Advertisement

Overview on Primary Production in the Southwestern Atlantic

  • Vivian Lutz
  • Valeria Segura
  • Ana Dogliotti
  • Virginia Tavano
  • Frederico P. Brandini
  • Danilo L. Calliari
  • Aurea M. Ciotti
  • Virginia F. Villafañe
  • Irene R. Schloss
  • Flavia M. P. Saldanha Corrêa
  • Hugo Benavides
  • Denise Vizziano Cantonnet
Chapter

Abstract

Photosynthesis is the fundamental process by which autotrophs produce organic matter to sustain the biosphere using basic elements (i.e., CO2 and H2O) and solar irradiance as energy source. Marine phytoplankton provides near half of the global primary production (PP), being at the base of most marine trophic webs and playing an important role in the cycling of atmospheric CO2. Therefore, it is crucial to estimate and understand the relationships between environmental conditions and PP rates in the global ocean. There are scarce field estimations of PP in the southern hemisphere and in the Southwestern Atlantic in particular. Hence, global estimates are generally made using indirect methods, such as satellite or biogeochemical models, which should be validated and adjusted with field data to produce reliable results.

In this section we synthesize the available information, assembling recent field PP estimations obtained by research groups from Argentina, Brazil, and Uruguay. We evaluate the insights derived from this integrated dataset on the spatial and temporal dynamics of the phytoplankton production in the Southwestern Atlantic. In addition, a general view of the spatial-temporal variation in PP at a regional scale using a simple satellite PP model is presented. Finally, we offer perspectives and recommendations for future studies.

Keywords

Primary production In situ measurements Satellite-production models Phytoplankton Southwestern Atlantic 

Notes

Acknowledgments

Primary production estimations are labor intensive, hence, the authors wished to thank all the many colleagues that have collaborated throughout the years to produce the results here shown for the region. The financial support from all the institutions involved and the grants held by all the authors are acknowledged. We want to thank the reviewers of the work for their useful comments. This is INIDEP contribution # 2120 .

References

  1. Armstrong RA, Gilbes F, Guerrero R et al (2004) Validation of SeaWiFS–derived chlorophyll for the Rio de la Plata estuary and adjacent waters. Int J Remote Sens 25:1501–1505CrossRefGoogle Scholar
  2. Barbieri ES, Villafañe VE, Helbling EW (2002) Experimental assessment of UV effects upon temperate marine phytoplankton when exposed to variable radiation regimes. Limnol Oceanogr 47:1648–1655CrossRefGoogle Scholar
  3. Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite–based chlorophyll concentration. Limnol Oceanogr 42:1–20CrossRefGoogle Scholar
  4. Behrenfeld MJ, Boss E, Siegel D et al (2005) Carbon–based ocean productivity and phytoplankton physiology from space. Glob Biogeochem Cycles 19:GB1006.  https://doi.org/10.1029/2004GB002299 CrossRefGoogle Scholar
  5. Bender ML, Grande K, Johnson K et al (1987) A comparison of four methods for determining planktonic community production. Limnol Oceanogr 32:1085–1098.  https://doi.org/10.4319/lo.1987.32.5.1085 CrossRefGoogle Scholar
  6. Bianchi AA, Bianucci L, Piola A et al (2005) Vertical stratification and air–sea CO2 fluxes in the Patagonian shelf. J Geophys Res 110:C07003.  https://doi.org/10.1029/2004JC002488 CrossRefGoogle Scholar
  7. Bianchi AA, Ruiz Pino D, Isbert Perlender HG et al (2009) Annual balance and seasonal variability of sea–air CO2 fluxes in the Patagonian Sea: their relationship with fronts and chlorophyll distribution. J Geophys Res 114:C03018.  https://doi.org/10.1029/2008JC004854 CrossRefGoogle Scholar
  8. Bouman H, Platt T, Sathyendranath S, Stuart V (2005) Dependence of light saturated photosynthesis on temperature and community structure. Deep-Sea Res I 52:1284–1299CrossRefGoogle Scholar
  9. Bouman HA, Platt T, Doblin M et al (2018) Photosynthesis–irradiance parameters of marine phytoplankton: synthesis of a global data set. Earth Syst Sci Data.  https://doi.org/10.5194/essd–2017–40
  10. Brandini FP (1988) Hydrography, phytoplankton biomass and photosynthesis in shelf and oceanic waters off southeastern Brazil during autumn (May/June 1983). Bol Inst Oceanogr 36:63–72CrossRefGoogle Scholar
  11. Brandini FP (1990) Primary production and phytoplankton photosynthetic in the southeastern Brazilian coast. Bol Inst Oceanogr 38:147–159CrossRefGoogle Scholar
  12. Brandini FP, Nogueira M, Simião M et al (2014) Deep chlorophyll maximum and plankton community response to oceanic bottom intrusions on the continental shelf in the South Brazilian bight. Cont Shelf Res 89:61–75.  https://doi.org/10.1016/j.csr.2013.08.002 CrossRefGoogle Scholar
  13. Buitenhuis ET, Hashioka T, LeQuéré C (2013) Combined constraints on global ocean primary production using observations and models. Glob Biogeochem Cycles 27:847–858.  https://doi.org/10.1002/gbc.20074 CrossRefGoogle Scholar
  14. Calado L, Silveira ICA, Gangopadhyay A et al (2010) Eddy–induced upwelling off Cape São Tomé (22 S, Brazil). Cont Shelf Res 30:1181–1188CrossRefGoogle Scholar
  15. Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57CrossRefGoogle Scholar
  16. Calliari D, Brugnoli E, Ferrari G et al (2009) Phytoplankton distribution and production along a wide environmental gradient in the South–West Atlantic off Uruguay. Hydrobiologia 620:47–61CrossRefGoogle Scholar
  17. Campos EJD, Gonçalves JE, Ikeda Y (1995) Water mass characteristics and geostrophic circulation in the South Brazil bight – summer of 1991. J Geophys Res 100:18537–18550CrossRefGoogle Scholar
  18. Carr ME, Friedrichs MAM, Schmeltz M et al (2006) A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res II 53:741–770CrossRefGoogle Scholar
  19. Castro BM, Miranda LB (1998) Physical oceanography of the western Atlantic continental shelf located between 4N and 34 S. In: Robinson AR, Brink KH (eds) The sea, vol 11. Wiley, New York, pp 209–251Google Scholar
  20. Castro BM, Brandini FP, MAS P–V et al (2006) Multidisciplinary oceanographic processes on the Western Atlantic continental shelf located between 4°N and 34°S. In: Robinson AR, Brink KH (eds) The sea, vol 14. Wiley, New York, pp 259–293Google Scholar
  21. Ciotti AM, Odebrecht C, Moller Jr O (1992) South Brazilian continental shelf: chlorophyll–a, primary production, and the relationship between abiotic and biotic parameters. In: Falkowski PG, Woodhead AD, Vivirito K (eds) Primary productivity and biogeochemical cycles in the sea. Springer, Boston, pp 507–508CrossRefGoogle Scholar
  22. Coló Giannini MF, Ciotti AM (2016) Parameterization of natural phytoplankton photo–physiology: effects of cell size and nutrient concentration. Limnol Oceanogr 61:1495–1512CrossRefGoogle Scholar
  23. Coló Giannini MF, Garcia CAE, Tavano VM et al (2013) Effects of low–salinity and high–turbidity waters on empirical ocean colour algorithms: an example for Southwestern Atlantic waters. Cont Shelf Res 59:84–96CrossRefGoogle Scholar
  24. Devred E, Sathyendranath S, Platt T (2007) Delineation of ecological provinces using ocean colour radiometry. Mar Ecol Prog Ser 346:1–13CrossRefGoogle Scholar
  25. Dogliotti AI, Lutz VA, Segura V (2014) Estimation of primary production in the southern Argentine continental shelf and shelf–break regions using field and remote sensing data. Remote Sens Environ.  https://doi.org/10.1016/j.rse.2013.09.021
  26. Dogliotti AI, Ruddick K, Guerrero R (2016) Seasonal and inter–annual turbidity variability in the Río de la Plata from 15 years of MODIS: El Niño dilution effect. Est Coastal Shelf Sci 182:27–39CrossRefGoogle Scholar
  27. Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12(2):196–206CrossRefGoogle Scholar
  28. Dugdale RC, Wilkerson FP (1986) The use of 15N to measure nitrogen uptake in eutrophic oceans: experimental conditions. Limnol Oceanogr 31:673–689CrossRefGoogle Scholar
  29. El–Sayed SZ (1967) On the productivity of the Southwest Atlantic Ocean and the waters West of the Antarctic Peninsula. In: Schmitt W, Llano GA (eds) Biology of the Antarctic seas III, Antarctic research series, vol 11. Am Geophys Society, Washington, pp 15–47Google Scholar
  30. Emílsson I (1961) The shelf and coastal waters off southern Brazil. Bol Inst Oceanogr 11(2):101–112.  https://doi.org/10.1590/S0373–55241961000100004 CrossRefGoogle Scholar
  31. Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282(5740):677–680.  https://doi.org/10.1038/282677a0 CrossRefGoogle Scholar
  32. Gaarder T, Gran HH (1927) Investigations of the production of plankton in the Oslo Fjord. Rapp P v Reun Cons Int Explor Mer 42:1–48Google Scholar
  33. Gaeta SA, Ribeiro SMS, Metzler PM et al (1999) Environmental forcing on phytoplankton biomass and primary productivity of the coastal ecosystem in Ubatuba region, Southern Brazil. Rev Bras Oceanogr 47(1):11–27CrossRefGoogle Scholar
  34. Garcia CAE, Garcia VMT, McClain CR (2005) Evaluation of SeaWiFS chlorophyll algorithms in the southwestern Atlantic and Southern oceans. Remote Sens Environ 95:125–137.  https://doi.org/10.1016/j.rse.2004.12.006 CrossRefGoogle Scholar
  35. Garcia VMT, Signorini S, Garcia CAE et al (2006) Empirical and semi–analytical chlorophyll algorithms in the southwestern Atlantic coastal region (25–40°S and 60–45°W). Int J Remote Sens 27(8):1539–1562.  https://doi.org/10.1080/01431160500382857 CrossRefGoogle Scholar
  36. Garcia VMT, Garcia CAE, Mata MM et al (2008) Environmental factors controlling the phytoplankton blooms at the Patagonia shelf–break in spring. Deep-Sea Res I 55:1150–1166CrossRefGoogle Scholar
  37. Geider RJ, Osborne BA (1992) Algal photosynthesis: the measurement of algal gas exchange. In: Dring MJ, Melkonian M (eds) Current phycology, vol 2. Chapman and Hall, New York, p 256Google Scholar
  38. Gómez MI, Piola A, Kattner G et al (2011) Biomass of autotrophic dinoflagellates under weak vertical stratification and contrasting chlorophyll levels in subantarctic shelf waters. J Plankton Res 33:1304–1310CrossRefGoogle Scholar
  39. Gonzalez–Rodriguez E (1994) Yearly variation in primary productivity of marine phytoplankton from Cabo Frio (RJ, Brazil) region. Hydrobiologia 294(2):145–156CrossRefGoogle Scholar
  40. Gonzalez–Rodriguez E, Valentin JL, Andrè DL et al (1992) Upwelling and downwelling at Cabo Frio (Brazil): comparison of biomass and primary production. J Plankton Res 14(2):289–306CrossRefGoogle Scholar
  41. González–Silvera A (1994) Modelos Semi–Analíticos para estimar la Producción Primária del Fitopláncton a través de Sensoriamento Remoto: Una aplicación en el ámbito regional. MSc Dissertation, Federal University of Rio GrandeGoogle Scholar
  42. Häder DP, Villafañe VE, Helbling EW (2014) Productivity of aquatic primary producers under global climate change. Photochem Photobiol Sci 13:1370–1392CrossRefPubMedGoogle Scholar
  43. Hama T, Miyazaki T, Ogawa Y et al (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol 73:31–36CrossRefGoogle Scholar
  44. Helbling EW, Buma AGJ, de Boer MK et al (2001) In situ impact of solar ultraviolet radiation on photosynthesis and DNA in temperate marine phytoplankton. Mar Ecol Prog Ser 211(1):43–49CrossRefGoogle Scholar
