Surface Macronutrient Dynamics of the Drake Passage and the Argentine Sea

  • Flavio E. PaparazzoEmail author
  • José L. Esteves


The dynamics of macronutrients on the surface is key for marine life. In this work, we focus on the nitrate, phosphate, and silicate distribution along the Drake Passage and the Argentine Sea. These nutrients have the highest concentration in the south of the Drake Passage because of upwelling of deep waters and inlets of coastal currents. The Antarctic Convergence forms a kind of barrier between water masses, greatly limiting the surface exchange of chemical species to the north. Pacific Ocean waters mixed with surface waters located north of the Polar Front enter the Argentine Sea giving rise to the Patagonian and Malvinas Currents. On their way, primary producers deplete nutrients, and, at a given moment, nitrate reaches limiting concentrations. Two processes locally modify the resulting N-S nutrient gradient: (1) the shelf offshore component receives the contribution of the nutrient-rich Antarctic waters, which move northward along the continental slope through the Malvinas Current; (2) large tidal waves and their interaction with the seabed create seasonal frontal systems that increase the chemical species concentration near the coast. The discharge of the less saline waters of the Magallanes Strait can be observed up to 43°S, but its effect on macronutrients is low. Patagonian rivers present a low flow and seem to make only local contributions. Until now, the fertilization effect of submarine groundwater discharge is unknown and the aeolian dust input is under study. The ice pack coverage in the Drake Passage and the water column stratification in the Argentine Sea govern the seasonal variation. Interannual differences have been associated with ENSO-like events, but information is not enough to draw conclusions. Due to the importance of knowing the nutrient dynamics to understand the biological processes of the region, multidisciplinary studies focusing on this topic should be promoted.


Macronutrients Currents Fronts Drake Passage Argentine Sea 



An important part of this study was based on our work in the framework of a cooperative research program (ARGAU, Programme de Coopération avec la ARGentine pour l’étude de l’océan Atlantique AUstral) between the Laboratoire de Biogéochimie et Chimie Marines at the Université Pierre et Marie Curie in Paris (France), the Instituto Antártico Argentino and the Servicio de Hidrografía Naval Argentina from 2001 to 2004. We would like to thank I. Schloss for allowing us to participate in the program, as well as V. Alder for her valuable help in the interpretation of oceanographic information.


  1. Acha EM, Mianzan HW, Guerrero RA et al (2004) Marine fronts at the continental shelves of austral South America: physical and ecological processes. J Mar Syst 44(1):83–105CrossRefGoogle Scholar
  2. Anderson LG, Kaltin S (2001) Carbon fluxes in the Arctic Ocean—potential impact by climate change. Polar Res 20(2):225–232Google Scholar
  3. Arrigo KR, Worthen DL, Lizotte MP et al (1997) Primary production in Antarctic Sea ice. Science 276(5311):394–397CrossRefPubMedGoogle Scholar
  4. Barker PF, Filippelli GM, Florindo F et al (2007) Onset and role of the Antarctic circumpolar current. Deep Sea Res II Top Stud Oceanogr 54(21):2388–2398CrossRefGoogle Scholar
  5. Berger WH (2007) Cenozoic cooling, Antarctic nutrient pump, and the evolution of whales. Deep Sea Res II Top Stud Oceanogr 54:2399–2421CrossRefGoogle Scholar
  6. Boulanger JP, Leloup J, Penalba O et al (2005) Observed precipitation in the Paraná-Plata hydrological basin: long-term trends, extreme conditions and ENSO teleconnections. Clim Dyn 24(4):393–413CrossRefGoogle Scholar
  7. Braga ES, Chiozzini VC, Berbel GB et al (2008) Nutrient distributions over the southwestern South Atlantic continental shelf from mar del Plata (Argentina) to Itajaí (Brazil): winter–summer aspects. Cont Shelf Res 28(13):1649–1661CrossRefGoogle Scholar
  8. Brandhorst W, Castello JP (1971) Evaluación de los recursos de anchoíta (Engraulis anchoita) frente a la Argentina y Uruguay: 1. las condiciones oceanográficas, sinopsis del conocimiento actual sobre la anchoíta y el plan para su evaluación. Contr Inst Biol Mar, Mar del Plata, Argentina 166:1–63Google Scholar
  9. Brandini FP, Boltovskoy D, Piola A et al (2000) Multiannual trends in fronts and distribution of nutrients and chlorophyll in the southwestern Atlantic (30–62°S). Deep Sea Res I Oceanogr Res Pap 47:1015–1033CrossRefGoogle Scholar
  10. Brzezinski MA, Jones JL, Demarest MS (2005) Control of silica production by iron and silicic acid during the Southern Ocean Iron experiment (SOFeX). Limnol Oceanogr 50(3):810–824CrossRefGoogle Scholar
  11. Carreto JI, Lutz VA, Carignan MO et al (1995) Hydrography and chlorophyll a in a transect from the coast to the shelf-break in the Argentinian sea. Cont Shelf Res 15(2/3):315–336CrossRefGoogle Scholar
  12. Carreto JI, Carignan MO, Montoya NG, Cucchi Colleoni AD (2007) Ecología del fitoplancton en los sistemas frontales del Mar Argentino. In: Sánchez RP, Bezzi SI (eds) El Mar Argentino y sus recursos pesqueros 5. El ecosistema marino. Publicaciones Especiales INIDEP, Mar del Plata, p 11–31Google Scholar
  13. Carreto JI, Montoya NG, Carignan MO et al (2016) Environmental and biological factors controlling the spring phytoplankton bloom at the Patagonian shelf-break front–degraded fucoxanthin pigments and the importance of microzooplankton grazing. Prog Oceanogr 146:1–21CrossRefGoogle Scholar
  14. Decembrini F, Bergamasco A, Mangoni O (2014) Seasonal characteristics of size-fractionated phytoplankton community and fate of photosynthesized carbon in a subantarctic area (Straits of Magellan). J Mar Syst 136:31–41CrossRefGoogle Scholar
  15. Depetris PJ, Paolini JE (1991) Biogeochemical aspects of South American rivers: the Paraná and the Orinoco. Biogeochemistry of major world. Rivers 74:105–125Google Scholar
  16. Depetris PJ, Gaiero DM, Probst JL et al (2005) Biogeochemical output and typology of rivers draining Patagonia‘s Atlantic seaboard. J Coast Res 21(4):835–844CrossRefGoogle Scholar
  17. Ducklow HW (2008) Long-term studies of the marine ecosystem along the West Antarctic peninsula. Deep Sea Res II Top Stud Oceanogr 55:1945–1948CrossRefGoogle Scholar
  18. Ducklow HW, Fraser WR, Meredith MP et al (2013) West Antarctic peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26(3):190–203CrossRefGoogle Scholar
  19. Dulaiova H, Ardelan MV, Henderson PB et al (2009) Shelf-derived iron inputs drive biological productivity in the southern drake passage. Global Biogeochem Cycles 23:GB4014CrossRefGoogle Scholar
  20. Fedúlov PP, Remeslo AV, Burykin SN et al (1990) Variabilidad de la Corriente de Malvinas. Frente Marítimo 6:121–127Google Scholar
  21. Frants M, Gille ST, Hewes CD et al (2013) Optimal multiparameter analysis of source water distributions in the southern drake passage. Deep Sea Res II Top Stud Oceanogr 90:31–42CrossRefGoogle Scholar
  22. Freeman NM, Lovenduski NS (2016) Mapping the Antarctic polar front: weekly realizations from 2002 to 2014. Earth Syst Sci Data 8(1):191–198CrossRefGoogle Scholar
  23. García VM, García CA, Mata MM et al (2008) Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-break in spring. Deep Sea Res I Oceanogr Res Pap 55(9):1150–1166CrossRefGoogle Scholar
  24. García HE, Locarnini RA, Boyer TP et al (2014) World Ocean Atlas 2013, vol 4 Dissolved inorganic nutrients (phosphate, nitrate, silicate). Levitus S (ed), Mishonov A (tech ed) NOAA Atlas NESDIS 76Google Scholar
  25. Garzón JC, Martínez AM, Barrera F et al (2016) The Pacific-Atlantic connection: biogeochemical signals in the southern end of the Argentine shelf. J Mar Syst 163:95–101CrossRefGoogle Scholar
  26. Glorioso P (2000) Patagonian shelf 3D tide and surge model. J Mar Syst 24:141–151CrossRefGoogle Scholar
  27. Gonzalez-Silvera A, Santamaria-del-Angel E, Millán-Núñez R (2006) Spatial and temporal variability of the Brazil-Malvinas confluence and the La Plata plume as seen by SeaWiFS and AVHRR imagery. J Geophys Res Oceans 111(C6)Google Scholar
  28. Hatta M, Measures CI, Selph KE et al (2013) Iron fluxes from the shelf regions near the south Shetland Islands in the drake passage during the austral-winter 2006. Deep Sea Res II Top Stud Oceanogr 90:89–101CrossRefGoogle Scholar
  29. Jacobs SS (1991) On the nature of the Antarctic slope front. Mar Chem 35:9–24CrossRefGoogle Scholar
  30. Kim D, Shim J, Kim KT et al (2004) Distribution of total CO2, nutrients, chlorophyll a in the Scotia Sea, during austral summer. Ocean Pol Res 26(3):401–414CrossRefGoogle Scholar
  31. Klunder MB, Laan P, De Baar HJW et al (2014) Dissolved Fe across the Weddell Sea and drake passage: impact of DFe on nutrient uptake. Biogeosciences 11:651–669CrossRefGoogle Scholar
  32. Lara RJ, Alder V, Franzosi CA et al (2010) Characteristics of suspended particulate organic matter in the southwestern Atlantic: influence of temperature, nutrient and phytoplankton features on the stable isotope signature. J Mar Syst 79:199–209CrossRefGoogle Scholar
  33. Lenn YD, Chereskin TK, Sprintall J et al (2007) Mean jets, mesoscale variability and eddy momentum fluxes in the surface layer of the Antarctic circumpolar current in drake passage. J Mar Res 65(1):27–58CrossRefGoogle Scholar
  34. Levitus S, Conkright ME, Reid JL et al (1993) Distribution of nitrate, phosphate and silicate in the world oceans. Prog Oceanogr 31:245–273CrossRefGoogle Scholar
  35. Martinson DG, Stammerjohn SE, Iannuzzi RA et al (2008) Western Antarctic peninsula physical oceanography and spatio-temporal variability. Deep Sea Res II Top Stud Oceanogr 55:1964–1987CrossRefGoogle Scholar
  36. Massom RA, Stammerjohn SE, Smith RC et al (2006) Extreme anomalous atmospheric circulation in the West Antarctic peninsula region in austral spring and summer 2001/2, and its profound impact on sea ice and biota. J Clim 19(15):3544–3571CrossRefGoogle Scholar
  37. Matano RP, Palma ED (2008) On the upwelling of Downwelling currents. J Phys Oceanogr 38:2482–2500CrossRefGoogle Scholar
  38. Matano RP, Schlax MG, Chelton DB (1993) Seasonal variability in the southwestern Atlantic. J Geophys Res Oceans 98(C10):18027–18035CrossRefGoogle Scholar
  39. Munro DR, Lovenduski NS, Stephens BB et al (2015) Estimates of net community production in the Southern Ocean determined from time series observations (2002–2011) of nutrients, dissolved inorganic carbon, and surface ocean pCO2 in drake passage. Deep Sea Res II Top Stud Oceanogr 114:49–63CrossRefGoogle Scholar
  40. Palma ED, Matano RP (2012) A numerical study of the Magellan plume. J Geophys Res Oceans 117(C5)Google Scholar
  41. Palma ED, Matano RP, Piola AR (2008) A numerical study of the southwestern Atlantic shelf circulation: Stratified Ocean response to local and offshore forcing. J Geophys Res Oceans 113(C11)Google Scholar
  42. Paparazzo FE (2011) Distribución espacio–temporal de nutrientes en el Mar Argentino, Pasaje Drake y Península Antártica. Tasa de incorporación por fitoplancton. Tesis doctoral, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresGoogle Scholar
  43. Paparazzo FE, Bianucci L, Schloss IR et al (2010) Cross-frontal distribution of inorganic nutrients and chlorophyll a on the Patagonian continental shelf of Argentina during summer and fall. Rev Biol Mar Oceanogr 45(1):107–119CrossRefGoogle Scholar
  44. Paparazzo FE, Alder VA, Schloss IR et al (2016) Spatial and temporal trends in the distribution of macronutrients in surface waters of the drake passage. Ecol Austral 26(1):27–39Google Scholar
  45. Pasquini AI, Depetris PJ (2007) Discharge trends and flow dynamics of south American rivers draining the southern Atlantic seaboard: an overview. J Hydrol (Amst) 333(2):385–399CrossRefGoogle Scholar
  46. Piola A, Falabella V (2009) Principales características oceanográficas y físicas. In: Falabella V, Campagna C, Croxall J (eds) Atlas del Mar Patagónico. Especies y espacios. Wildlife Conservation Society and ByrdLife International, Buenos Aires, pp 56–76Google Scholar
  47. Piola AR, Matano RP, Palma ED et al (2005) The influence of the Plata River discharge on the western South Atlantic shelf. Geophys Res Lett 32:L01603CrossRefGoogle Scholar
  48. Piola AR, Möller OO, Guerrero RA et al (2008) Variability of the subtropical shelf front off eastern South America: winter 2003 and summer 2004. Cont Shelf Res 28(13):1639–1648CrossRefGoogle Scholar
  49. Provost C, Garçon V, Falcon LM (1996) Hydrographic conditions in the surface layers over the slope-open ocean transition area near the Brazil-Malvinas confluence during austral summer 1990. Cont Shelf Res 16(2):215–221, 219–235CrossRefGoogle Scholar
  50. Rivas AL, Dogliotti AI, Gagliardini DA (2006) Seasonal variability in satellite-measured surface chlorophyll in the Patagonian shelf. Cont Shelf Res 26(6):703–720CrossRefGoogle Scholar
  51. Romero SI, Piola AR, Charo M et al (2006) Chlorophyll-a variability off Patagonia based on SeaWiFS data. J Geophys Res Oceans 111(C5)Google Scholar
  52. Sabatini ME, Akselman R, Reta R et al (2012) Spring plankton communities in the southern Patagonian shelf: hydrography, mesozooplankton patterns and trophic relationships. J Mar Syst 94:33–51CrossRefGoogle Scholar
  53. Schlitzer, R (2017) Ocean data view.
  54. Simonella LE, Palomeque ME, Croot PL et al (2015) Soluble iron inputs to the Southern Ocean through recent andesitic to rhyolitic volcanic ash eruptions from the Patagonian Andes. Global Biogeochem Cycles 29(8):1125–1144CrossRefGoogle Scholar
  55. Smith RC, Martinson DG, Stammerjohn SE et al (2008) Bellingshausen and western Antarctic peninsula region: pigment biomass and sea-ice spatial/temporal distributions and interannual variability. Deep Sea Res II Top Stud Oceanogr 55:1949–1963CrossRefGoogle Scholar
  56. Song H, Marshall J, Follows MJ et al (2016) Source waters for the highly productive Patagonian shelf in the southwestern Atlantic. J Mar Syst 158:120–128CrossRefGoogle Scholar
  57. Sprintall J (2003) Seasonal to interannual upper-ocean variability in the drake passage. J Mar Res 61(1):27–57CrossRefGoogle Scholar
  58. Stammerjohn SE, Martinson DG, Smith RC (2008) Sea ice in the western Antarctic peninsula region: Spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res II Top Stud Oceanogr 55:2041–2058CrossRefGoogle Scholar
  59. Strub PT, James C, Combes V et al (2015) Altimeter-derived seasonal circulation on the Southwest Atlantic shelf: 27°–43° S. J Geophys Res Oceans 120(5):3391–3418CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tréguer P, Jacques G (1992) Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean. Polar Biol 12:149–162CrossRefGoogle Scholar
  61. Turner J, Harangozo S, Marshall G et al (2002) Anomalous atmospheric circulation over the Weddell Sea, Antarctica, during the austral summer of 2001/02 resulting in extreme sea ice conditions. Geophys Res Lett 29(2160):1–4Google Scholar
  62. Vivier F, Provost C (1999) Direct velocity measurements in the Malvinas current. J Geophys Res Oceans 104(C9):21083–21103CrossRefGoogle Scholar
  63. Waugh DW, Primeau F, De Vries T et al (2013) Recent changes in the ventilation of the southern oceans. Science 339(6119):568–570CrossRefPubMedGoogle Scholar
  64. Zhou M, Zhu Y, Dorland RD et al (2010) Dynamics of the current system in the southern drake passage. Deep Sea Res I Oceanogr Res Pap 57(9):1039–1048CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Oceanografía Química y Contaminación de Aguas (LOQyCA), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Puerto MadrynArgentina
  2. 2.Laboratorio de Oceanografía Biológica (LOBio), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Puerto MadrynArgentina

Personalised recommendations