Advertisement

Timing of Ultrasound Examinations

  • Gerda Meijler
  • Sylke J. Steggerda
Chapter

Abstract

To obtain optimal information from CUS serial, carefully timed examinations are essential, in both preterm and in sick full-term infants. If timing is not optimally chosen, time intervals between CUS examinations are too long, or CUS examinations are discontinued too early, important information and/or injury may be missed. On the other hand, if the quality of CUS is good, timing is well chosen, proper transducers are used and, in the case of preterm birth, serial examinations are continued until term equivalent age (TEA); most clinically relevant abnormalities will be detected.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leijser LM et al (2009) Frequently encountered cranial ultrasound features in the white matter of preterm infants: correlation with MRI. Eur J Paediatr Neurol 13:317–326CrossRefGoogle Scholar
  2. 2.
    van Wezel-Meijler G et al (2011) Diffuse Hyperechogenicity of Basal Ganglia and Thalami in Preterm Neonates: A Physiologic Finding? Radiology 258:944–950CrossRefGoogle Scholar
  3. 3.
    Boxma A et al (2005) Sonographic detection of the optic radiation. Acta Paediatr 94:1455–1461CrossRefGoogle Scholar

Further Reading

  1. Benders MJ et al (2014) Neuroimaging of white matter injury, intraventricular and cerebellar hemorrhage. Clin Perinatol 41:69–82CrossRefGoogle Scholar
  2. Bracci R et al (2006) The timing of neonatal brain damage. Biol Neonate 90:145–155CrossRefGoogle Scholar
  3. Brouwer AJ et al (2013) Treatment of neonatal progressive ventricular dilatation: a single-center experience. J Matern Fetal Neonatal Med 28 S1: 2273–2279Google Scholar
  4. Brouwer AJ et al (2014) Early and late complications of germinal matrix-intraventricular haemorrhage in the preterm infant: what is new? Neonatology 106:296–303CrossRefGoogle Scholar
  5. Daneman A et al (2006) Imaging of the brain in full-term neonates: does sonography still play a role? Pediatr Radiol 36:636–646CrossRefGoogle Scholar
  6. Ecury-Goossen GM et al (2010) The clinical presentation of preterm cerebellar haemorrhage. Eur J Pediatr 169:1249–1253CrossRefGoogle Scholar
  7. Edwards AD et al (2018) Effect of MRI on preterm infants and their families: a randomized trial with nested diagnostic and economic evaluation. Arch Dis Child Fetal Neonatal Ed 103(1):F15–F21CrossRefGoogle Scholar
  8. Epelman M et al (2012) Head ultrasound and MR imaging in the evaluation of neonatal encephalopathy: competitive or complementary imaging studies? Magn Reson Imaging Clin N Am 20:93–115CrossRefGoogle Scholar
  9. Fumagalli M et al (2015) From germinal matrix to cerebellar hemorrhage. J Matern Fetal Neonatal Med 28(Suppl 1):2280–2285CrossRefGoogle Scholar
  10. Hagmann et al (2010) Cranial ultrasound findings in well newborn Ugandan infants. Arch Dis Child Fetal NeonatEd 95:F338–F344CrossRefGoogle Scholar
  11. Hintz SR et al (2015) Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics 135:e32–e42CrossRefGoogle Scholar
  12. Horsch S et al (2005) Ultrasound diagnosis of brain atrophy is related to neurodevelopmental outcome in preterm infants. Acta Paediatr 94:1815–1821CrossRefGoogle Scholar
  13. Inder TE et al (2017) Preterm intraventricular hemorrhage/posthemorrhagic hydrocephalus. In: Volpe’s neurology of the newborn, 6th edn. ElsevierGoogle Scholar
  14. Leijser LM et al (2006) Using cerebral ultrasound effectively in the newborn infant. Early Hum Dev 82:827–835CrossRefGoogle Scholar
  15. Leijser LM et al (2007) Cranial ultrasound in metabolic disorders presenting in the neonatal period: characteristic features and comparison with MRI. AJNR Am J Neuroradiol 28:1223–1231CrossRefGoogle Scholar
  16. Leijser LM et al (2009) Brain imaging findings in very preterm infants throughout the neonatal period: part I. Incidences and evolution of lesions, comparison between ultrasound and MRI. Early Hum Dev 85:101–109CrossRefGoogle Scholar
  17. Leijser LM et al (2010) Is sequential cranial ultrasound reliable for detection of white matter injury in very preterm infants? Neuroradiology 52:397–406CrossRefGoogle Scholar
  18. Leijser LM et al (2018) Post-hemorrhagic ventricular dilatation in preterm infants: when best to intervene? Neurology 90(8):e698–e706CrossRefGoogle Scholar
  19. Limperopoulos C et al (2017) Cerebellar hemorrhage. In: Volpe’s neurology of the newborn, 6th edn. ElsevierGoogle Scholar
  20. McCarthy LK et al (2011) Ultrasonically detectable cerebellar haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed 96:F281–F285CrossRefGoogle Scholar
  21. Meijler G et al (2016). Neonatal cranial ultrasonography. In: Beek, van Rij (eds) Diagnostic pediatric ultrasound, chapter 3. ThiemeGoogle Scholar
  22. Miller SP et al (2003) Comparing the diagnosis of white matter injury in premature newborns with serial MR imaging and transfontanel ultrasonography findings. AJNR Am J Neuroradiol 24:1661–1669Google Scholar
  23. Neil JJ, Volpe JJ (2017) Encephalopathy of prematurity: clinical-neurological features, diagnosis, imaging, prognosis, therapy. In: Volpe’s neurology of the newborn, 6th edn. ElsevierGoogle Scholar
  24. Plaisier A et al (2015) Serial cranial ultrasonography or early MRI for detecting preterm brain injury? Arch Dis Child Fetal Neonatal Ed 100:F293–F300CrossRefGoogle Scholar
  25. Sarkar S et al (2018) Outcome of preterm infants with transient cystic periventricular leukomalacia on serial cranial imaging up to term equivalent age. J Pediatr 195:59.e3–65.e3CrossRefGoogle Scholar
  26. Sie LTL et al (2000) Early MR features of hypoxic-ischemic brain injury in neonates with periventricular densities on sonogram. Am J Neuroradiol 21:852–861Google Scholar
  27. Skiöld B et al (2019) A novel scoring system for term-equivalent-age cranial ultrasound in extremely preterm infants. Ultrasound Med Biol 45:786–794Google Scholar
  28. Steggerda SJ et al (2009) Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology 252:190–199CrossRefGoogle Scholar
  29. Steggerda SJ et al (2012) Ultrasound detection of posterior fossa abnormalities in full-term neonates. Early Hum Dev 88:233–239CrossRefGoogle Scholar
  30. Stolwijk LJ et al (2017) Neonatal surgery for noncardiac congenital anomalies: neonates at risk of brain injury. J Pediatr 182:335–341CrossRefGoogle Scholar
  31. Verboon-Maciolek MA et al (2012) Development of cystic periventricular leukomalacia in newborn infants after rotavirus infection. J Pediatr 160:165–168CrossRefGoogle Scholar
  32. Volpe JJ (1989) Intraventricular hemorrhage in the premature infant—current concepts. Part II. Ann Neurol 25:109–116CrossRefGoogle Scholar
  33. de Vries LS et al (1992) The spectrum of leukomalacia using cranial ultrasound. Behav Brain Res 49:1–6CrossRefGoogle Scholar
  34. de Vries LS et al (2004) Ultrasound abnormalities preceding cerebral palsy in high-risk preterm infants. J Pediatr 144:815–820CrossRefGoogle Scholar
  35. de Vries LS et al (2006) The role of cranial ultrasound and magnetic resonance imaging in the diagnosis of infections of the central nervous system. Early Hum Dev 82:819–825CrossRefGoogle Scholar
  36. de Vries LS et al (2015) Progress in neonatal neurology with a focus on neuroimaging in the preterm infant. Neuropediatrics 4:234–241Google Scholar
  37. de Vries LS et al (2013) Imaging the premature brain: ultrasound or MRI? Neuroradiology 55:S13–S22CrossRefGoogle Scholar
  38. de Vries LS, Volpe JJ (2017a) Viral, protozoan and related intracranial infections. In: Volpe’s neurology of the newborn, 6th edn. ElsevierGoogle Scholar
  39. de Vries LS, Volpe JJ (2017b) Bacterial and fungal intracranial infections. In: Volpe’s neurology of the newborn, 6th edn. ElsevierGoogle Scholar
  40. van Wezel-Meijler G et al (2011) Ultrasound detection of white matter injury in very preterm neonates: practical implications. Radiology 261:899–906CrossRefGoogle Scholar
  41. van Wezel-Meijler G, De Vries LS (2014) Cranial ultrasound-optimizing utility in the NICU. Curr Pediatr Rev 10:16–27CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gerda Meijler
    • 1
  • Sylke J. Steggerda
    • 2
  1. 1.Department of NeonatologyIsala Women and Children’s HospitalZwolleThe Netherlands
  2. 2.Department of NeonatologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations