Ecological Role of Common Appendicularian Species from Shelf Waters Off Argentina

  • Fabiana L. CapitanioEmail author
  • Mariela L. Spinelli
  • María L. Presta
  • Gastón E. Aguirre
  • Guillermo Cervetto
  • Marcelo Pájaro
  • Carla M. Derisio


Appendicularians generally comprise a significant fraction of mesozooplanktonic tunicates in marine environments. Their eggs, trunks, and houses are important food supply to large copepods, chaetognaths, ctenophores, and larvae and adults of engraulids. They are semelparous and hermaphrodites (except O. dioica) organisms, with a short and temperature-dependent life cycle. In this chapter, we discuss the seasonal dynamics of appendicularians, comparing life strategies of dominant species at distinct coastal environments of the Southwest Atlantic Ocean. O. dioica, O. fusiformis, Appendicularia sicula, and Fritillaria borealis are common coastal species in the southwestern Atlantic. Total abundance, biomass, and house production of O. dioica and A. sicula were higher during spring and summer. O. dioica and A. sicula bloomed during summer with temperatures between 17 and 20 °C. O. fusiformis appeared occasionally during summer and fall but in very low densities. Fritillaria borealis prefers subantarctic and Antarctic cold (<11 °C) and salty waters. The contribution of appendicularians to the zooplankton secondary production had been underestimated. Here we emphasized the role of appendicularians as extraordinary producers of carbon and macroscopic aggregates in planktonic ecosystems, as it has been shown by several studies at the northern hemisphere and herein for the southern SW Atlantic Ocean.


Tunicates Seasonal cycles Carbon flux Vertical migration Southwest Atlantic 


  1. Acha EM, Mianzan H, Guerrero R et al (2008) An overview of ecological processes in the Río de la Plata estuary. Cont Shelf Res 28:1579–1588CrossRefGoogle Scholar
  2. Aguirre GE, Capitanio FL, Viñas MD et al (2006) Gonadal development, allometric growth and ecological impact of Appendicularia sicula (Appendicularia: Fritillariidae) from the South-Western Atlantic Ocean. J Mar Biol Assoc 86:1215–1220CrossRefGoogle Scholar
  3. Aguirre G, Capitanio F, Lovrich G et al (2012) Seasonal variability of metazooplankton in coastal sub-Antarctic. Mar Biol Res 8:341–353CrossRefGoogle Scholar
  4. Almandoz GO, Hernando MP, Ferreyra GA et al (2011) Seasonal phytoplankton dynamics in extreme southern South America (Beagle Channel, Argentina). J Sea Res 2:47–57CrossRefGoogle Scholar
  5. Álvarez Colombo G, Dato C, Macchi GJ et al (2011) Distribution and behavior of argentine hake larvae: evidence of a biophysical mechanism for self-recruitment in northern Patagonian shelf waters. Cienc Mar 37:633–657CrossRefGoogle Scholar
  6. Balestrini C, Manzella G, Lovrich G (1998) Simulación de corrientes en el Canal Beagle y Bahía Ushuaia, mediante un modelo bidimensional. Servicio de Hidrografía Naval. Informe Técnico 98:1–58Google Scholar
  7. Brena C, Cima F, Burighel P (2003) The highly specialized gut of Fritillaridae (Appendicularia: Tunicata). Mar Biol 143:57–71CrossRefGoogle Scholar
  8. Calliari D, Cervetto G, Castiglioni R (2004) Summer time herbivory and egg production by Acartia tonsa at the Montevideo coast – Rio de La Plata. Ophelia 58:115–128CrossRefGoogle Scholar
  9. Capitanio F, Pájaro M, Esnal GB (1997) Appendicularians (Chordata, Tunicata) in the diet of anchovy Engraulis anchoita in the Argentine sea. Sci Mar 61:9–15Google Scholar
  10. Capitanio F, Pájaro M, Esnal GB (2005) Appendicularians: an important food supply for the Argentine anchovy Engraulis anchoita in coastal waters. J Appl Ichthyol 21:414–419CrossRefGoogle Scholar
  11. Capitanio FL, Curelovich J, Tresguerres M et al (2008) Seasonal cycle of appendicularians at a coastal station (38°28´S, 57°41´W) of the SW Atlantic Ocean. Bull Mar Sci 82:171–184Google Scholar
  12. Cohen JH, Forward RB (2009) Zooplankton diel vertical migration a review of proximate control. Oceanogr Mar Biol 47:77–110CrossRefGoogle Scholar
  13. Daponte MC, Capitanio FL, Nahabedian DE et al (2004) Sagitta friderici Ritter–Zahony (Chaetognatha) from South Atlantic waters. Abundance, population structure and life–cycle. ICES J Mar Sci 61:680–686CrossRefGoogle Scholar
  14. Derisio C (2012) El rol del frente de marea de Península Valdés en el control de la comunidad zooplanctónica. Tesis doctoral, Univ de Mar del Plata, Mar del Plata, 134 ppGoogle Scholar
  15. Esnal GB (1999) Appendicularia. In: Boltovskoy D (ed) Zooplankton of the South Atlantic Ocean. Leiden, Backhuys, pp 1375–1399Google Scholar
  16. Flood PR, Deibel D, Morris C (1992) Filtration of colloidal melanin from seawater by planktonic tunicates. Nature 355:630–632CrossRefGoogle Scholar
  17. Hopcroft R, Roff J (1995) Zooplankton growth rates: extraordinary production by the larvacean Oikopleura dioica in tropical waters. J Plankton Res 17:205–220CrossRefGoogle Scholar
  18. Isla F, Bujalesky G, Coronato A (1999) Procesos estuarinos en el Canal Beagle, Tierra del Fuego. Rev Asoc Geol Argent 54:307–318Google Scholar
  19. Koski M, Møller EF, Maar M et al (2007) The fate of discarded appendicularian houses: degradation by the copepod, Microsetella norvegica, and other agents. J Plankton Res 29:641–654CrossRefGoogle Scholar
  20. Lee O, Nash RDM, Danilowicz BS (2005) Small–scale spatio–temporal variability in ichthyoplankton and zooplankton distribution in relation to a tidal–mixing front in the Irish Sea. ICES J Mar Sci 6:1021–1036Google Scholar
  21. Lombard F (2006). Étude expérimentale et modélisation de l’écophysiologie de l’appendiculaire Oikopleura dioica. Doctoral Thesis. Université Pierre et Marie Curie, Paris VI. 284 ppGoogle Scholar
  22. Lombard F, Renaud F, Sainsbury C et al (2009) Appendicularian ecophysiology I. Food concentration dependent clearance rate, assimilation efficiency, growth and reproduction of Oikopleura dioica. J Mar Syst 78:606–616CrossRefGoogle Scholar
  23. López-Urrutia A, Acuña JL (1999) Gut throughput dynamics in the appendicularian Oikopleura dioica. Mar Ecol Prog Ser 191:195–205Google Scholar
  24. López-Urrutia A, Acuña JL, Irigoyen X et al (2003) Food limitation and growth in temperate epipelagic appendicularians (Tunicata), Mar Ecol Prog Ser 252:143-157Google Scholar
  25. Lucas AJ, Guerrero RA, Mianzan MW et al (2005) Coastal oceanographic regimes of the northern Argentine continental shelf (34–43°S). Estuar Coast Shelf Sci.
  26. Lutz V, Subramaniam A, Negri RM et al (2006) Annual variations in bio–optical properties at the ¨Estación Permanente de Estudios Ambientales (EPEA)¨ coastal station, Argentina. Cont Shelf Res 26:1093–1112CrossRefGoogle Scholar
  27. Neilson JD, Perry RI (1990) Diel vertical migrations of marine fishes an obligate or facultative process. Adv Mar Biol 26:115–168CrossRefGoogle Scholar
  28. Nishibe Y, Takahashi K, Ichikawa T et al (2015) Degradation of discarded appendicularian houses by oncaeid copepods. Limnol Oceanogr 60:967–976CrossRefGoogle Scholar
  29. Pájaro M, Diaz MV, Leonarduzzi E et al (2009). Abundancia de huevos y larvas de anchoíta en la Estación Permanente de Estudios Ambientales (EPEA) en el período 2000–2007. Variación estacional e interanual. Informe de Investigación INIDEP N°28/09, 14 ppGoogle Scholar
  30. Palma ED, Matano RP, Piola AR et al (2008) A numerical study of the Southwestern Atlantic shelf circulation: Stratified Ocean response to local and offshore forcing. J Geophys Res 113:1–22Google Scholar
  31. Piola AR, Matano RP, Palma ED et al (2005) The influence of the Plata river discharge on the western South Atlantic shelf. Geophys Res Lett.
  32. Presta ML, Hoffmeyer MS, Capitanio FL (2015) Population structure and maturity stages of Fritillaria borealis (Appendicularia, Tunicata): seasonal cycle in Ushuaia Bay (Beagle Channel). Braz J Oceanogr 63:279–288CrossRefGoogle Scholar
  33. Purcell JE, Sturdevant MV, Galt CP (2005) A review of appendicularians as prey of invertebrate and fish predator. In: Gorsky G (ed) Response of marine ecosystems to global change: ecological impact of Appendicularians. Editions Scientifiques, Paris, pp 360–435Google Scholar
  34. Ringelberg J (2010) Diel migration of zooplankton in lakes and oceans: causes explanations and adaptive significance. Springer, LondonCrossRefGoogle Scholar
  35. Ringelberg J, Van Gool E (2003) On the combined analysis of proximate and ultimate aspects in diel vertical migration (DVM) research. Hydrobiologia 491:85–90CrossRefGoogle Scholar
  36. Sato R, Tanaka J, Ishimaru T (2001) House production by Oikopleura dioica (Tunicata, Appendicularia) under laboratory conditions. J Plankton Res 28:415–423CrossRefGoogle Scholar
  37. Sato NE, Hernández D, Viñas MD (2011) Feeding habits of Engraulis anchoita (Hubbs & Marini, 1935) larvae in coastal waters off Buenos Aires Province, Argentina. Lat Am J Aquat Res 39:6–24Google Scholar
  38. Spinelli M, Martos P, Esnal G et al (2009) Appendicularian assemblages and their space–time variability off the La Plata River, SW Atlantic Ocean. Estuar Coast Shelf Sci 85:97–106CrossRefGoogle Scholar
  39. Spinelli ML, Guerrero R, Pájaro M et al (2013) Distribution of Oikopleura dioica (Tunicata, Appendicularia) at a coastal frontal system (39°– 41°S) of the SW Atlantic Ocean in the spawning area of Engraulis anchoita anchovy. Braz J Oceanogr 61:141–148CrossRefGoogle Scholar
  40. Spinelli M, Derisio C, Martos P et al (2015) Diel vertical distribution of the larvacean Oikopleura dioica in a north Patagonian tidal frontal system (42°–45°S) of the SW Atlantic Ocean. Mar Biol Res 6:633–643. CrossRefGoogle Scholar
  41. Sutton TT, Hopkins TL (1996) Trophic ecology of the stomiid (Pisces: Stomiidae) fish assemblage of the eastern Gulf of Mexico: strategies, selectivity and impact of a top mesopelagic predator. Mar Biol 127:179–192CrossRefGoogle Scholar
  42. Tomita M, Shiga N, Ikeda T (2003) Seasonal occurrence and vertical distribution of appendicularians in Toyama Bay, southern Japan Sea. J Plankton Res 25(6):579–589CrossRefGoogle Scholar
  43. Touratier F, Carlotti F, Gorsky G (2003) Individual growth model for the appendicularian Oikopleura dioica. Mar Ecol Prog Ser 248:141–163CrossRefGoogle Scholar
  44. Trøedsson C, Bouquet CJM, Aksnes DL et al (2002) Resource allocation between somatic growth and reproductive output in the pelagic chordate Oikopleura dioica allows opportunistic response to nutritional variation. Mar Ecol Prog Ser 243:83–91CrossRefGoogle Scholar
  45. Uye S, Ichino S (1995) Seasonal variations in abundance, size composition, biomass and production rate of Oikopleura dioica (Fol) (Tunicata: Appendicularia) in a temperate eutrophic inlet. J Exp Mar Biol Ecol 189:1–11CrossRefGoogle Scholar
  46. Viñas MD, Negri RM, Cepeda GD et al (2013) Seasonal succession of zooplankton in coastal waters of the Argentine sea (Southwest Atlantic Ocean): prevalence of classical or microbial food webs. Mar Biol Res 9:371–382CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fabiana L. Capitanio
    • 1
    • 2
    Email author
  • Mariela L. Spinelli
    • 1
    • 2
  • María L. Presta
    • 1
    • 2
  • Gastón E. Aguirre
    • 1
    • 2
  • Guillermo Cervetto
    • 3
  • Marcelo Pájaro
    • 4
  • Carla M. Derisio
    • 4
  1. 1.Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad de Buenos Aires (CONICET – UBA)Buenos AiresArgentina
  2. 2.Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Dirección Nacional de Medio Ambiente. Ministerio de Vivienda, Ordenamiento Territorial y Medio AmbienteMontevideoUruguay
  4. 4.Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Mar del PlataBuenos AiresArgentina

Personalised recommendations