Advertisement

Ichthyoplankton Associated to the Frontal Regions of the Southwestern Atlantic

  • Eduardo M. Acha
  • Martin D. Ehrlich
  • José H. Muelbert
  • Marcelo Pájaro
  • Daniel Bruno
  • Laura Machinandiarena
  • Mariana Cadaveira
Chapter

Abstract

The study region covers a wide latitudinal range, from 22°S to 55°S, and a bathymetric scope ranging from the coast to the shelf-break and adjacent region to a depth of ca. 1000 m. Hydrography of the region is extremely complex. Oceanographic structures are diverse, including several estuaries, water masses, wind systems, tidal regimes, and two major oceanic currents. A significant portion of the biological production is related to the existence of several marine fronts, characterized by different forcing, and temporal and spatial scales. Fish species that inhabit the region are diverse, covering a range of life strategies. Among those fishes that produce eggs and/or planktonic larvae, there are estuarine, shelf and oceanic forms, and species characteristic of tropical/subtropical or subantarctic waters. Pelagic species are more important in the northern part, while demersal species dominate the southernmost area. The region looks like an intricate mosaic of opportunities for life cycle closure of distinct species. Marine fronts seem to be the preferred areas to establish spawning and nursery grounds by fishes, and current knowledge allow to identify the elements of Bakun’s triad for several of those fronts.

Keywords

Ichthyoplankton Fronts Larvae retention Bakun’s triad Southwest Atlantic Ocean 

References

  1. Acha EM, Mianzan H, Guerrero R et al (2004) Marine fronts at the continental shelves of austral South America. Physical and ecological processes. J Mar Syst 44:83–105CrossRefGoogle Scholar
  2. Acha EM, Mianzan H, Guerrero RA et al (2008) An overview of physical and ecological processes in the Rio de la Plata Estuary. Cont Shelf Res 28(13):15759–11588Google Scholar
  3. Acha EM, Orduna M, Rodrigues K et al (2012a) Caracterización de la zona de El Rincón (Provincia de Buenos Aires) como área de reproducción de peces costeros. Revista de Investigación y Desarrollo Pesquero, INIDEP 21:31–43Google Scholar
  4. Acha EM, Simionato CG, Carozza CR et al (2012b) Climate–induced year classes’ fluctuations of whitemouth croaker Micropogonias furnieri (Pisces, Sciaenidae) in the Río de la Plata estuary, Argentina–Uruguay. Fish Oceanogr 21(1):58–77CrossRefGoogle Scholar
  5. Acha EM, Piola AR, Iribarne O, Mianzan H (2015) Ecological processes at marine fronts: oases in the ocean. Springer briefs in environmental science. Springer, New YorkCrossRefGoogle Scholar
  6. Álvarez–Colombo G, Dato C, Macchi GJ et al (2011) Distribution and behavior of argentine hake larvae: evidence of a biophysical mechanism for self–recruitment in northern Patagonian shelf waters. Cs Mar 37(4B):633–657Google Scholar
  7. Álvarez–Colombo GL, Dato CV, Machinandiarena L et al (2014) Daylight vertical segregation of young–of–the–year Argentine hake Merluccius hubbsi: advances in assessment of juvenile abundance with acoustic methods. Fish Res.  https://doi.org/10.1016/j.fishres.2014.03.014
  8. Auad G, Martos P (2012) Climate variability of the northern Argentinean shelf circulation: impact on Engraulis anchoita. Int J Ocean Clim Syst 3(1):17–43CrossRefGoogle Scholar
  9. Bakun A (1996) Patterns in the ocean: ocean processes and marine population dynamics. Sea Grant, La JollaGoogle Scholar
  10. Bakun A, Parrish RH (1991) Comparative studies of coastal pelagic fish reproductive habitats: the anchovy (Engraulis anchoita) of the southwestern Atlantic. ICES J Mar Sci 48:343–361CrossRefGoogle Scholar
  11. Balestrini CF, Manzella G, Lovrich GA (1998) Simulación de corrientes en el canal Beagle y Bahía Ushuaia mediante un modelo bidimensional, 98. Informe Técnico Servicio de Hidrografía NavalGoogle Scholar
  12. Berasategui AD, Acha EM, Fernández Araoz NC (2004) Spatial patterns of ichthyoplankton assemblages in the Rio de la Plata estuary (Argentina–Uruguay). Estuar Coast Shelf Sci 60:599–610CrossRefGoogle Scholar
  13. Bisbal GA (1995) The Southeast South American shelf large marine ecosystem. Mar Policy 19(1):21–38CrossRefGoogle Scholar
  14. Brandini FP, Moraes CLB, Thamm CA (1989) Shelf break upwelling, subsurface maxima of chlorophyll and nitrite, and vertical distribution of a subtropical nano– and microplankton community off southeastern Brazil. In: Brandini FP (ed) Memórias do III Encontro Brasileiro de Plâncton. Editora UFPR, Curitiba, pp 47–56Google Scholar
  15. Bruno DO, Acha EM (2015) Winds vs. tides: factors ruling the recruitment of larval and juvenile fishes into a microtidal and shallow choked lagoon (Argentina). Environ Biol Fish 98:1449–1458CrossRefGoogle Scholar
  16. Bruno DO, Delpiani SM, Cousseau MB et al (2014) Ocean–estuarine connection for ichthyoplankton through the inlet channel of a temperate choked coastal lagoon (Argentina). Mar Freshw Res 65:1116–1130CrossRefGoogle Scholar
  17. Bruno DO, Victorio MF, Acha EM et al (in press) Fish early life stages associated with giant kelp forests in sub–Antarctic coastal waters (Beagle Channel, Argentina). Polar Biol.  https://doi.org/10.1007/s00300–017–2196–y
  18. Burrage D, Wesson AJ, Martinez C et al (2008) Patos Lagoon outflow within the Río de la Plata plume using an airborne salinity mapper: observing an embedded plume. Cont Shelf Res 28:1625–1638CrossRefGoogle Scholar
  19. Busoli RO (2001) Transporte e retenção de ovos e larvas de Engraulis anchoita na Plataforma Continental Sul do Brasil. M.Sc. Dissertation. Universidade Federal do Rio Grande, Brazil, 141p.Google Scholar
  20. Campos EJD, Gonçalves JE, Ikeda Y (1995) Water mass structure and geostrophic circulation in the South Brazil Bight – summer of 1991. J Geophys Res 100(C9):18537–18550CrossRefGoogle Scholar
  21. Campos EJD, Velhote D, da Silveira ICA (2000) Shelf break upwelling driven by Brazil current cyclonic meanders. Geophys Res Lett 27:751–754CrossRefGoogle Scholar
  22. Campos PC, Möller OO, Piola AR, Palma ED (2013) Seasonal variability and coastal upwelling near Cape Santa Marta (Brazil). J Geophys Res Oceans 118:1420–1433CrossRefGoogle Scholar
  23. Carreto JI, Benavides HR, Negri RM et al (1986) Toxic red–tide in the Argentine Sea. Phytoplankton distribution and survival of the toxic dinoflagellate Gonyaulax excavata in a frontal area. J Plankton Res 8:15–28CrossRefGoogle Scholar
  24. Carreto JI, Carignan MO, Montoya NG et al (2007) Ecología del fitoplancton en los sistemas frontales del Mar Argentino. In: El mar Argentino y sus recursos pesqueros, vol 5. Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Mar del Plata, pp 11–31Google Scholar
  25. Carreto JI, Montoya NG, Carignan MO et al (2016) Environmental and biological factors controlling the spring phytoplankton bloom at the Patagonian shelf–break front – degraded fucoxanthin pigments and the importance of microzooplankton grazing. Prog Oceanogr 146:1–21.  https://doi.org/10.1016/j.pocean.2016.05.002 CrossRefGoogle Scholar
  26. Cassia MC, Booman CI (1985) Distribución del ictioplancton en el Mar Argentino en los años 1981–1982. Physis 43(105):91–111Google Scholar
  27. Castelão RM, Barth JA (2006) Upwelling around Cabo Frio, Brazil: the importance of wind stress curl. Geophys Res Lett 33(L03602).  https://doi.org/10.1029/2005GL025182
  28. Castello JP (1997) Pelagic teleosts. In: Seeliger U, Odebrecht C, Castello JP (eds) Subtropical convergence environments. The coast and the sea in the Southwestern Atlantic. Springer, New York, pp 123–128Google Scholar
  29. Castello JP, Vasconcellos MC (1995) Growth rate of anchovy (Engraulis anchoita) larvae caught off Cape Santa Marta Grande (Brazil). Arch Fish Mar Res 42(3):263–281Google Scholar
  30. Ciechomski JD, Ehrlich MD, Lasta CA et al (1979) Distribución de huevos y larvas de peces en el mar argentino y evaluación de los efectivos desovantes de anchoíta y de merluza. Contrib Inst Nac Invest Des Pesq (INDEP) 383:59–79Google Scholar
  31. Coelho–Souza SA, Soledad López M, Guimarães JRD et al (2012) Biophysical interactions in the Cabo Frio upwelling system, Southeastern Brazil. Braz J Oceanogr 60(3):353–365CrossRefGoogle Scholar
  32. Costa CSB, Seeliger U, Kinas P (1988) The effect of wind velocity and direction on the salinity regime in the lower Patos Lagoon estuary. Ciência e Cultura 40(9):909–912Google Scholar
  33. Cousseau MB (1997) Peces, crustáceos y moluscos registrados en el sector del Atlántico Sudoccidental comprendido entre 34° y 55°S, con indicación de las especies de interés pesquero. INIDEP Informe Técnico 5:96 pp.Google Scholar
  34. Cousseau MB, Perrotta RG (1998) Peces Marinos de Argentina. Biología, distribución, pesca. INIDEP, Mar del PlataGoogle Scholar
  35. Cury JC, Araujo FV, eta l C–SAS (2011) Microbial diversity of a Brazilian coastal region influenced by an upwelling system and anthropogenic activity. PLoS One 6:e16553PubMedPubMedCentralCrossRefGoogle Scholar
  36. Derisio C, Alemany D, Acha EM et al (2014a) Influence of a tidal front on zooplankton abundance, assemblages and life histories in Península Valdés, Argentina. J Mar Syst 139:475–485CrossRefGoogle Scholar
  37. Derisio C, Braverman M, Gaitán E et al (2014b) The turbidity front as a habitat for Acartia tonsa (Copepoda) in the Río de la Plata Estuary. J Sea Res 85:197–204CrossRefGoogle Scholar
  38. Dias JF, Petti MAV, Corbisier TN (2016) Trophic position and nutritional condition of the anchovy Engraulis anchoita larvae in the Cabo Frio region, Brazil. Vie et milieu – Life and Environment 66(3–4):275–285Google Scholar
  39. Ehrlich MD (1998) Los primeros estadios de vida de la merluza Merluccius hubbsi Marini 1933, como aporte al conocimiento de su reclutamiento y estructura poblacional, Universidad de Buenos AiresGoogle Scholar
  40. Ehrlich MD, Ciechomski JD (1994) Reseña sobre la distribución de huevos y larvas de merluza (Merluccius hubbsi) basada en veinte años de investigaciones. Frente Mar 15:37–50Google Scholar
  41. Ehrlich MD, Sánchez RP, Ciechomski JD et al (1999) Ichthyoplankton composition, distribution and abundance on the southern patagonian shelf and adjacent waters. INIDEP Doc Cient 5:37–65Google Scholar
  42. Fernandes EHL, Dyer KR, Möller OO et al (2002) The Patos Lagoon hydrodynamics during an El Nino event (1998). Cont Shelf Res 22:1699–1713CrossRefGoogle Scholar
  43. Framiñan MB, Brown OB (1996) Study of the Río de la Plata turbidity front, Part I: spatial and temporal distribution. Cont Shelf Res 16(10):1259–1282CrossRefGoogle Scholar
  44. Franco BC, Muelbert JH (2003) Distribuição e composição do ictioplâncton na quebra de plataforma do Sul do Brasil. Atlantica 25:75–86Google Scholar
  45. Franco BC, Muelbert JH, Mata MM (2006) Mesoscale physical processes and the distribution and composition of ichthyoplankton on the southern Brazilian shelf break. Fish Oceanogr 15:37–43CrossRefGoogle Scholar
  46. Freitas DM, Muelbert JH (2004) Ichthyoplankton distribution and abundance off Southern Brazil. Braz Arch Biol Technol 47(4):601–612CrossRefGoogle Scholar
  47. Gaeta SA, Brandini FP (2006) Produção primária do fitoplâncton na região entre o Cabo de São Tomé (RJ) e o Chuí (RS). In: Rossi-Wongtschowski CLDB, Madureira LS (eds) O Ambiente oceanográfico da Plataforma Continental e do Talude na Região Sudeste–Sul do Brasil. Editora da USP, São Paulo, pp 219–264Google Scholar
  48. Garcia A, Vieira JP, Winemuller K (2001) Dynamics of the shallow–water fish assemblage of the Patos Lagoon estuary (Brazil) during cold and warm ENSO episodes. J Fish Biol 59:1218–1238CrossRefGoogle Scholar
  49. Gonzalez Rodriguez E (1994) Yearly variation in primary productivity of marine phytoplankton from Cabo Frio (RJ, Brazil) region. Hydrobiologia 294:145–156CrossRefGoogle Scholar
  50. Guerrero RA, Piola AR (1997) Masas de agua en la plataforma continental. In: Boschi EE (ed) El Mar Argentino y sus recursos pesqueiros. Tomo 1. Antecedentes históricos de las exploraciones en el mar y las características ambientales. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, pp 107–118Google Scholar
  51. Guerrero RA, Acha EM, Framiñan MB, Lasta CA (1997) Physical oceanography of the Río de la Plata Estuary, Argentina. Cont Shelf Res 17(7):727–742CrossRefGoogle Scholar
  52. Hansen JE, Martos P, Madirolas A (2001) Relationship between spatial distribution of the Patagonian stock of Argentine anchovy, Engraulis anchoita, and sea temperatures during late spring–early summer. Fish Oceanogr 10(2):193206CrossRefGoogle Scholar
  53. Hoffmeyer MS, Menéndez MC, Biancalana F et al (2009) Ichthyoplankton spatial pattern on the inner shelf off Bahía Blanca Estuary, SW Atlantic Ocean. Estuar Coast Shelf Sci 84:383–392CrossRefGoogle Scholar
  54. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  55. Katsuragawa M, Matsuura Y (1992) Distribution and abundance of carangid larvae in the Southeastern Brazilian Bight, during 1975–1981. Bolm Inst Oceanogr Sao Paulo 40:55–78CrossRefGoogle Scholar
  56. Katsuragawa M, Dias JF, Harari J, Namiki C et al (2014) Patterns in larval fish assemblages under the influence of the Brazil current. Cont Shelf Res 89:103–117CrossRefGoogle Scholar
  57. Lopes RM, Katsuragawa M, Dias JF et al (2006) Zooplankton and ichthyoplankton distribution on the southern Brazilian shelf: an overview. Sci Mar 70(2):189–202CrossRefGoogle Scholar
  58. Lucas A, Guerrero RA, Mianzan HW et al (2005) Coastal oceanographic regimes of northern Argentina (34°–43°S). Cont Shelf Res 65:405–420Google Scholar
  59. Lutz VA, Segura V, Dogliotti AI, Gagliardini D et al (2010) Primary production in the Argentine Sea during spring estimated by field and satellite models. J Plankton Res 32(2):181–195CrossRefGoogle Scholar
  60. Macchi GJ, Acha EM (1998) Aspectos reproductivos de las principales especies de peces muestreadas durante la campaña costera H–13/94. INIDEP Inf Téc 21:67–89Google Scholar
  61. Macchi GJ, Martos P, Reta R, Dato C (2010) Offshore spawning of the Argentine hake (Merluccius hubbsi) Patagonian stock. Pan Am J Aquat Sci 5(1):22–35Google Scholar
  62. Macedo–Soares LCP, Garcia CAE, Freire AS et al (2014) Large–scale Ichthyoplankton and water mass distribution along the South Brazil Shelf. PLoS One 9(3):e91241PubMedPubMedCentralCrossRefGoogle Scholar
  63. Machado I, Conde D, Rodríguez–Graña L (2011) Composition and spatial distribution of ichthyoplankton in intermittently–open coastal lagoons of Uruguay. Pan Am J Aquat Sci 6(3):237–243Google Scholar
  64. Machado I, Calliari D, Denicola A, Rodríguez–Graña L (2017) Coupling suitable prey field to in situ fish larval condition and abundance in a subtropical estuary. Estuar Coast Shelf Sci 187:31–42.  https://doi.org/10.1016/j.ecss.2016.12.021 CrossRefGoogle Scholar
  65. Marrari M, Viñas MD, Martos P, Hernández D (2004) Spatial patterns of mesozooplankton distribution in the Southwestern Atlantic Ocean (34°–41° S) during austral spring: relationship with the hydrographic conditions. ICES J Mar Sci 61:667–679CrossRefGoogle Scholar
  66. Marrari M, Signorini S, Mcclain C, Pájaro M, Martos P, Viñas MD, Hansen J, Dimauro R, Cepeda G, Buratti C (2013) Reproductive success of the Argentine anchovy, Engraulis anchoita, in relation to environmental variability at a mid–shelf front (Southwestern Atlantic Ocean). Fish Oceanogr 22(3):247–261CrossRefGoogle Scholar
  67. Marrari M, Piola AR, Valla D, Wilding JG (2016) Trends and variability in extended ocean color time series in the main reproductive area of the Argentine hake, Merluccius hubbsi (Southwestern Atlantic Ocean). Remote Sens Environ 177:1–12.  https://doi.org/10.1016/j.rse.2016.02.011 CrossRefGoogle Scholar
  68. Martos P, Piccolo MC (1988) Hydrography of the Argentine continental shelf between 38° and 42°S. Cont Shelf Res 8(9):1043–1056CrossRefGoogle Scholar
  69. Matano R, Palma ED (2008) On the upwelling of Downwelling currents. J Phys Oceanogr 38:2482–2500CrossRefGoogle Scholar
  70. Matsuura Y (1998) Brazilian sardine (Sardinella brasiliensis) spawning in the Southeast Brazilian Bight over the period 1976–1993. Rev Bras Oceanogr 46(1):33–43CrossRefGoogle Scholar
  71. Matsuura Y, Kitahara EM (1995) Horizontal and vertical distribution of anchovy Engraulis anchoita eggs and larvae off Cape Santa Marta Grande in southern Brazil. Arch Fish Mar Res 42:239–250Google Scholar
  72. Matsuura Y, Spach HL, Katsuragawa M (1992) Comparison of spawning patterns of the Brazilian sardine (Sardinella brasiliensis) and anchoita (Engraulis anchoita) in Ubatuba region, southern Brazil during 1985 through 1988. Bolm Inst Oceanogr Sao Paulo 40:101–115CrossRefGoogle Scholar
  73. Matsuura Y, de Silva GAC, Katsuragawa M, Suzuki K (1993) Distribution and abundance of two species of codlet (Teleostei, Bregmacerotidae) larvae from the south-eastern Brazilian bight. Fish Oceanogr 2:82–90CrossRefGoogle Scholar
  74. Mazzini PLF, Barth JA (2013) A comparison of mechanisms generating vertical transport in the Brazilian coastal upwelling region. J Geophys Res Oceans 118:1–7CrossRefGoogle Scholar
  75. Miranda LB (1982) Análise de massas de água da plataforma continental e da região oceânica adjacente: Cabo de São Tomé (RJ) e Ilha de São Sebastião (SP). Universidade de São Paulo, São PauloGoogle Scholar
  76. Möller OO, Castaing P, Salomon J-C, Lazure P (2001) The influence of local and non local forcing effects on the subtidal circulation of Patos Lagoon. Estuaries 24(2):275–289CrossRefGoogle Scholar
  77. Moraes LES, Gherardi DFM, Katsuragawa M, Paes ET (2012) Brazilian sardine (Sardinella brasiliensis Steindachner, 1879) spawning and nursery habitats: spatial-scale partitioning and multiscale relationships with thermohaline descriptors. ICES J Mar Sci 69:939–952CrossRefGoogle Scholar
  78. Moser GAO, Gianesella-Galvão SMF (1997) Biological and oceanographic upwelling indicators at Cabo Frio (RJ). Rev Bras Oceanogr 45(1–2):11–23Google Scholar
  79. Muelbert JH, Weiss G (1991) Abundance and distribution of fish larvae in the channel area of the Patos Lagoon Estuary, Brazil. NOAA Tech Rps NMFS 95 pp 43-54Google Scholar
  80. Muelbert JH, Acha M, Mianzan H, Guerrero R, Reta R, Braga ES, Garcia VMT, Berasategui A, Gomez-Erache M, Ramírez F (2008) Biological, physical and chemical properties at the Subtropical Shelf Front Zone in the SW Atlantic Continental Shelf. Cont Shelf Res 28:1662–1673CrossRefGoogle Scholar
  81. Odebrecht C, Castello JP (2001) The convergence ecosystem in the Southwest Atlantic. In: Seeliger U, Kjerfve B (eds) Coastal marine ecosystems of Latin America, Ecological studies, vol 144. Springer, Berlin, pp 147–166CrossRefGoogle Scholar
  82. Odebrecht C, Djurfeldt L (1996) The role of nearshore mixing on phytoplankton size structure off Cape Santa Marta Grande, Southern Brazil (Spring 1989). Arch Fish Mar Res 43(3):217–230Google Scholar
  83. Odebrecht C, Abreu PC, Bemvenuti CE, Coppertino M, Muelbert JH, Vieira JP, Seeliger U (2010) The Patos Lagoon Estuary: biotic responses to natural and anthropogenic impacts in the last decades (1979–2008). In: Kennisch M, Paerl H (eds) Coastal Lagoons: systems of natural and anthropogenic change. Taylor & Francis/CRC Press, Boca Raton, pp 437–459Google Scholar
  84. Pájaro M (1998) El canibalismo como mecanismo denso-dependiente de mortalidad natural en la anchoíta argentina (Engraulis anchoita). Su relación con las estrategias reproductivas de la especie. Doctoral, Universidad Nacional de Mar del Plata, Mar del PlataGoogle Scholar
  85. Pájaro M, Macchi GJ, Martos P (2005) Reproductive pattern of the Patagonian stock of Argentine hake (Merluccius hubbsi). Fish Res 72:97–108CrossRefGoogle Scholar
  86. Pájaro M, Macchi GJ, Leonarduzzi E et al (2009) Spawning biomass of Argentine anchovy (Engraulis anchoita) from 1996 to 2004 using the Daily Egg Production method. J Mar Biol Assoc UK 89(4):829–837CrossRefGoogle Scholar
  87. Palma ED, Matano RP, Piola AR et al (2004a) A comparison of the circulation patterns over the Southwestern Atlantic Shelf driven by different wind stress climatologies. Geophys Res Lett 31:1–5CrossRefGoogle Scholar
  88. Palma ED, Piola AR, Matano RP (2004b) A numerical study of the Southwestern Atlantic Shelf circulation: Barotropic response to tidal and wind forcing. J Geophys Res 109Google Scholar
  89. Pereira GC, Coutinho R, Ebecken NFF (2008) Data mining for environmental analysis and diagnostic: a case of upwelling ecosystem of Arraial do Cabo. Braz J Oceanogr 56:1–12, pp 1-17Google Scholar
  90. Piola AR, Rivas AL (1997) Corrientes en la plataforma continental. In: Boschi EE (ed) El Mar Argenrino y sus recursos pesqueros 1: Antecedentes históricos de las exploraciones en el mar y las características ambientales. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, pp 119–132Google Scholar