  45. Helbling EW, Barbieri ES, Marcoval MA et al (2005) Impact of solar ultraviolet radiation on marine phytoplankton from Patagonia. Photochem Photobiol 81:807–818CrossRefPubMedGoogle Scholar
  46. Hu C, Lee Z, Franz B (2012) Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three–band reflectance difference. J Geophys Res 117:C01011.  https://doi.org/10.1029/2011JC007395 CrossRefGoogle Scholar
  47. Johnsen G, Sakshaug E (2007) Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse–amplitude–modulated and fast–repetition–rate–Fluorometry. J Phycol 43:1236–1251CrossRefGoogle Scholar
  48. Kiørboe T (1993) Turbulence phytoplankton cell size and the structure of marine pelagic food webs. Adv Mar Biol 29:1–72CrossRefGoogle Scholar
  49. Kolber Z, Falkowski P (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665CrossRefGoogle Scholar
  50. Le Quéré C, Harrison PH, Prentice C et al (2005) Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob Change Biol 11:2016–2040.  https://doi.org/10.1111/j.1365–2486.2005.1004.x CrossRefGoogle Scholar
  51. Longhurst A, Sathyendranath S, Platt T et al (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271CrossRefGoogle Scholar
  52. Lorenzzetti JA, Gaeta SA (1996) The Cape Frio upwelling effect over the South Brazil Bight northern sector shelf Waters: a study using AVHRR images. ISPRS Archives, vol XXXI, PartB7:448–453Google Scholar
  53. Lutz VA, Sathyendranath S, Head EJH et al (1998) Differences between in vivo absorption and fluorescence excitation spectra in natural samples of phytoplankton. J Phycol 34:214–227CrossRefGoogle Scholar
  54. Lutz VA, Segura V, Dogliotti AI et al (2010) Primary production in the Argentine sea during spring estimated by field and satellite models. J Plankton Res 32:181–195CrossRefGoogle Scholar
  55. Martínez G, Brugnoli E, Hernández J et al (2005) How valid is the SeaWiFS estimation of chlorophyll–a at the Río de la Plata estuary and its area of influence? In: Frouin R, Kawamura H, Pan D (eds) Active and passive remote sensing of the oceans proc of SPIE, vol 5656.  https://doi.org/10.1117/12.582665 CrossRefGoogle Scholar
  56. Metzler PM, Glibert PM, Gaeta AS et al (1997) New and regenerated production in the South Atlantic off Brazil. Deep-Sea Res I 44(3):363–384CrossRefGoogle Scholar
  57. Moreau S, Mostajir B, Bélanger S et al (2015) Climate change enhances primary production in the Western Antarctic Peninsula. Glob Chang Biol.  https://doi.org/10.1111/gcb.12878
  58. Morel A, Claustre H, Antoine D, Gentili B (2007) Natural variability of bio-optical properties in Case 1 waters: attenuation and reflectance within the visible and near-UV spectral domains, as observed in the South Pacific and Mediterrranean waters. Biogeosciences 4:913–925Google Scholar
  59. Negri RM, Akselman R, Carignan MO et al (2010) Plankton community and environmental conditions during a mid shelf waters intrusion and upwelling at the EPEA atation (Argentina). In: Abstracts of the meeting of the Americas AGU, Foz do Iguazu, Brazil, 8–10 August 2010Google Scholar
  60. Negri RM, Mollinari G, Carignan M et al (2016) Ambiente y Plancton en la Zona Común de Pesca Argentino–Uruguaya en un escenario de cambio climático (marzo 2014). Rev Frente Mar 24:251–316Google Scholar
  61. Piola A, Campos EJD, Môller Jr OO et al (2000) Subtropical shelf front off Eastern South America. J Geophys Res 107:6565–6578CrossRefGoogle Scholar
  62. Platt T, Jassby AD (1976) The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J Phycol 12:421–430Google Scholar
  63. Platt T, Sathyendranath S (1988) Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241:1613–1620CrossRefPubMedGoogle Scholar
  64. Platt T, Sathyendranath S (2009) Light and marine primary production. Seibutsu Kenkyusha, Tokyo, p 174Google Scholar
  65. Platt T, Sathyendranath S, Forget M–H et al (2008) Operational mode estimation of primary production at large geographical scales. Remote Sens Environ 112:3437–3448CrossRefGoogle Scholar
  66. Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 177–192Google Scholar
  67. Regaudie–de–Gioux A, Lasternas S, Agustí S et al (2014) Comparing marine primary production estimates through different methods and development of conversation equations. Front Mar Sci.  https://doi.org/10.3389/fmars.2014.00019
  68. Sabatini ME, Akselman R, Reta R et al (2012) Spring plankton communities in the southern Patagonian shelf: hydrography, mesozooplankton patterns and trophic relationships. J Mar Syst 94:33–51CrossRefGoogle Scholar
  69. Sabine CL, Feely RA, Gruber N et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371CrossRefGoogle Scholar
  70. Saldanha–Corrêa FMP, Gianesella SMF (2008) Produção Primária e Fitoplâncton. In: Pires–Vanin AMS (ed) Oceanografia de um ecossistema subtropical. EDUSP, São Paulo, pp 223–251Google Scholar
  71. Sarmiento JL, Bender M (1994) Carbon biogeochemistry and climate change. Photos Res 39:209–234.  https://doi.org/10.1007/bf00014585 CrossRefGoogle Scholar
  72. Schloss IR, Ferreyra GA, Ferrario ME et al (2007) Role of plankton communities in pCO2 sea–air variation in the southwestern Atlantic Ocean. Mar Ecol Prog Ser 332:93–106CrossRefGoogle Scholar
  73. Segura V, Lutz VA, Dogliotti AI et al (2013) Phytoplankton functional types and primary production in the Argentine sea. Mar Ecol Prog Ser 491:15–31CrossRefGoogle Scholar
  74. Steeman Nielsen E (1952) The use of radioactive carbon (14C) for measuring production in the sea. J Cons Perm Int Explor Mer 18:117–140.  https://doi.org/10.1093/icesjms/18.2.117 CrossRefGoogle Scholar
  75. Sugget DJ, MacIntyre HL, Geider RJ (2004) Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnol Oceanogr Methods 2:316–332CrossRefGoogle Scholar
  76. Takahashi T (2004) The fate of industrial carbon dioxide. Science 305:352–353CrossRefPubMedGoogle Scholar
  77. Tilstone GH, Lange PK, Misra A et al (2017) Micro–phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean. Prog Oceanogr.  https://doi.org/10.1016/j.pocean.2017.01.006
  78. Vernet M, Smith RC (2007) Measuring and modeling primary production in marine pelagic ecosystems. In: Fahey TJ, Knapp AK (eds) Principles and standards for measuring primary production. Oxford University Press, New York.  https://doi.org/10.1093/acprof:oso/9780195168662.003.0009 CrossRefGoogle Scholar
  79. Villafañe VE, Sundbäck K, al FFL (2003) Photosynthesis in the aquatic environment as affected by UVR. In: Helbling EW, Zagarese HE (eds) UV effects in aquatic organisms and ecosystems. Comprehensive series in photochemical and Photobiological sciences. The Royal Society of Chemistry, Cambridge, pp 357–397Google Scholar
  80. Villafañe VE, Barbieri ES, Helbling EW (2004a) Annual patterns of ultraviolet radiation effects on temperate marine phytoplankton off Patagonia, Argentina. J Plankton Res 26:167–174CrossRefGoogle Scholar
  81. Villafañe VE, Marcoval MA, Helbling EW (2004b) Photosynthesis versus irradiance characteristics in phytoplankton assemblages off Patagonia (Argentina): temporal variability and solar UVR effects. Mar Ecol Prog Ser 284:23–34CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vivian Lutz
    • 1
    • 2
  • Valeria Segura
    • 2
  • Ana Dogliotti
    • 3
  • Virginia Tavano
    • 4
  • Frederico P. Brandini
    • 5
  • Danilo L. Calliari
    • 6
    • 7
  • Aurea M. Ciotti
    • 8
  • Virginia F. Villafañe
    • 9
  • Irene R. Schloss
    • 10
    • 11
  • Flavia M. P. Saldanha Corrêa
    • 5
  • Hugo Benavides
    • 2
  • Denise Vizziano Cantonnet
    • 12
  1. 1.Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Mar del Plata (CONICET – UNMdP)Mar del Plata, Buenos AiresArgentina
  2. 2.Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP)Mar del Plata, Buenos AiresArgentina
  3. 3.Instituto de Astronomía y Física del Espacio (IAFE-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y NaturalesBuenos AiresArgentina
  4. 4.Laboratório de Fitoplâncton e Microorganismos MarinhosUniversidade Federal do Rio GrandeRio GrandeBrazil
  5. 5.Instituto Oceanográfico, Universidade de São PauloSão PauloBrazil
  6. 6.Grupo Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional del Este (CURE)Universidad de la RepúblicaRochaUruguay
  7. 7.Facultad de Ciencias, Oceanografía y Ecología MarinaUniversidad de la RepúblicaMontevideoUruguay
  8. 8.Universidade de São Paulo, Centro de Biologia Marinha, São SebastiãoSão PauloBrazil
  9. 9.Estación de Fotobiología Playa Unión. Consejo Nacional de Investigaciones Científicas y TécnicasRawsonArgentina
  10. 10.Instituto Antártico ArgentinoSan Martín, Buenos AiresArgentina
  11. 11.Centro Austral de Investigaciones Científicas (CADIC)/Universidad Nacional de Tierra del FuegoUshuaiaArgentina
  12. 12.Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias/Universidad de la República Oriental del UruguayMontevideoUruguay

Personalised recommendations