Advertisement

Transcranial Doppler Sonography in Neonates

  • Gerda Meijler
  • Sylke J. Steggerda
Chapter

Abstract

One of the advantages of CUS is the possibility to study cerebral haemodynamics. Transcranial Doppler sonography is an excellent modality for assessment of the cerebral vasculature in the newborn infant and provides useful information about cerebral vascular anatomy. Since it is non-invasive and seen in real time, it is an ideal technique to study blood flow patterns over time and in various clinical situations. The assessment of cerebral blood flow velocities enables the detection of abnormal flow patterns, may provide information regarding the risk of brain injury (for example IVH) and can play a role in determining the severity of brain damage (e.g. in cases with HIE).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Govaert P (2009) Sonographic stroke templates. Semin Fetal Neonatal Med 14:284–298CrossRefGoogle Scholar
  2. 2.
    Miller E et al (2014) Color Doppler US of normal cerebral venous sinuses in neonates: a comparison with MR venography. Pediatr Radiol 42:1070–1079CrossRefGoogle Scholar
  3. 3.
    Raets M et al (2015) Brain vein disorders in newborn infants. Dev Med Child Neurol 57:229–240CrossRefGoogle Scholar

Further Reading

  1. Couture A et al (2001) Advanced cranial ultrasound: transfontanellar Doppler imaging in neonates. Eur Radiol 2001(11):2399–2410CrossRefGoogle Scholar
  2. Dean LM et al (1995) The intracranial venous system in infants: normal and abnormal findings on duplex and color Doppler sonography. AJR Am J Roentgenol 164:151–156CrossRefGoogle Scholar
  3. Ecury-Goossen GM et al (2015) State of the art cranial ultrasound imaging in neonates. J Vis Exp 96Google Scholar
  4. Elstad M et al (2011) Cerebral Resistance Index is less predictive in Hypothermic encephalopathic newborns. Acta Paediatr 100(10):1344–1349CrossRefGoogle Scholar
  5. Forster DE et al (2018) Cerebral blood flow velocities and cerebrovascular resistance in normal-term neonates in the first 72 hours. J Paediatr Child Health 2018(54):61–68CrossRefGoogle Scholar
  6. Gerner GJ et al (2016) Transfontanellar duplex brain ultrasonography resistive indices as a prognostic tool in neonatal hypoxic-ischemic encephalopathy before and after treatment with therapeutic hypothermia. J Perinatol 36(3):202–206CrossRefGoogle Scholar
  7. Grant EG et al (1987) Cranial duplex sonography of the infant. Radiology 163:177–185CrossRefGoogle Scholar
  8. Horsch S et al (2014) Developmental venous anomaly in the newborn brain. Neuroradiology 56:579–588CrossRefGoogle Scholar
  9. Ikeda T et al (2015) Changes in the perfusion waveform of the internal cerebral vein and intraventricular haemorrhage in the acute management of extremely low-birth-weight infants. Eur J Pediatr 174:331–338CrossRefGoogle Scholar
  10. Perlman JM et al (1983) Fluctuating cerebral blood flow velocity in respiratory distress syndrome. N Engl J Med 309:204–209CrossRefGoogle Scholar
  11. Raets MM et al (2013) Serial cranial US for detection of cerebral sinovenous thrombosis in preterm infants. Radiology 269:879–886CrossRefGoogle Scholar
  12. Romagnoli C et al (2006) Neonatal color Doppler US study: normal values of cerebral blood flow velocities in preterm infants in the first months of life. Ultrasound Med Biol 32(3):321–331CrossRefGoogle Scholar
  13. Skranes JH et al (2014) Hypothermia makes cerebral resistance index a poor prognostic tool in encephalopathic newborns. Neonatology 106:17–23CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gerda Meijler
    • 1
  • Sylke J. Steggerda
    • 2
  1. 1.Department of NeonatologyIsala Women and Children’s HospitalZwolleThe Netherlands
  2. 2.Department of NeonatologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations