Advertisement

Near-Surface Biogeochemistry and Phytoplankton Carbon Assimilation in the Rio de la Plata Estuary

  • Danilo L. Calliari
  • Mónica Gómez-Erache
  • Denise Vizziano Cantonnet
  • Cecilia Alonso
Chapter

Abstract

The Rio de la Plata estuary (RPE) is considered a highly productive ecosystem, but knowledge of its functioning is sparse, particularly at basal trophic levels. Direct measurements of primary production are scarce, and the mechanisms that drive biological production and biogeochemistry of nutrients and other key compounds are largely unknown. This review summarizes the current information available in published literature in standard journals and other sources and explores driving mechanisms for photosynthetic carbon assimilation (PCA). A database was compiled which includes photosynthetic rates and ancillary environmental variables, i.e. salinity; chlorophyll a (as surrogate for phytoplankton biomass); dissolved inorganic macronutrients N, P and Si; suspended particulate matter (SPM); and underwater light environment. Information gathered covers an extended time period but clustered into an early (1980–1987) and a more recent one (1999–2009). Data was unequally distributed between both periods; for example, PCA data exist only for the most recent period. Data indicate prevalence of high photosynthetic rates in the RPE (mean of 29.25 ± 22.61 mg C m−3 h−1). The concentration of nutrients, SPM and indicators of underwater light regime covered wide ranges of variability with remarkable differences between both time periods. All these variables were strongly affected by salinity, showing either a decreasing pattern of concentration from freshwaters to marine waters (e.g. nutrients) or from marine waters to freshwaters (i.e. better light conditions in marine-influenced waters). These results were valid irrespective of the period and of the light environment indicator considered (Kd, turbidity). PCA was highest at intermediate surface salinities (10–20), decreasing both towards fresh and towards marine areas. Observed variability patterns of nutrients, SPM, light regime and carbon assimilation along the salinity gradient were consistent with mechanisms predicted by the theory developed for turbid estuaries, which propose that PCA is regulated by inverse horizontal gradients of light and nutrients.

Keywords

Phytoplankton Chlorophyll Photosynthetic carbon assimilation Nutrients Turbidity 

Notes

Acknowledgements

Results presented in this paper were obtained during research programs and projects funded by diverse agencies: ECOPLATA program (IDRC-Canadá, UNESCO-PNUD, Ministry of Housing and Environment of Uruguay), FREPLATA program (UNDP-GEF, Argentina-Uruguay), Comisión Administradora del Río de la Plata (Argentina-Uruguay), FEMCIDI-OAS and Max Planck Partner Group projects. Data provided by INIDEP (Argentina) were produced by Dr. Constanza Hozbor (SPM, Laboratory of Molecular Biology and Microbiology) and Dr. José I. Carreto (chlorophyll a, Program for the Marine Environment and Red Tides) and are deeply acknowledged. Dr. Carla Derisio helped with making INIDEP data accessible for the present paper and contributed with discussions of SPM and chlorophyll data distribution. Comments by reviewers and editors – particularly Dr. F. P. Brandini – contributed to improve this paper and are greatly appreciated.

References

  1. Abreu P, Odebrecht C, Gonzalez A (1994) Particulate and dissolved phytoplankton production of the Patos lagoon estuary, southern Brazil: comparison of methods and influencing factors. J Plankton Res 16:737–735CrossRefGoogle Scholar
  2. Acha EM, Mianzan H, Guerrero R et al (2008) An overview of physical and ecological processes in the Rio de la Plata estuary. Cont Shelf Res 28:1579–1588CrossRefGoogle Scholar
  3. Acha EM, Simionato C, Carozza C, Mianzan H (2012) Climate-induced year-class fluctuations of whitemouth croaker Micropogonias furnieri (Pisces, Sciaenidae) in the Río de la Plata estuary, Argentina–Uruguay. Fish Oceanogr 21:58–77Google Scholar
  4. Acuña A, Viana F (2001) Ciclo reproductivo y características ambientales del área de desove de la pescadilla de red (Macrodon ancylodon) y la pescadilla de calada (Cynoscion guatucupa) en la costa uruguaya. In: Vizziano D et al (eds) El Río de la Plata. Investigación para la Gestión del Ambiente, los Recursos Pesqueros y la Pesquería en el Frente Salino. Programa Ecoplata, Montevideo, Uruguay, pp 71–84Google Scholar
  5. Alpine A, Cloern J (1992) Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. Limnol Oceanogr 37:946–955CrossRefGoogle Scholar
  6. Alpine A, Cloern J (1988) Phytoplankton growth rates in a light limited environment, San Francisco Bay. Mar Ecol Prog Ser 44:167–173CrossRefGoogle Scholar
  7. Behrenfeld M, Falkowski P (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20CrossRefGoogle Scholar
  8. Bianchi T (2007) Biogeochemistry of estuaries. Oxford University Press, New YorkGoogle Scholar
  9. Burnham K, Anderson D (2002) Model selection and multimodel inference. A practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  10. Caffrey J (2004) Factors controlling net ecosystem metabolism in U.S. estuaries. Estuaries 27:90–101CrossRefGoogle Scholar
  11. Calliari D, Gómez-Erache M, Gómez N (2005) Biomass and composition of the phytoplankton in the Río de la Plata: large-scale distribution and relationship with environmental variables during a spring cruise. Cont Shelf Res 25:197–210CrossRefGoogle Scholar
  12. Calliari D, Brugnolli E, Ferrari G et al (2009a) Phytoplankton distribution and production along a wide environmental gradient in the South-West Atlantic off Uruguay. Hydrobiol 620:47–61CrossRefGoogle Scholar
  13. Calliari D, Britos A, Conde D (2009b) Testing the relationship between primary production and Acartia tonsa grazing pressure in an estuarine lagoon. J Plankton Res 31:1045–1058CrossRefGoogle Scholar
  14. Carp (1989) Estudio para la evaluación de la contaminación en el Rio de la Plata. Informe de avance. SHN–SOHMA.Google Scholar
  15. Carreto J, Negri R, Benavides H (1986) Algunas caracteristicas del florecimiento del fitoplancton en el frente del Río de la Plata. I: los sistemas nutritivos. Rev Inv Des Pesq 5:7–29Google Scholar
  16. Cloern J (1987) Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont Shelf Res 7:1367–1381CrossRefGoogle Scholar
  17. Cloern J (1999) The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquat Ecol 33:3–15CrossRefGoogle Scholar
  18. Cloern J (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253CrossRefGoogle Scholar
  19. Cole B, Cloern J (1987) An empirical model for estimating phytoplankton productivity in estuaries. Mar Ecol Prog Ser 36:299–305CrossRefGoogle Scholar
  20. Conde D, Aubriot L, Sommaruga R (2000) Changes in UV penetration associated with marine intrusions and freshwater discharge in a shallow coastal lagoon of the Southern Atlantic Ocean. Mar Ecol Prog Ser 207:19–31CrossRefGoogle Scholar
  21. Day J, Kemp W, Yáñez-Arancibia A, Crump B (eds) (2013) Estuarine ecology, 2nd edn. Wiley, HobokenGoogle Scholar
  22. Depetris P, Pasquini A (2008) Riverine flow and lake level variability in Southern South America. EOS Trans Am Geophys Union 89:254–255CrossRefGoogle Scholar
  23. Depetris P, Kempe S, Latif M et al (1996) ENSO-controlled flooding in the Paraná River (1904–1991). Naturwissenschaften 83:127–129CrossRefGoogle Scholar
  24. Derisio C, Braverman M, Gaitan E et al (2014) The turbidity front as a habitat for Acartia tonsa (Copepoda) in the Río de la Plata, Argentina-Uruguay. J Sea Res 85:197–204CrossRefGoogle Scholar
  25. Duarte C, Regaudie-de-Gioux A (2009) Thresholds of gross primary production for the metabolic balance of marine planktonic communities. Limnol Oceanogr 54:1015–1022CrossRefGoogle Scholar
  26. Duarte C, Agustí S, Vaqué D (2004) Controls on planktonic metabolism in the Bay of Blanes, northwestern Mediterranean littoral. Limnol Oceanogr 49:2162–2170CrossRefGoogle Scholar
  27. Falkowski P, Barber R, Smetacek V (1997) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206CrossRefGoogle Scholar
  28. Ferrari G (2008) Caracterización de las masas de agua presentes en el Río de la Plata y su frente oceánico a través del fitoplancton, Tesis de Maestría, PEDECIBA – Biologia, Universidad de la República, Uruguay.Google Scholar
  29. Ferrari G, Pérez M d C (2002) Fitoplancton de la costa platense y atlántica del Uruguay (1993–1994). Iheringia Ser Bot 57:263–278Google Scholar
  30. Framiñan M, Brown O (1996) Study of the Río de la Plata turbidity front, part I: spatial and temporal distribution. Cont Shelf Res 16:1259–1282CrossRefGoogle Scholar
  31. Framiñan M et al (1999) Physical characteristics and processes of the Rio de la Plata estuary. In: Perillo G, Piccolo C, Pino-Quivira M (eds) Estuaries of South America: their geomorphology and dynamics. Springer, Berlin/New York, pp 161–194CrossRefGoogle Scholar
  32. Friedrichsmeier T, P Ecochard, Roediger S et al (2015) Interfaz gráfica para el lenguaje estadístico R. http://rkward.kde.org Licencia Publica General de GNU
  33. del Giorgio P, Duarte C (2002) Respiration in the open ocean. Nature 420:379–384CrossRefPubMedGoogle Scholar
  34. del Giorgio P, le B Williams P (eds) (2005) Respiration in aquatic ecosystems. Oxford University Press, Oxford, 315pGoogle Scholar
  35. Gómez N, Hualde PR, Licursi M et al (2004) Spring phytoplankton of Río de la Plata: a temperate estuary of South America. Est Coast Shelf Sci 61:301–309CrossRefGoogle Scholar
  36. Gómez-Erache M, Lagomarsino JJ, Nuñez K et al (2001) Producción fitoplanctónica en la región frontal del Río de la Plata. In: Vizziano D et al (eds.) El Río de la Plata. Investigación para la gestión del ambiente, los recursos pesqueros y la pesquería en el frente salino. Programa Ecoplata, pp 33–45Google Scholar
  37. Guerrero R, Acha M, Framiñan MB et al (1997) Physical oceanography of the Río de la Plata estuary. Cont Shelf Res 17:727–742CrossRefGoogle Scholar
  38. Huret M, Dadou I, Dumas F et al (2005) Coupling physical and biogeochemical processes in the Río de la Plata plume. Cont Shelf Res 25:629–653CrossRefGoogle Scholar
  39. Kocum E, Underwood G, Nedwell D (2002) Simultaneous measurement of phytoplanktonic primary production, nutrient and light availability along a turbid, eutrophic UK east coast estuary (the Colne estuary). Mar Ecol Prog Ser 231:1–12CrossRefGoogle Scholar
  40. Kruk C, Martinez A, Nogueira L et al (2014) Morphological traits variability reflects light limitation of phytoplankton production in a highly productive subtropical estuary (Río de la Plata, South America). Mar Biol.  https://doi.org/10.1007/s00227-014-2568-6
  41. Lercari D, Horta S, Martinez G et al (2014) A food web analysis of the Río de la Plata estuary and adjacent shelf ecosystem: trophic structure, biomass flows, and the role of fisheries. Hydrobiol.  https://doi.org/10.1007/s10750-014-1964-8
  42. Libes (2009) Introduction to marine biogeochemistry, 2nd edn. Academic, BurlingtonGoogle Scholar
  43. Lucas LV, Koseff JR, Cloern JE et al (1999) Processes governing phytoplankton blooms in estuaries. II: the role of horizontal transport. Mar Ecol Prog Ser 187:17–30CrossRefGoogle Scholar
  44. Mann K, Lazier J (2006) Dynamics of marine ecosystems: biological-physical interactions in the oceans, 3rd edn. Blackwell Science Publishing, MaldenGoogle Scholar
  45. Martínez G, Brugnoli E, Hernández J et al (2005) How valid is the SeaWiFS estimation of chlorophyll-a at the Río de la Plata estuary and its area of influence?. In: Frouin R, Kawamura H, Pan D (eds) Active and Passive Remote Sensing of the Oceans. Proc of SPIE 5656.  https://doi.org/10.1117/12.582665.
  46. Masello A, Menafra R (1998) Comunidades macrobentónicas de la zona costera uruguaya y areas adyacentes. In: Wells P, Daborn G (eds). El Río de la Plata. Una Revisión Ambiental. Un informe de Antecedentes del Proyecto EcoPlata. Dalhousie University, Halifax, Nova Scotia, Canada, pp 142–193.Google Scholar
  47. May C, Koseff JR, Lucas LV et al (2003) Effects of spatial and temporal variability of turbidity on phytoplankton blooms. Mar Ecol Prog Ser 254:111–128CrossRefGoogle Scholar
  48. Mechoso C, Pérez-Iribarren G (1992) Streamflow in Southeastern South America and the Southern Oscillation. J Clim 5:1535–1539CrossRefGoogle Scholar
  49. Montes-Hugo MA, Alvarez-Borrego S, Gaxiola-Castro G (2004) Annual phytoplankton production in a coastal lagoon of the southern California Current System. Mar Ecol Prog Ser 277:51–60CrossRefGoogle Scholar
  50. Nagy G, López-Laborde J, Anastasía L (1987) Caracterización de ambientes en el Río de la Plata Exterior (salinidad y turbiedad óptica). Inv Oceanológicas 1:31–56Google Scholar
  51. Nagy G, Martínez CM, Caffera RM, et al (1998) Marco hidrológico y climático del Río de la Plata. In: Wells P, Daborn G (eds). El Río de la Plata. Una Revisión Ambiental. Un informe de Antecedentes del Proyecto EcoPlata. Dalhousie University, Halifax, Nova Scotia, Canada, p 17–70Google Scholar
  52. Nagy G, Gómez-Erache M, López CH, Perdomo AC (2002) Distribution patterns of nutrients and symptoms of eutrophication in the Rio de la Plata River Estuary System. Hydrobiol 475/476:125–139CrossRefGoogle Scholar
  53. Nienchesky L, Baumgarten M (1997) Environment and biota of the Patos Lagoon estuary: environmental chemistry. In: Seeliger U, Odebrecht C, Castello J (eds) Subtropical convergence environments. the coast and sea in the Southwestern Atlantic. Springer, Berlin, pp 20–23Google Scholar
  54. Pasquini A, Lecomte KL, Piovano EL et al (2006) Recent rainfall and runoff variability in Central Argentina. Quaternary Internacional 158:127–139Google Scholar
  55. Piola A, Matano RP, Palma E et al (2005) The influence of the Plata River discharge on the western South Atlantic shelf. Geophys Res Lett 32:1–4CrossRefGoogle Scholar
  56. Piola A, Romero S, Zajaczkovski U (2008) Space-time variability of the Plata plume inferred from ocean color. Cont Shelf Res 28:1556–1567CrossRefGoogle Scholar
  57. R Core team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, https://www.R-project.org. Accessed 3 July 2017.
  58. Rodriguez-Graña L (2010) Retinal development in flatfish larvae: the effect of dietary essential fatty acids. Final activity and management report. Marie Curie Mobility Actions – EU, 8ppGoogle Scholar
  59. Sharp J, Pennock JR, Church TM et al (1984) The estuarine interaction of nutrients, organics, and metals: a case study in the Delaware Estuary. In: Kennedy V (ed) The estuary as a filter. Academic, San Diego, pp 241–258CrossRefGoogle Scholar
  60. Valiela I (2015) Marine ecological processes. Springer, New YorkCrossRefGoogle Scholar
  61. Vizziano D (2001) Determinación del ciclo reproductivo de la corvina Micropogonias furnieri (Pisces: Scianidae) y los factores que inciden en su estacionalidad en la zona frontal del Río de la Plata. In: Vizziano D et al (eds.) El Río de la Plata. Investigación para la gestión del ambiente, los recursos pesqueros y la pesquería en el frente salino. Programa Ecoplata, pp 105–114.Google Scholar
  62. Westberry T, Behrenfeld MJ, Siegel DA, Boss E (2008) Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem Cycles.  https://doi.org/10.1029/2007GB003078

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Danilo L. Calliari
    • 1
    • 2
  • Mónica Gómez-Erache
    • 1
  • Denise Vizziano Cantonnet
    • 1
  • Cecilia Alonso
    • 2
  1. 1.Oceanografía y Ecología MarinaFacultad de Ciencias, Universidad de la RepúblicaMontevideoUruguay
  2. 2.Centro Universitario Regional del Este (CURE)Universidad de la RepúblicaRochaUruguay

Personalised recommendations