P. S., & Wang, G. H. (2004). Nutrient management in the rice soils of Asia and the potential of site-specific nutrient management. In A. Dobermann, C. Witt, & D. Dawe (Eds.), Increasing productivity of intensive rice systems through site-specific nutrient management (pp. 337–358). Enfield, NH; Los Baños: Science Publishers; International Rice Research Institute.Google Scholar
  26. Dendooven, L., Patiño-Zúñiga, L., Verhulst, N., Luna-Guido, M., Marsch, R., & Govaerts, B. (2012). Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. Agriculture, Ecosystems and Environment, 152, 50–58.CrossRefGoogle Scholar
  27. Derpsch, R., Lange, D., Birbaumer, G., & Moriya, K. (2016). Why do medium-and large-scale farmers succeed practicing CA and small-scale farmers often do not? – Experiences from Paraguay. International Journal of Agricultural Sustainability, 14(3), 269–281.CrossRefGoogle Scholar
  28. Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H. C., Nagarajan, R., Satawathananont, S., Son, T. T., Tan, P. S., Wang, G. H., Chien, N. V., Thoa, V. T. K., Phung, C. V., Stalin, P., Muthukrishnan, P., Ravi, V., Babu, M., Chatuporn, S., Sookthongsa, J., Sun, Q., Fu, R., Simbahan, G. C., & Adviento, M. A. A. (2002). Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 74, 37–66.CrossRefGoogle Scholar
  29. Dobermann, A., Abdulrachman, S., Gines, H. C., Nagarajan, R., Satawathananont, S., Son, T. T., Tan, P. S., Wang, G. H., Simbahan, G. C., Adviento, M. A. A., & Witt, C. (2004). Agronomic performance of site-specific nutrient management in intensive rice-cropping systems of Asia. In A. Dobermann, C. Witt, & D. Dawe (Eds.), Increasing productivity of intensive rice systems through site-specific nutrient management (pp. 307–336). Enfield, NH; Los Baños: Science Publishers; International Rice Research Institute.Google Scholar
  30. Doll, P., & Siebert, S. (2002). Global modeling of irrigation water requirements. Water Resources Research, 38, 1–10. Scholar
  31. ETC. (2016). Software vs. Hardware vs. Nowhere: Deere & Co. is becoming ‘Monsanto in a Box. Val David, QC: ETC Group.Google Scholar
  32. FAO. (2008). FAO statistical yearbook. Rome: The Food and Agriculture Organization. Retrieved from Scholar
  33. FAO. (2011). What is conservation agriculture? FAO conservation agriculture. Rome: The Food and Agriculture Organization. Retrieved from Scholar
  34. Farooq, M., Siddique, K. H. M., Rehman, H., Aziz, T., Dong-Jin, L., & Wahid, A. (2011). Rice direct seeding: Experiences, challenges and opportunities. Soil and Tillage Research, 111, 87–98.CrossRefGoogle Scholar
  35. Fischer, R. A., Santiveri, F., & Vidal, I. R. (2002). Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands: I. Wheat and legume performance. Field Crops Research, 79, 107–122.CrossRefGoogle Scholar
  36. Fischer, E. M., Seneviratne, S., & Schr, C. (2007). Contribution of land-atmosphere coupling to recent European summer heat waves. Geophysical Research Letters, 34, 606–707.CrossRefGoogle Scholar
  37. Fischer, R. A., Byerlee, D., & Edmeades, G. O. (2014). Crop yields and global food security: Will yield increase continue to feed the world? Canberra, ACT: Australian Centre for International Agricultural Research. Retrieved from Scholar
  38. Fosu-Mensah, B. Y., Vlek, P. L. G., & MacCarthy, D. S. (2012). Farmers’ perception and adaptation to climate change: A case study of Sekyedumase District in Ghana. Environment, Development and Sustainability, 14, 495–505.CrossRefGoogle Scholar
  39. Gangwar, B., & Singh, A. K. (2011). Efficient alternative cropping systems (p. 339). Meerut: Project Directorate for Farming Systems Research, Modipuram.Google Scholar
  40. Gathala, M. K., Kumar, V., Sharma, P. C., Saharawat, Y. S., Jat, H. S., Singh, M., Kumar, A., Jat, M. L., Humphreys, E., Sharma, D. K., Sharma, S., & Ladha, J. K. (2014). Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the Northwestern Indo-Gangetic Plains of India. Agriculture, Ecosystems and Environment, 187, 33–46.CrossRefGoogle Scholar
  41. Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: The heretic’s view. Field Crops Research, 114, 23–34.CrossRefGoogle Scholar
  42. Giller, K. E., Corbeels, M., Nyamangara, J., Triomphe, B., Affholder, F., Scopel, E., et al. (2011). A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Research, 124(3), 468–472.CrossRefGoogle Scholar
  43. Giller, K. E., Andersson, J. A., Corbeels, M., Kirkegaard, J., Mortensen, D., Erenstein, O., et al. (2015). Beyond conservation agriculture. Frontiers in Plant Science, 6, 870.CrossRefGoogle Scholar
  44. Hellmuth, M. E., Moorhead, A., Thomson, M. C., & Williams, J. (2007). Climate risk management in Africa: Learning from practice. In M. E. Hellmuth, A. Moorhead, M. C. Thomson, & J. Williams (Eds.), Climate and society: Climate risk management in Africa: Learning from practice (Vol. 1). New York, NY: IRI.Google Scholar
  45. Hengxin, L., Hongwen, L., Xuemin, F., & Liyu, X. (2008). The current status of conservation tillage in China. In T. Goddard, M. A. Zoebisch, Y. T. Gan, W. Ellis, A. Watson, & S. Sombatpanit (Eds.), No-till Farming Systems (pp. 413–428). Bangkok: WASWC. World Association of Soil and Water Conservation, Special Publication No. 3.Google Scholar
  46. Hobbs, P. R. (2007). Conservation agriculture: What is it and why is it important for future sustainable food production. Journal of Agricultural Science, 145, 127–137.CrossRefGoogle Scholar
  47. Hobbs, P. R., & Govaerts, B. (2010). How conservation agriculture can contribute to buffering climate change. In M. P. Reynolds (Ed.), Climate change and crop production (pp. 117–199). Wallingford: CABI.Google Scholar
  48. Huaqi, W., Bouman, B. A. M., Zhao, D., Changgui, W., & Moya, P. F. (2003). Aerobic rice in northern China: Opportunities and challenges. In B. A. M. Bouman, H. Hengsdijk, B. Hardy, P. S. Bindraban, T. P. Tuong, & J. K. Ladha (Eds.), Water-wise rice production. Proceedings of a Thematic Workshop on Water-wise Rice Production, 8–11 April 2002, Los Baños, Philippines (pp. 207–222). Los Baños: International Rice Research Institute.Google Scholar
  49. Ismail, A. M., Singh, U. S., Singh, S., Dar, M. H., & Mackill, D. J. (2013). The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone rain-fed lowland areas in Asia. Field Crops Research, 152, 83–93.CrossRefGoogle Scholar
  50. Jalota, S. K., Singh, K. B., Chahal, G. B. S., Gupta, R. K., Chakraborty, S., Sood, A., Ray, S. S., & Panigraphy, S. (2009). Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study. Agricultural Water Management, 96, 1096–1104.CrossRefGoogle Scholar
  51. Jarvis, A., Ramirez-Villegas, J., Herrera Campo, B. V., & Navarro-Racines, C. (2012). Is cassava the answer to African climate change adaptation? Tropical Plant Biology, 5(1), 9–29.CrossRefGoogle Scholar
  52. Jat, M. L., Chandna, P., Gupta, R., Sharma, S. K., & Gill, M. A. (2006). Laser land leveling: A precursor technology for resource conservation. Rice-Wheat Consortium Technical Bullletin Series No. 7. New Delhi: Rice-Wheat Consortium for the Indo-Gangetic Plains 48 pp.Google Scholar
  53. Jat, M. L., Saharawat, Y. S., & Gupta, R. (2011). Conservation agriculture in cereal systems of South Asia: Nutrient management perspectives. Karnataka Journal of Agricultural Sciences, 24, 100–105.Google Scholar
  54. Kassam, A., Friedrich, T., Derpsch, R., & Kienzle, J. (2015). Overview of the worldwide spread of conservation agriculture. Field actions science reports. The Journal of Field Actions, 8, 1–10.Google Scholar
  55. Kirk, G. J. D., Greenway, B. J., Atwell, B. J., Ismail, A. M., & Colmer, T. D. (2014). Adaptation of rice to flooded soils. In U. Lüttge, W. Beyschlag, & J. Cushman (Eds.), Progress in botany (Vol. 75). Berlin: Springer. Scholar
  56. Kumar, V., & Ladha, J. K. (2011). Direct seeding of rice: Recent developments and future research needs. Advances in Agronomy, 111, 297–313.CrossRefGoogle Scholar
  57. Lampayan, R. M., Bouman, B. A. M., Flor, R. J., & Palis, F. G. (2014). Developing and disseminating alternate wetting and drying water saving technology in the Philippines. In A. Kumar (Ed.), Mitigating water-shortage challenges in rice cultivation: Aerobic and alternate wetting and drying rice water-saving technologies. Manila: IRRI, Asian Development Bank.Google Scholar
  58. Lampayan, R. M., Samoy-Pascual, K. C., Sibayan, E. B., Ella, V. B., Jayag, O. P., Caban-gon, R. J., & Bouman, B. A. M. (2015a). Effects of alternate wetting and drying (AWD) threshold level and plant seedling age on crop performance, water input and water productivity of transplanted rice in Central Luzon. Paddy and Water Environment, 13, 215. Scholar
  59. Lampayan, R. M., Rejesus, R. M., Singleton, G. R., & Bouman, B. A. M. (2015b). Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research, 170(2015), 95–108.CrossRefGoogle Scholar
  60. Liu, C., Cutforth, H., Chai, Q., & Gan, Y. (2016). Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agronomy for Sustainable Development, 36, 69. Scholar
  61. Lybbert, T. J., & Sumner, D. A. (2012). Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion. Food Policy, 37, 114–123.CrossRefGoogle Scholar
  62. Mahajan, G., Timsina, J., & Singh, K. (2011). Performance and water use efficiency of rice relative to establishment methods in northwestern Indo-Gangetic Plains. Journal of Crop Improvement, 25, 597–617.CrossRefGoogle Scholar
  63. MAIZE. (2013). MAIZE CRP annual report. Mexico: CIMMYT.Google Scholar
  64. MAIZE. (2015). MAIZE CRP annual report. Mexico: CIMMYT.Google Scholar
  65. MAIZE. (2016). MAIZE CRP annual report. Mexico: CIMMYT.Google Scholar
  66. Majumdar, K., Zingore, S., Garcia, F., Correndo, A., Timsina, J., & Johnston, A. M. (2017). Improving nutrient management for sustainable intensification of maize. In D. J. Watson (Ed.), Achieving sustainable cultivation of maize. Cambridge: Burleigh Dodds Publishing.Google Scholar
  67. Malesu, M. M., De Leeuw, J., & Oduor, A. (2012). Water harvesting experiences from the SearNet (2003–2012). Retrieved January 15, 2016, from
  68. Miro, B., & Ismail, A. M. (2013). Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (OryzasativaL.). Frontiers in Plant Science, 4, 269.CrossRefGoogle Scholar
  69. Nelson, A., Wassmann, R., Sander, B. O., & Palao, L. K. (2015). Climate-determined suitability of the water saving technology “alternate wetting and drying” in rice systems: A scalable methodology demonstrated for a province in the Philippines. PLoS One, 10(12), e0145268. Scholar
  70. Pachpute, J. S., Tumbo, S. D., Sally, H., & Mul, M. L. (2009). Sustainability of rainwater harvesting systems in rural catchment of Sub-Saharan Africa. Water Resources Management, 23(13), 2815–2839.CrossRefGoogle Scholar
  71. Palis, F. G., Lampayan, R. M., & Bouman, B. A. M. (2014). Adoption and dissemination of alternate wetting and drying technology for boro rice cultivation in Bangladesh. In A. Kumar et al. (Eds.), Mitigating water-shortage challenges in rice cultivation: Aerobic and alternate wetting and drying rice water-saving technologies. Manila: IRRI and Asian Development Bank.Google Scholar
  72. Pampolino, M. F., Manguiat, I. J., Ramanathan, S., Gines, H. C., Tan, P. S., Chi, T. T. N., Rajendran, R., & Buresh, R. J. (2007). Environmental impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice systems. Agricultural Systems, 93(2007), 1–24.CrossRefGoogle Scholar
  73. Pretty, J., Noble, A. D., Bossio, D., Dixon, J., Hine, R. E., Penning de Vries, F. W. T., & Morison, J. I. L. (2006). Resource-conserving agriculture increases yields in developing countries. Environmental Science & Technology, 40, 1114–1119.CrossRefGoogle Scholar
  74. Rejesus, R. M., Martin, A. M., & Gypmantasiri, P. (2013). Meta-impact assessment of the irrigated rice research consortium. In Special IRRI Report. Los Baños: International Rice Research Institute.Google Scholar
  75. RICE. (2016). RICE CRP proposal. Las Banjos: IRRI.Google Scholar
  76. Rijsberman, F. R. (2006). Water scarcity: Fact or fiction? Agricultural Water Management, 80, 5–22.CrossRefGoogle Scholar
  77. Rosegrant, M. W., Ringler, C., & Zhu, T. (2009). Water for agriculture: Maintaining food security under growing scarcity. Annual Review of Environment and Resources, 34, 205–222. Scholar
  78. Sander, B. O., Samson, M., & Buresh, R. J. (2014). Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma, 235–236, 355–362. Scholar
  79. Sapkota, T. K., Majumdar, K., Jat, M. L., Kumara, A., Bishnoia, D. K., McDonald, A. J., & Pampolino, M. (2014). Precision nutrient management in conservation agriculture based wheat production of Northwest India: Profitability, nutrient use efficiency and environmental footprint. Field Crops Research, 155(2014), 233–244.CrossRefGoogle Scholar
  80. Sofoluwe, N. A., Tijani, A. A., & Baruwa, O. I. (2011). Farmers’ perception and adaptation to climate change in Osun State, Nigeria. African Journal of Agricultural Research, 6(20), 4789–4794.Google Scholar
  81. Tadesse, M., Shiferaw, B., & Erenstein, O. (2015). Weather index insurance for managing drought risk in smallholder agriculture: Lessons and policy implications for Sub-Saharan Africa. Agricultural and Food Economics, 3, 26.CrossRefGoogle Scholar
  82. Thierfelder, C., & Wall, P. C. (2009). Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil and Tillage Research, 105, 217–227.CrossRefGoogle Scholar
  83. Thierfelder, C., & Wall, P. C. (2010). Investigating Conservation Agriculture (CA) Systems in Zambia and Zimbabwe to mitigate future effects of climate change. Journal of Crop Improvement, 24, 113–121.CrossRefGoogle Scholar
  84. Thierfelder, C., Rusinamhodzi, L., Setimela, P., Walker, F., & Eash, N. S. (2016). Conservation agriculture and drought-tolerant germplasm: Reaping the benefits of climate-smart agriculture technologies in Central Mozambique. Renewable Agriculture and Food Systems, 156, 99–109.Google Scholar
  85. Thierfelder, C., Chivenge, P., Mupangwa, W., Rosenstock, T. S., Lamanna, C., & Eyre, J. (2017). How climate-smart is conservation agriculture (CA): Its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa. Food Security., 9, 537. Scholar
  86. Tuong, T. P., & Bouman, B. A. M. (2003). Rice production in water scarce environments. In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement (pp. 53–67). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  87. Ussiri, D. A. N., & Lal, R. (2009). Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil and Tillage Research, 104, 39–47.CrossRefGoogle Scholar
  88. Valbuena, D., Erenstein, O., Homann-Kee Tui, S., Abdoulaye, T., Claessens, L., Duncan, A. J., et al. (2012). Conservation agriculture in mixed crop–livestock systems: Scoping crop residue trade-offs in sub-Saharan Africa and South Asia. Field Crops Research, 132, 175–184.CrossRefGoogle Scholar
  89. Verhulst, N., Govaerts, B., Verachtert, E., Castellanos-Navarrete, A., Mezzalama, M., Wall, P., et al. (2010). Conservation agriculture, improving soil quality for sustainable production systems? In R. Lal & B. A. Stewart (Eds.), Advances in soil science: Food security and soil quality (pp. 137–208). Boca Raton, FL: CRC Press.Google Scholar
  90. Vermeulen, S., Aggarwal, P., Ainslie, A., Angelone, C., Campbell, B., Challinor, A., Hansen, J., Ingram, J., Jarvis, A., Kristjanson, P., Lau, C., Nelson, G., Thornton, P., & Wollenberg, E. (2012). Options for support to agriculture and food security under climate change. Environmental Science & Policy, 15, 136–144.CrossRefGoogle Scholar
  91. Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561. Scholar
  92. Wada, Y., LPH, V. B., & Bierkens, M. F. P. (2011). Modelling global water stress of the recent past: On the relative importance of trends in water demand and climate variability. Hydrology and Earth System Sciences, 15, 3785–3808. Scholar
  93. Wakeyo, M. B. (2012). Economic analysis of water harvesting technologies in Ethiopia. Retrieved from
  94. Waqar, A., Jehangir, I. M., Shehzad, A., Mustaq, A. G., Maqsood, A., Riaz, A. M., Muhammad, R. C., Asad, S. Q., & Hugh, T. (2007). Sustaining crop water productivity in rice–Wheat systems of south asia: A case study from the Punjab, Pakistan. Colombo: International Water Management Institute, IWMI.Google Scholar
  95. Weller, S., Janz, B., Jörg, L., Kraus, D., Racela, H. S. U., Wassmann, R., Butterbach-Bahl, K., & Kiese, R. (2016). Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Global Change Biology, 22, 432–448. Scholar
  96. Westengen, O. T., & Brysting, A. K. (2014). Crop adaptation to climate change in the semi-arid zone in Tanzania: The role of genetic resources and seed systems. Agriculture & Food Security, 3, 3.CrossRefGoogle Scholar
  97. World Bank. (2014). World development report 2014. Washington, DC: World Bank.CrossRefGoogle Scholar
  98. Yadvinder-Singh, Humphreys, E., Kukal, S. S., Singh, B., Kaur, A., Thaman, S., Prashar, A., Yadav, S., Kaur, N., Dhillon, S. S., Smith, D. J., Timsina, J., & Gajri, P. R. (2009). Crop performance in a permanent raised bed rice–wheat cropping system in Punjab, India. Field Crops Research, 110, 1–20.CrossRefGoogle Scholar
  99. Yadvinder-Singh, Kukal, S. S., Jat, M. L., & Sidhu, H. S. (2014). Improving water productivity of wheat-based cropping systems in South Asia for sustained productivity. Advances in Agronomy, 127, 157–120. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dave Watson
    • 1
  1. 1.CGIAR Research Program on MaizeInternational Maize and Wheat Improvement Center (CIMMYT)TexcocoMéxico

Personalised recommendations