Physical Oceanography of the SW Atlantic Shelf: A Review

  • Alberto R. PiolaEmail author
  • Elbio D. Palma
  • Alejandro A. Bianchi
  • Belmiro M. Castro
  • Marcelo Dottori
  • Raul A. Guerrero
  • Marina Marrari
  • Ricardo P. Matano
  • Osmar O. MöllerJr
  • Martín Saraceno


The continental shelf of the western South Atlantic is characterized by three regions subject to distinct oceanographic regimes. The wide subantarctic shelf, south of approximately 35°S, is occupied by cold, low-salinity waters derived from the Subantarctic Zone and further diluted by the inflow of additional low-salinity waters, primarily from the Magellan Strait. Farther north, the shelf narrows considerably and is subject to the influence of large freshwater discharges and warm-salty intrusions of subtropical waters from the Brazil Current. Intense frontal transitions at various near shore locations and along the shelf break promote vertical circulations that inject nutrients into the upper layer. This nutrient injection leads to enhanced growth of phytoplankton, and, in some regions, to a significant uptake of atmospheric CO2. While the subantarctic shelf is under the influence of strong westerlies and high-amplitude tides, most of the subtropical shelf undergoes seasonally reversing winds and a micro-tidal regime. The shelf characteristics are also influenced by the offshore circulation, which is dominated by the equatorward flow of cold, nutrient-rich waters of the Malvinas Current in the south and the poleward flow of warm, salty, and oligotrophic waters of the Brazil Current in the north. There is a convergent large-scale mean circulation toward the transition between subantarctic and subtropical shelf waters near 34°S, which is balanced by export of shelf waters to the deep ocean. This article describes the contrasting water masses, frontal features, and circulation patterns of this region.


Ocean circulation Water masses Ocean fronts Western South Atlantic shelf 



This chapter summarizes research financed by the Inter-American Institute for Global Change Research (IAI) grant CRN3070 through the US National Science Foundation grant GEO-1128040. This work would not have been possible without the availability of hydrographic data gathered by all participating institutions. We particularly thank Ana Baldoni (INIDEP) and Marcela Charo (SHN) for their efforts in producing and disseminating high-quality data.


  1. Acha EM, Mianzán HW, Guerrero RA et al (2004) Marine fronts at the continental shelves of austral South America. Physical and ecological processes. J Mar Syst 44:83–105CrossRefGoogle Scholar
  2. Amor CC (2004) Intrusões da Água Central do Atlântico Sul sobre a Plataforma Continental situada entre a Ilha de São Sebastião (SP) e o Cabo de São Tomé (RJ). Dissertation, Universidade de São PauloGoogle Scholar
  3. Arruda R, Calil PHR, Bianchi AA et al (2015) Air-sea CO2 fluxes and the controls on ocean surface pCO2 variability in the coastal and open-ocean southwestern Atlantic Ocean: a modeling study. Biogeosciences 12:5793–5809CrossRefGoogle Scholar
  4. Bianchi AA, Massonneau M, Olivera RM (1982) Análisis estadístico de las características T-S del sector austral de la plataforma continental argentina. Acta Oceanogr Argent 3(1):93–118Google Scholar
  5. Bianchi AA, Bianucci L, Piola AR et al (2005) Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf. J Geophys Res Oceans 110(7):1–10Google Scholar
  6. Bianchi AA, Ruiz-Pino D, Isbert Perlender H et al (2009) Annual balance and seasonal variability of sea-air CO2 fluxes in the Patagonia Sea: their relationship with fronts and chlorophyll distribution. J Geophys Res 114:C03018. CrossRefGoogle Scholar
  7. Borús J, Uriburu Quirno M, Calvo D (2017) Evaluación de caudales diarios descargados por los grandes ríos del Sistema del Plata al estuario del Río de la Plata. Dirección de Sistemas de Información y Alerta Hidrológico. Instituto Nacional del Agua, EzeizaGoogle Scholar
  8. Brandhorst W, Castello JP (1971) Evaluación de los recursos de anchoíta (Engraulis anchoita) frente a la Argentina y Uruguay. I. Las condiciones oceanográficas, sinopsis del conocimiento actual sobre la anchoíta y el plan para su evaluación. Proy Des Pesq FAO 29: 63 pp. Mar del PlataGoogle Scholar
  9. Calliari D, Gómez M, Gómez N (2005) Biomass and composition of the phytoplankton in the Río de la Plata: large-scale distribution and relationship with environmental variables during a spring cruise. Cont Shelf Res 25:197–210CrossRefGoogle Scholar
  10. Campos EJ, Goncalves J, Ikeda Y (1995) Water mass characteristics and geostrophic circulation in the South Brazil Bight: summer of 1991. J Geophys Res 100:18537–18550CrossRefGoogle Scholar
  11. Campos EJD, Lentini CAD, Miller JL et al (1999) Interannual variability of the sea surface temperature in the South Brazil Bight. Geophys Res Lett 26:2061–2064CrossRefGoogle Scholar
  12. Campos EJ, Velhote D, da Silveira IC (2000) Shelf break upwelling driven by Brazil current cyclonic meanders. Geophys Res Lett 27(6):751–754CrossRefGoogle Scholar
  13. Campos PC, Möller Jr OO, Piola AR (2013) Seasonal variability and coastal upwelling near Cape Santa Marta (Brazil). J Geophys Res Oceans 118:1420–1433. CrossRefGoogle Scholar
  14. Carranza MM, Gille ST, Piola AR et al (2017) Wind modulation of upwelling at the shelf-break front off Patagonia: observational evidence. J Geophys Res Oceans 122(3):2401–2421CrossRefGoogle Scholar
  15. Carreto JI, Lutz VA, Carignan MO et al (1995) Hydrography and chlorophyll-a in a transect from the coast to the shelf-break in the Argentinean Sea. Cont Shelf Res 15:315–336CrossRefGoogle Scholar
  16. Carreto JI, Montoya N, Akselman R et al (2008) Algal pigment patterns and phytoplankton assemblages in different water masses of the Río de la Plata maritime front. Cont Shelf Res 28:1589–1606CrossRefGoogle Scholar
  17. Carreto JI, Montoya NG, Carignan MO et al (2016) Environmental and biological factors controlling the spring phytoplankton bloom at the Patagonian shelf-break front– degraded fucoxanthin pigments and the importance of microzooplankton grazing. Prog Oceanogr 146:1–21CrossRefGoogle Scholar
  18. Castelão RM (2012) Sea surface temperature and wind stress curl variability near a cape. J Phys Oceanogr 42:2073–2087CrossRefGoogle Scholar
  19. Castelão RM, Barth JA (2006) Upwelling around Cabo Frio, Brazil: the importance of wind stress curl. Geophys Res Lett 33:L03602. CrossRefGoogle Scholar
  20. Castelão RM, Campos EJD, Miller JL (2004) A modelling study of coastal upwelling driven by wind and meanders of the Brazil current. J Coast Res 20(3):662–671CrossRefGoogle Scholar
  21. Castello JP, Möller OO (1977) Sobre as condições oceanográficas no Rio Grande do Sul. Atlantica 2:1–119Google Scholar
  22. Castro BM, Lee TN (1995) Wind-forced sea level variability on the southeast Brazilian shelf. J Geophys Res 100(C8):16,045–16,056Google Scholar
  23. Castro BM (2014) Summer/winter stratification variability in the central part of the South Brazil bight. Cont Shelf Res 89:15–26CrossRefGoogle Scholar
  24. Castro BM, Miranda LB (1998) Physical oceanography of the western Atlantic continental shelf located between 4°N and 34°S. In: Robinson AR, Brink KH (eds) The sea, vol 11. Wiley, New York, pp 209–251Google Scholar
  25. Castro BM, Lorenzetti JA, Silveira ICA et al (2006) O Ambiente Oceanográfico da Plataforma Continental e do Talude na Região Sudeste-Sul do Brasil, 1st edn. Edusp, p 11–120Google Scholar
  26. Cerda C, Castro BM (2014) Hydrographic climatology of South Brazil Bight shelf waters between São Sebastião (24°S) and Cabo São Tomé (22°S). Cont Shelf Res 89:5–14CrossRefGoogle Scholar
  27. Ciotti AM, Odebrecht C, Fillmann G et al (1995) Freshwater outflow and subtropical convergence influence on phytoplankton biomass on the southern Brazilian continental shelf. Cont Shelf Res 15:1737–1756CrossRefGoogle Scholar
  28. Cirano M, Campos EJ (1996) Numerical diagnostic of the circulation in the Santos Bight with COROAS hydrographic data. Rev Bras Oceanogr 44(2):105–101CrossRefGoogle Scholar
  29. Combes V, Matano RP (2014) A two-way nested simulation of the oceanic circulation in the Southwestern Atlantic. J Geophys Res Oceans 119.
  30. Csanady GT (1978) The arrested topographic wave. J Phys Oceanogr 8:47–62CrossRefGoogle Scholar
  31. Dávila PM, Figueroa D, Müller E (2002) Freshwater input into the coastal ocean and its relation with salinity distribution off austral Chile (35–55°S). Cont Shelf Res 22:521–534CrossRefGoogle Scholar
  32. Depetris PJ, Kempe S, Latif M et al (1996) ENSO-controlled flooding in the Parana River (1904–1991). Naturwiss 83:127–129CrossRefGoogle Scholar
  33. Dottori M, Castro BM (2009) The response of the Sao Paulo continental shelf, Brazil, to synopticwinds. Ocean Dynam 59:603–614Google Scholar
  34. Dottori M, Castro BM (2018) The role of remote wind forcing in the subinertial current variability in the central and northern parts of the South Brazil Bight. Ocean Dynam, 68: 677,
  35. Emilsson I (1961) The shelf and coastal waters off southern Brazil. Bol Inst Oceanogr 11(2):101–112CrossRefGoogle Scholar
  36. Filippo A, Kjerfve B, Torres AR et al (2012) Low-frequency variability of sea level along the Mid-Atlantic Coast of South America, in 1983. Rev Bras Geofis 30(1):5–14Google Scholar
  37. Franchito SH, Oda TO, Rao VB et al (2008) Interaction between coastal upwelling and local winds at Cabo Frio, Brazil: an observational study. J Appl Meteorol Climatol 47:1590–1598CrossRefGoogle Scholar
  38. Franco BC, Piola AR, Rivas AL et al (2008) Multiple thermal fronts near the Patagonian shelf break. Geophys Res Lett 35(2):L02607. CrossRefGoogle Scholar
  39. Garcia CAE, Garcia VM, McClain CR (2005) Evaluation of SeaWiFS chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans. Remote Sens Environ 95:125–137CrossRefGoogle Scholar
  40. Garcia VMT, Signorini S, Garcia CAE et al (2006) Empirical and semi-analytical chlorophyll algorithms in the South-Western Atlantic coastal region (25–40°S and 60–45°W). Int J Remote Sens 27(8):1539–1562. CrossRefGoogle Scholar
  41. Garcia VMT, Garcia CAE, Mata MM et al (2008) Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-break in spring. Deep-Sea Res I 55:1150–1166CrossRefGoogle Scholar
  42. Glorioso PD (1987) Temperature distribution related to shelf-sea fronts on the Patagonian shelf. Cont Shelf Res 7(1):27–34CrossRefGoogle Scholar
  43. Gómez MI, Piola AR, Kattner G et al (2011) Biomass of autotrophic dinoflagellates under weak vertical stratification and contrasting chlorophyll levels in subantarctic shelf water. J Plankton Res 33(8):1304–1310CrossRefGoogle Scholar
  44. Guerrero RA, Piola AR (1997) Masas de agua en la plataforma continental. In: Boschi EE (ed) El Mar Argentino y sus Recursos Pesqueros: Antecedentes Históricos de las Exploraciones en el Mar y las Características Ambientales, vol. 1. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, pp 107–118Google Scholar
  45. Guerrero R, Piola AR, Fenco H et al (2014) The salinity signature of the cross-shelf exchanges in the southwestern Atlantic Ocean: satellite observations. J Geophys Res Oceans 119.
  46. Ito R, Schneider B, Thomas H (2005) Distribution of surface pCO2 and air–sea fluxes in the Southwestern subtropical Atlantic and adjacent continental shelf. J Mar Syst 56:227–242. CrossRefGoogle Scholar
  47. Ito RG, Garcia CAE, Tavano VM (2016) Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011. Cont Shelf Res 119(Suppl C):68–84. CrossRefGoogle Scholar
  48. Kahl LC, Bianchi AA, Osiroff AP et al (2017) Distribution of sea-air CO2 fluxes in the Patagonian Sea: seasonal, biological and thermal effects. Cont Shelf Res 143:18–28CrossRefGoogle Scholar
  49. Lentini CAD, Podestá GG, Campos EJD et al (2001) Sea surface temperature anomalies on the Western South Atlantic from 1982 to 1994. Cont Shelf Res 21:89–112CrossRefGoogle Scholar
  50. Longhurst A (1998) Ecological geography of the sea. Academic Press, San DiegoGoogle Scholar
  51. Lucas AJ, Guerrero RA, Mianzán HW et al (2005) Coastal oceanographic regimes of the northern argentine continental shelf (34–43°S). Estuar Coast Shelf Sci 65:405–420CrossRefGoogle Scholar
  52. Lutz VA, Segura V, Dogliotti AI et al (2010) Primary production in the argentine sea during spring estimated by field and satellite models. J Plankton Res 32:181–195. CrossRefGoogle Scholar
  53. Marrari M, Signorini S, McClain CR et al (2013) Reproductive success of the Argentine anchovy, Engraulis anchoita, in relation to environmental variability at a mid-shelf front (Southwestern Atlantic Ocean). Fish Oceanogr 22:247–261CrossRefGoogle Scholar
  54. Marrari M, Piola AR, Valla D (2017) Variability and 20-year trends in satellite-derived surface chlorophyll concentrations in large marine ecosystems around South and Western Central America. Front Mar Sci.
  55. Martinez G, Brugnoli E, Hernandez J et al (2005) How valid is the SeaWiFS estimation of chlorophyll-a at the Rio de la Plata estuary and its area of influence? Proc SPIE 5656. Active and Passive Remote Sensing of the Oceans.
  56. Martos P, Piccolo MC (1988) Hydrography of the Argentine continental shelf between 38 and 42 S. Cont Shelf Res 8:1043–1056CrossRefGoogle Scholar
  57. Matano RP, Palma ED (2008) The upwelling of downwelling currents. J Phys Oceanogr 38:2482–2500. CrossRefGoogle Scholar
  58. Matano RP, Palma ED, Piola AR (2010) The influence of the Brazil and Malvinas currents on the Southwestern Atlantic shelf circulation. Ocean Sci 6:983–995CrossRefGoogle Scholar
  59. Matano RP, Combes V, Piola AR et al (2014) The salinity signature of the cross-shelf exchanges in the southwestern Atlantic Ocean: numerical simulations. J Geophys Res Oceans 119.
  60. Meccia VL, Simionato CG, Guerrero RA (2013) The Río de la Plata estuary response to wind variability in synoptic timescale: salinity fields and salt wedge structure. J Coast Res 29(1):61–77CrossRefGoogle Scholar
  61. Mendonça LF, Souza RB, Aseff CRC et al (2017) Regional modeling of the water masses and circulation annual variability at the southern Brazilian continental shelf. J Geophys Res 122:1232–1253CrossRefGoogle Scholar
  62. Miller RN, Matano RP, Palma ED (2011) Shelfbreak upwelling induced by alongshore currents: analytical and numerical results. J Fluid Mech 686:239–249. CrossRefGoogle Scholar
  63. Miranda LB (1985) Correlacão T-S de Massas de água das regiões costeira e oceânica entre o Cabo de São Tomé (RJ) e a Ilha de São Sebastião (SP), Brasil. Bol Inst Oceanogr Univ São Paulo 33(2):105–119CrossRefGoogle Scholar
  64. Möller Jr OO, Piola AR, Freitas AC et al (2008) The effects of river discharge and seasonal winds on the shelf off southeastern South America. Cont Shelf Res 28(13):1607–1624CrossRefGoogle Scholar
  65. Moreira D, Simionato CG, Dragani W (2011) Modeling ocean tides and their energetics in the North Patagonia gulfs of Argentina. J Coast Res 27(1):87–102CrossRefGoogle Scholar
  66. Nagai RH, Sousa SHM, Mahiques MM (2014) The Southern Brazilian shelf. Geol Soc Lond Mem 41:47–54CrossRefGoogle Scholar
  67. O'Reilly JE, Maritorena S, O'Brien MC et al (2000) SeaWiFS postlaunch calibration and validation analyses: Part 3. SeaWiFS postlaunch technical report series. In: Hooker SB, Firestone RE (eds) NASA Tech. Memo 2000–206892, 11Google Scholar
  68. Padin XA, Vázquez-Rodríguez M, Castaño M et al (2010) Air-Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn. Biogeosciences 7:15871606CrossRefGoogle Scholar
  69. Palma ED, Matano RP (2009) Disentangling the upwelling mechanisms of the South Brazil bight. Cont Shelf Res.
  70. Palma ED, Matano RP (2012) A numerical study of the Magellan plume. J Geophys Res 117:C05041. CrossRefGoogle Scholar
  71. Palma ED, Matano RP, Piola AR (2004) A numerical study of the Southwestern Atlantic shelf circulation: Barotropic response to tidal and wind forcing. J Geophys Res 109:C08014. CrossRefGoogle Scholar
  72. Palma ED, Matano RP, Piola AR (2008) A numerical study of the southwestern Atlantic shelf circulation: Stratified Ocean response to local and offshore forcing. J Geophys Res Oceans 113(11):C11010. CrossRefGoogle Scholar
  73. Pimenta F, Garvine RW, Munchow A (2008) Observations of coastal upwelling off Uruguay downshelf of the Plata estuary, South America. J Mar Res 66:835–872CrossRefGoogle Scholar
  74. Piola AR, Matano RP (2017) Ocean currents: Atlantic western boundary—Brazil current/Falkland (Malvinas) current. Reference module in earth systems and environmental sciences, Elsevier, doi:
  75. Piola AR, Campos EJD, Möller OO Jr et al (2000) Subtropical shelf front off eastern South America. J Geophys Res 105(C3):6565–6578CrossRefGoogle Scholar
  76. Piola AR, Matano RP, Palma ED et al (2005) The influence of the Plata River discharge on the western South Atlantic shelf. Geophys Res Lett.
  77. Piola AR, Möller OO, Guerrero RA et al (2008a) Variability of the subtropical shelf front off eastern South America: winter 2003 and summer 2004. Cont Shelf Res 28:1639–1648CrossRefGoogle Scholar
  78. Piola AR, Romero SI, Zajaczkovski U (2008b) Space-time variability of the Plata plume inferred from ocean color. Cont Shelf Res 28:1556–1567CrossRefGoogle Scholar
  79. Piola AR, Martínez Avellaneda N, Guerrero RA et al (2010) Malvinas-slope water intrusions on the northern Patagonia continental shelf. Ocean Sci 6(1):345–359CrossRefGoogle Scholar
  80. Pisoni JP, Rivas AL, Piola AR (2015) On the variability of tidal fronts on a macrotidal continental shelf, northern Patagonia, Argentina. Deep Sea Res II Top Stud Oceanogr 119:61–68CrossRefGoogle Scholar
  81. Proença LAO, Schramm MA, Alves TP, et al (2017) The extraordinary 2016 autumn DSP outbreak in Santa Catharina, South Brazil, explained by large-scale oceanographic processes, Proc 16 Int Conf Harm Algae, Proença LAO, Hallegraeff GM (Eds), Int Soc for the Study of Harmful Algae and Intergovernamental Oceanographic Commission, Brazil, 42–45Google Scholar
  82. Reynolds RW, Smith TM, Liu C et al (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  83. Rivas AL (1997) Current meter observations in the argentine continental shelf. Cont Shelf Res 17:391–406. CrossRefGoogle Scholar
  84. Rivas AL, Pisoni JP (2010) Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean continental shelf. J Mar Syst 79(1–2):134–143CrossRefGoogle Scholar
  85. Rivas AL, Dogliotti AI, Gagliardini DA (2006) Satellite-measured surface chlorophyll variability in the Patagonian shelf. Cont Shelf Res.
  86. Robertson AW, Mechoso CR (1998) Interannual and decadal cycles in river flows of southeastern South America. J Clim 11:2570–2581CrossRefGoogle Scholar
  87. Rodrigues RR, Lorenzetti JA (2001) A numerical study of the effects of bottom topography and coastline geometry on the southeast Brazilian coastal upwelling. Cont Shelf Res 21:371–393CrossRefGoogle Scholar
  88. Romero SI, Piola AR, Charo M et al (2006) Chlorophyll-a variability off Patagonia based on SeaWiFS data. J Geophys Res 111:C05021CrossRefGoogle Scholar
  89. Ruiz-Etcheverry LA, Saraceno M, Piola AR et al (2016) Sea level anomaly on the Patagonian continental shelf: trends, annual patterns and geostrophic flows. J Geophys Res Oceans 121:2733–2754. CrossRefPubMedPubMedCentralGoogle Scholar
  90. Sabatini M, Reta R, Matano R (2004) Circulation and zooplankton biomass distribution over the southern Patagonian shelf during late summer. Cont Shelf Res 24:1359–1373CrossRefGoogle Scholar
  91. Saraceno MC, Provost C, Piola AR et al (2004) Brazil Malvinas frontal system as seen from 9 years of advanced very high resolution radiometer data. J Geophys Res Oceans 109(5):C05027. CrossRefGoogle Scholar