  91. Piola AR, Campos EJD, Möller OO Jr et al (2000) The Subtropical Shelf Front off eastern South America. J Geophys Res 105(C3):6565–6578.  https://doi.org/10.1029/1999JC000300 CrossRefGoogle Scholar
  92. Piola AR, Matano RP, Palma ED et al (2005) The influence of the Plata River discharge on the western South Atlantic shelf. Geophys Res Lett 32:1603–1606CrossRefGoogle Scholar
  93. Resgalla C, Rocha CDL, Montú MA (2001) The influence of Ekman transport on zooplankton biomass variability off southern Brazil. J Plankton Res 23:641–650CrossRefGoogle Scholar
  94. Rodrigues RR, Lorenzzetti JA (2001) A numerical study of the effects of bottom topography and coastline geometry on the Southeast Brazilian coastal upwelling. Cont Shelf Res 21(4):371–394CrossRefGoogle Scholar
  95. Romero SI, Piola AR, Charo M et al (2006) Chlorophyll a variability off Patagonia based on SeaWiFS data. J Geophys Res 111:C05021CrossRefGoogle Scholar
  96. Sabatini ME, Alvarez Colombo G (2001) Seasonal pattern of zooplankton biomass in the Argentinian shelf off Southern Patagonia (45°–55°S). Sci Mar 65(1):21–31CrossRefGoogle Scholar
  97. Sabatini ME, Reta R, Lutz V et al (2016) Influence of oceanographic features on the spatial and seasonal patterns of mesozooplankton in the southern Patagonian shelf (Argentina, SW Atlantic). J Mar Syst 157:20–38.  https://doi.org/10.1016/j.jmarsys.2015.12.006 CrossRefGoogle Scholar
  98. Sánchez RP, Ciechomski JD (1995) Spawning and nursery grounds of pelagic fish species in the sea-shelf off Argentina and adjacent areas. Sci Mar 59(3–4):455–478Google Scholar
  99. Sánchez RP, Remeslo AV, Madirolas A et al (1995) Distribution and abundance of post-larvae and juveniles of the Patagonian spratt, Sprattus fuegensis, and related hydrographic conditions. Fish Res 23:47–81CrossRefGoogle Scholar
  100. Sánchez RP, Madirolas A, Reta R et al (1997) The reproductive biology of the Patagonian spratt (Sprattus fuegensis): several facts and still some speculations. ICES CM1997/hh: 22 (pelagic fish committee), 24 ppGoogle Scholar
  101. Secor HD (2015) Migration ecology of marine fishes. Johns Hopkins University Press, BaltimoreGoogle Scholar
  102. Sieg A (1998) A study on the histological classification of the in situ nutritional condition of larval South-West Atlantic anchovy, Engraulis anchoita Hubbs and Marini, 1935. Arch Fish Mar Res 46:19–36Google Scholar
  103. Silveira ICA, Schmidt ACK, Campos EJD, Godoi SS, Ikeda Y (2000) A Corrente do Brasil ao largo da costa leste brasileira. Rev Bras Oceanogr 48:171–183CrossRefGoogle Scholar
  104. Simionato CG, Berasategui AD, Meccia V et al (2008) Short time-scale wind forced variability in the Río de la Plata Estuary and its role on ichthyoplankton retention. Estuar Coastal Shelf Sci 76:211–226CrossRefGoogle Scholar
  105. Sinque C, Muelbert JH (1997a) Environment and Biota of the Patos Lagoon Estuary. Ichthyoplankton. In: Subtropical convergence environments. The coast and sea in the Southwestern Atlantic. Springer, Berlin, pp 51–56Google Scholar
  106. Sinque C, Muelbert JH (1997b) Ichthyoplankton. In: Seeliger U, Odebrecht C, Castello JP (eds) Subtropical convergence environments: the coastal and sea in the Southwestern Atlantic. Springer, Berlin, pp 120–123Google Scholar
  107. Sinque C, Muelbert JH (1997c) Ichthyoplankton. In: Seeliger U, Odebrecht C, Castello JP (eds) Subtropical convergence environments: the coastal and sea in the Southwestern Atlantic. Springer, Berlin, pp 51–56Google Scholar
  108. Temperoni B, Viñas MD (2013) Food and feeding of Argentine hake (Merluccius hubbsi) larvae in the Patagonian nursery ground. Fish Res 148:47–55CrossRefGoogle Scholar
  109. Torquato FO, Muelbert JH (2015) Spatial distribution of eggs and larvae of Engraulis anchoita (Hubbs & Marini, 1935) in the Southern Brazilian Shelf. Braz J Aquat Sci Technol 19(3):1–8Google Scholar
  110. Valentin JL (1984) Analysis of hydrobiological parameters in the Cabo Frio (Brazil) upwelling. Mar Biol 82(3):259–276CrossRefGoogle Scholar
  111. Valentin JL (2001) The Cabo Frio upwelling system, Brazil. In: Seeliger U, Kjerfve B (eds) Coastal marine ecosystems of Latin America. Springer, Berlin, pp 97–105CrossRefGoogle Scholar
  112. Valentin JL, Andre DL, Jacob SA (1987a) Hydrobiology in the Cabo Frio (Brazil) upwelling two-dimensional structure and variability during a wind cycle. Cont Shelf Res 7:77–88CrossRefGoogle Scholar
  113. Valentin JL, Monteiro-Ribas WM, Mureb MA et al (1987b) Some abundant zooplankton in the Cabo-Frio upwelling (Brazil). J Plankton Res 9:1195–1216CrossRefGoogle Scholar
  114. Vaz AC, Möller OO, Almeida TL (2006) Análise quantitativa da descarga dos rios afluentes da Lagoa dos Patos. Atlantica 28(1):13–23Google Scholar
  115. Viñas MD, Ramírez FC (1996) Gut analysis of first-feeding anchovy larvae from Patagonian spawning area in relation to food availability. Arch Fish Mar Res 43:231–256Google Scholar
  116. Viñas MD, Santos B (2000) First-feeding of hake (Merluccius hubbsi) larvae and prey availability in the North Patagonian spawning area – comparison with anchovy. Arch Fish Mar Res 48:242–254Google Scholar
  117. Viñas MD, Negri RM, Ramírez FC et al (2002) Zooplankton assemblages and hydrography in the spawning area of anchovy (Engraulis anchoita) off Río de la Plata estuary (Argentina-Uruguay). Mar Freshw Res 53:1031–1043CrossRefGoogle Scholar
  118. Vizziano D, Forni F, Saona G et al (2002) Reproduction of Micropogonias furnieri in a shallow temperate coastal lagoon in the southern Atlantic. J Fish Biol 61(A):196–206CrossRefGoogle Scholar
  119. Weiss G (1981) Ictioplancton del estuario de Lagoa dos Patos, Brasil. Ph.D. Dissertation, Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo., La PlataGoogle Scholar
  120. Weiss G, Hubold G, Bonecker ACT (1988) Eggs and larvae of Maurolicus muelleri (Cymelin, 1789) (Teleostei, Sternoptychidae) in the Southwest Atlantic. Meeresforsch 32:53–60Google Scholar
  121. Wu Y, Hanna CG, O’Flaherty-Sproul M et al (2017) Representing kelp forests in a tidal circulation model. J Mar Syst 169:73–86CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eduardo M. Acha
    • 1
    • 2
  • Martin D. Ehrlich
    • 2
  • José H. Muelbert
    • 3
  • Marcelo Pájaro
    • 2
  • Daniel Bruno
    • 4
  • Laura Machinandiarena
    • 2
  • Mariana Cadaveira
    • 2
  1. 1.Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Mar del Plata (CONICET – UNMdP)Mar del Plata, Bueos AiresArgentina
  2. 2.Instituto de Nacional de Investigación y Desarrollo Pesquero (INIDEP)Mar del Plata, Bueos AiresArgentina
  3. 3.Laboratorio de Ecologia do IctioplânctonInstituto de Oceanografia, Universidade Federal do Rio Grande (FURG)Rio GrandeBrazil
  4. 4.Laboratorio de Ecología, Fisiología y Evolución de Organismos AcuáticosCentro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas (CONICET)Ushuaia, Tierra del FuegoArgentina

Personalised recommendations