  92. Saraceno MC, Provost C, Piola AR (2005) On the relationship between satellite-retrieved surface temperature fronts and chlorophyll a in the western South Atlantic. J Geophys Res Oceans 110(11):1–16. CrossRefGoogle Scholar
  93. Saraceno M, Simionato CG, Ruiz Etcheverry LA (2014) Sea surface height trend and variability at seasonal and interannual time scales in the Southeastern South American continental shelf between 27°S and 40°S. Cont Shelf Res 91:82–94. CrossRefGoogle Scholar
  94. Scasso LM, Piola AR (1988) Intercambio neto de agua entre el mar y la atmósfera en el Golfo San Matías. Geoacta 15(1):13–31Google Scholar
  95. Signorini SR, Garcia VMT, Piola AR et al (2006) Seasonal and interannual variability of calcite in the vicinity of the Patagonian shelf break (38°S–52°S). Geophys Res Lett 3:L16610. CrossRefGoogle Scholar
  96. Silveira ICA, Schmidt ACK, Campos EJD et al (2000) A Corrente do Brasil ao Largo da Costa Leste Brasileira. Rev Bras Oceanogr 48:171–183CrossRefGoogle Scholar
  97. Simionato CG, Nuñez MN, Engel M (2001) The salinity front of the Río de la Plata–a numerical case study for winter and summer conditions. Geophys Res Lett 28(13):2641–2644CrossRefGoogle Scholar
  98. Simionato CG, Clara Tejedor ML, Campetella C et al (2010) Patterns of sea surface temperature variability on seasonal to sub-annual scales at and offshore the Río de la Plata estuary. Cont Shelf Res 30(19):983–997CrossRefGoogle Scholar
  99. Souza RB, Robinson IS (2004) Lagrangian and satellite observations of the Brazilian coastal current. Cont Shelf Res 24:241–262CrossRefGoogle Scholar
  100. Stech JL, Lorenzzetti JA (1992) The response of the South Brazil Bight to the passage of wintertime cold fronts. J Geophys Res 97(C6):9507–9520Google Scholar
  101. Stevenson MR, Dias-Brito D, Stech JL et al (1998) How do cold water biota arrive in a tropical bay near Rio de Janeiro, Brazil? Cont Shelf Res 18(13):1595–1612CrossRefGoogle Scholar
  102. Strub PT, James C, Combes V et al (2015) Altimeter-derived seasonal circulation on the Southwest Atlantic shelf: 27°–43°S. J Geophys Res Oceans.
  103. Thomas H, Bozec Y, Elkalay K et al (2004) Enhanced open ocean storage of CO2 from shelf sea pumping. Science 304:1005–1008CrossRefPubMedGoogle Scholar
  104. Tonini MH, Palma ED, Piola AR (2013) A numerical study of gyres, thermal fronts and seasonal circulation in austral semi-enclosed gulfs. Cont Shelf Res 65:97–110CrossRefGoogle Scholar
  105. Valla D, Piola AR (2015) Evidence of upwelling events at the northern Patagonian shelf break. J Geophys Res Oceans 120:7635–7656CrossRefGoogle Scholar
  106. Wanninkhof R (2014) Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr Methods 12(6):351–362CrossRefGoogle Scholar
  107. Zavialov PO, Möller OO Jr, Campos EJD (2002) First direct measurements of currents on the continental shelf of southern Brazil. Cont Shelf Res 22:1975–1986. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alberto R. Piola
    • 1
    • 2
    Email author
  • Elbio D. Palma
    • 3
  • Alejandro A. Bianchi
    • 1
    • 2
  • Belmiro M. Castro
    • 4
  • Marcelo Dottori
    • 4
  • Raul A. Guerrero
    • 5
  • Marina Marrari
    • 1
  • Ricardo P. Matano
    • 6
  • Osmar O. MöllerJr
    • 7
  • Martín Saraceno
    • 2
    • 8
  1. 1.Departamento Oceanografía, Servicio de Hidrografía Naval (SHN)Ciudad Autónoma de Buenos AiresArgentina
  2. 2.Departamento de Ciencias de la Atmósfera y los OcéanosUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  3. 3.Instituto Argentino de Oceanografía (IADO-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas and Depatamento de Física, Universidad Nacional del SurBahía BlancaArgentina
  4. 4.Instituto Oceanográfico, Universidade de São PauloSão PauloBrazil
  5. 5.Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP)Mar del PlataArgentina
  6. 6.College of Earth, Ocean, and Atmospheric SciencesOregon State UniversityCorvallisUSA
  7. 7.Instituto de OceanografiaUniversidade Federal do Rio GrandeRio GrandeBrazil
  8. 8.Centro de Investigaciones del Mar y la Atmósfera, Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations