Advertisement

Managing and Preserving Stingless Bees

In collaboration with Humberto Moo-Valle
  • José Javier G. Quezada-Euán
Chapter

Abstract

Stingless beekeeping (or meliponiculture) depends closely on the different floral resources to support the growth of colonies and the production of surplus reserves of honey, pollen, and resins for a profitable harvest. The adequate management of colonies, through periods of abundance of resources and draught, is a key aspect to keep them in good condition and to obtain maximum production.

Keywords

Harvest Pre-harvest Postharvest Viguiera dentata Gymnopodium floribundum Piscidia piscipula Meliponario Colony record Rational hive Sugar syrup Artificial feeder Pollen supplement Fermentation Honey preserving Varroa mite Small hive beetle Phorid fly Army ant Lestrimelitta Deforestation Agrochemical Toxicology Neonicotinoids Biopesticides GMC Pathogen spillover 

References

  1. Abrams EM, Rue DJ (1988) The causes and consequences of deforestation among the prehistoric Maya. Hum Ecol 16:377–395CrossRefGoogle Scholar
  2. Aguirre A, Dirzo R (2008) Effects of fragmentation on pollinator abundance and fruit set of an abundant understory palm in a Mexican tropical forest. Biol Conserv 141:375–384CrossRefGoogle Scholar
  3. Ahmad Z, Johansen C (1973) Selective toxicity of carbophenotion and thricloroform to the honey bee and the alfalfa leaf cutting bee. Environ Entomol 2:27–30CrossRefGoogle Scholar
  4. Alfaro-Bates RG, González-Acereto JA, Ortíz-Diáz JJ, Viera-Castro FA, Burgos-Pérez AI, Martínez-Hernández E, Ramírez-Arriaga E (2010) Caracterización palinológica de las mieles de la peninsula de Yucatán. UADY-CONABIOGoogle Scholar
  5. Atkins EL (1993) Management strategies for protecting honey bees, Apis mellifera, from pesticides. In: Connor LJ, Rinderer TE, Sylvester HA, Wongsiri S (eds) Proceedings of the 1st international conference on the Asian honey bees and bee mites. Wicwas Press, Cheshire, pp 607–612Google Scholar
  6. Barbosa WF, Smagghe G, Guedes RNC (2015a) Perspective pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives. Pest Manag Sci 71:1049–1053PubMedCrossRefGoogle Scholar
  7. Barbosa WF, Tomé HVV, Bernardes RC, Siqueira MAL, Smagghe G, Guedes RNC (2015b) Biopesticide-induced behavioral and morphological alterations in the stingless bee Melipona quadrifasciata. Environ Toxicol Chem 34:2149–2158PubMedCrossRefGoogle Scholar
  8. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354PubMedCrossRefGoogle Scholar
  9. Belzunces LP, Pélissier C, Lewis GB (1999) Hazards of pesticides to bees. Abstracts of the 7th International Symposium of the ICPBR Protection Group co-organized by INRA and ACTA, Université d’Avignon, FranceGoogle Scholar
  10. Benz G, Joeressen HJ (1994) A new pathotype of Bacillus thuringiensis with pathogenic action against sawflies (Hymenoptera, Symphita). Bull OILB-SROP 17:35–38Google Scholar
  11. Bernardes RC, Tomé HVV, Barbosa WF, Guedes RNC, Lima MAP (2017) Azadirachtin-induced antifeeding in Neotropical stingless bees. Apidologie 48(3):27–285. https://doi.org/10.1007/s13592-016-0473-3 (En prensa)CrossRefGoogle Scholar
  12. Broodsgard HF, Broodsgard CJ, Hansen H, Lovei GL (2003) Environmental risk assessment of transgene products using honey bee (Apis mellifera) larvae. Apidologie 34:139–145CrossRefGoogle Scholar
  13. Brown BV (2004) Revision of the Melaloncha cingulata-group of bee-killing flies (Diptera: Phoridae). Ann Entomol Soc Am 97:386–392CrossRefGoogle Scholar
  14. Brown BV (2005) Revision of the Melaloncha (M.) furcata-group of bee-killing flies (Diptera: Phoridae). Insect Syst Evol 36:241–258Google Scholar
  15. Brown BV (2016) Two new bee-killing flies from Brazil (Insecta: Diptera: Phoridae: Melaloncha). Biodivers Data J 4:e7715CrossRefGoogle Scholar
  16. Brown JC, Albrecht C (2001) The effect of tropical deforestation on stingless bees of the genus Melipona (Insecta: Hymenoptera: Apidae: Meliponini) in Central Rondonia, Brazil. J Biogeogr 28:623–634CrossRefGoogle Scholar
  17. Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58:99–117PubMedCrossRefGoogle Scholar
  18. Catzín-Ventura G, Delgado A, Medina-Medina L (2008) Evaluación de la actividad antibacteriana de la miel de Melipona beecheii y Scaptotrigona pectoralis de Yucatán, México. In: Memorias V Congreso Mesoamericano sobre abejas sin aguijón. Universidad Autónoma de Yucatán, Mérida, pp 55–62Google Scholar
  19. Colla SR, Otterstatter MC, Gegear RJ, Thomson JD (2006) Plight of the bumble bee: pathogen spillover from commercial to wild populations. Biol Conserv 129:461–467CrossRefGoogle Scholar
  20. Colleto-Silva A (2005) Captura de enxames de abelhas sem ferrão (Hymenoptera, Apidae, Meliponinae) sem destruição de árvores. Acta Amazon 35:383–388CrossRefGoogle Scholar
  21. Costa L, Venturieri GC (2009) Diet impacts on Melipona flavolineata workers. J Apic Res Bee World 48:38–45CrossRefGoogle Scholar
  22. Costa LM, Grella TC, Barbosa RA, Malaspina O, Nocelli RCF (2015) Determination of acute lethal doses (LD50 and LC50) of imidacloprid for the native bee Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae). Sociobiology 62:578–582Google Scholar
  23. Costantini D (2015) Land-use changes and agriculture in the tropics: pesticides as an overlooked threat to wildlife. Biodivers Conserv 24:1837–1839CrossRefGoogle Scholar
  24. Crozier RH (1971) Heterozygosity and sex determination in haplo-diploidy. Am Nat 105:399–412CrossRefGoogle Scholar
  25. Crozier RH, Pamilo P (1996) Evolution of social insect colonies. Sex allocation and kin selection. Oxford University Press, Oxford, UKGoogle Scholar
  26. Cruz AS, da Silva-Zacarin EC, Bueno OC, Malaspina O (2010) Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae. Cell Biol Toxicol 26:165–176CrossRefGoogle Scholar
  27. Dafni A, Kevan P, Gross CL, Goka K (2010) Bombus terrrestris, pollinator, invasive and pest: an assessment of problems associated with its widespread introductions for commercial purposes. Appl Entomol Zool 45:101–113CrossRefGoogle Scholar
  28. De Araujo Freitas JC, González-Acereto JA, Marrufo-Olivares JC (2010) Apicultura práctica en la Península de Yucatán. Ediciones de la Universidad Autónoma de Yucatán, MéridaGoogle Scholar
  29. DeGrandi-Hoffman G, Chen Y (2015) Nutrition, immunity and viral infections in honey bees. Curr Opin Insect Sci 10:170–176PubMedCrossRefGoogle Scholar
  30. De la Rúa P, Jaffé R, dall’ Olio R, Muñoz I, Serrano J (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40:263–284CrossRefGoogle Scholar
  31. Decourtye A, Devillers J, Genecque E, Le Menach K, Budzinski H, Cluzeau S, Pham-Delègue MH (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48:242–250PubMedCrossRefGoogle Scholar
  32. Decourtye A, Mader E, Desneux N (2010) Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie 41:264–277CrossRefGoogle Scholar
  33. Del Sarto MCL, Oliveira EE, Guedes RNC, Campos LAO (2014) Differential insecticide susceptibility of the Neotropical stingless bee Melipona quadrifasciata and the honey bee Apis mellifera. Apidologie 45:626–636CrossRefGoogle Scholar
  34. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:57–80CrossRefGoogle Scholar
  35. Devillers J, Pham-Delègue M (2002) Honey bees: estimating the environmental impact of chemicals. Taylor and Francis, LondonCrossRefGoogle Scholar
  36. Dicks LV, Showler DA, Sutherland WJ (2010) Bee conservation: evidence for the effects of interventions. Pelagic Publishing, ExeterGoogle Scholar
  37. dos Santos CF, Acosta AL, Dorneles AL, dos Santos PDS, Blochtein B (2016) Queens become workers: pesticides alter caste differentiation in bees. Nat Scientific Rep 6:31605CrossRefGoogle Scholar
  38. Drescher W, Geusen-Pfister H (1991) Comparative testing of the oral toxicity of acephate, dimethoate and methomyl to honeybees, bumblebees and Syrphidae. Acta Hortic (288):133–136Google Scholar
  39. Ellis EA, Romero Montero JA, Hernández Gómez IU (2017) Deforestation processes in the state of Quintana Roo, México: the role of land use and community forestry. Trop Conserv Sci 10:1–12CrossRefGoogle Scholar
  40. Ferron P (1978) Biological control of insect pests by entomogenous fungi. Annu Rev Entomol 23:409–442CrossRefGoogle Scholar
  41. Fischer D, Moriarty T (2014) Pesticide risk assessment for pollinators. SETAC-Wiley Blackwell, OxfordCrossRefGoogle Scholar
  42. Flores-Guido JS, Vermont-Ricalde R (2011) La vegetación de la peninsula de Yucatán y su miel. In: Echazarreta C (ed) La miel y las abejas, el dulce convenio del Mayab. Secretaría de Educación del Estado de Yucatán, Yucatánpp, pp 33–58Google Scholar
  43. Freitas B, Imperatriz-Fonseca VL, Medina LM, Kleinter AMP, Galetto L, Nates-Parra G, Quezada-Euán JJG (2009) Diversity, threats and conservation of native bees in the Neotropics. Apidologie 40:332–346CrossRefGoogle Scholar
  44. García-Morales R, Moreno CE, Badano EI, Zuria I, Galindo-González J, Rojas-Martínez AE et al (2016) Deforestation impacts on bat functional diversity in tropical landscapes. PLoS One 11:e0166765PubMedPubMedCentralCrossRefGoogle Scholar
  45. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen K, Carvalheiro LG, Harder LD, Afik MO et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611PubMedCrossRefGoogle Scholar
  46. Gaston KJ, Smith RM, Thompson K, Warren PH (2005) Urban domestic gardens (II): experimental tests of methods for increasing biodiversity. Biodivers Conserv 14:395–413CrossRefGoogle Scholar
  47. Gatehouse JA (2011) Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects. Curr Protein Pept Sci 12:409–416PubMedCrossRefGoogle Scholar
  48. Gemmill-Herren B (ed) (2016) Pollination services to agriculture: sustaining and enhancing a key ecosystem service. FAO Routledge, Cornwall, UKGoogle Scholar
  49. Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J et al (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381PubMedCrossRefGoogle Scholar
  50. Gilpin M.E., Soulé M.E. (1986) Minimum viable populations: process of species extinction. En: Soulé M.E. (ed) Conservation biology: the science of scarcity and diversity. Sinauer, SunderlandGoogle Scholar
  51. Girolami V, Mazzon L, Squartini A, Mori N, Marzaro M, Di Bernardo A, Greatti M, Giorio C, Tapparo A (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J Econ Entomol 102:1808–1815PubMedCrossRefGoogle Scholar
  52. Gómez-Escobar E, Liedo P, Montoya P, Vandame R, Sánchez D (2014) Behavioral response of two species of stingless bees and the honey bee (Hymenoptera: Apidae) to GF-120. J Econ Entomol 107:1447–1449PubMedCrossRefGoogle Scholar
  53. González-Acereto JA (2008) Cría y manejo de abejas nativas sin aguijón en México. Ed. UADY-Secretaría Fomento Agropecuario y Pesquero Estado de Yucatán, MéxicoGoogle Scholar
  54. González-Acereto JA, Medina-Medina LA (1998) La respuesta defensiva de Scaptotrigona pectoraliscomo un contundente escudo de protección contra las incursiones de Lestrimelitta niitkib dirigidas a otras especies de abejas sin aguijón. In: Memorias VI Congreso Ibero-americano de apicultura. Mérida, Yucatán, pp 171–173Google Scholar
  55. González-Acereto JA, Quezada-Euán JJG, Medina-Medina LA (2006) New perspectives for stingless beekeeping in the Yucatan: results of an integral program to rescue and promote the activity. J Apic Res 45:234–239CrossRefGoogle Scholar
  56. Goulson D, Hughes WOH (2015) Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biol Conserv 191:10–19CrossRefGoogle Scholar
  57. Graves JB, Mackensen O (1965) Topical application and insecticide resistance studies on the honey bee. J Econ Entomol 58:990–993CrossRefGoogle Scholar
  58. Greco M, Spooner-Hart R, Holford P (2010) A stingless bee hive design for a broader climate range. J Apic Res 49:290–292CrossRefGoogle Scholar
  59. Greig-Smith PW, Thompson HM, Hardy AR, Bew MH, Findlay E (1994) Incidents of poisoning of honeybees (Apis mellifera) by agricultural pesticides in great Britain 1981–1991. Crop Prot 13:567–581CrossRefGoogle Scholar
  60. Grüter C, von Zuben LG, Segers FHID, Cunningham JP (2016) Warfare in stingless bees. Insect Soc 63:223–236CrossRefGoogle Scholar
  61. Guedes RNC, Smagghe G, Stark JD, Desneux N (2016) Pesticide induced stress in arthropod pests for optimized integrated pest management programs. Annu Rev Entomol 61:1–20CrossRefGoogle Scholar
  62. Guez D, Suchail S, Gauthier M, Maleszka R, Belzunces LP (2001) Contrasting effects of imidacloprid in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol Learn Mem 76:183–191PubMedCrossRefGoogle Scholar
  63. Guirguis GN, Brindley WA (1975) Carbaryl penetration into and metabolism by alfalfa leafcutting bees Megachile pacifica. J Agric Food Chem 23:274–279PubMedCrossRefGoogle Scholar
  64. Gutiérrez-Olivares M, Rodríguez-Maciel JC, Llanderal-Cázares C, Terán-Vargas AP, Lagunes-Tejeda Á, Díaz-Gómez O (2007) Estabilidad de la resistencia a neonicotinoides en Bemisia tabaci (Gennadius), biotipo B de San Luis Potosí, México. Agrociencia 41:913–920Google Scholar
  65. Guzmán-Novoa E, Hamiduzzaman MM, Anguiano-Baez R, Correa-Benítez A, Castañeda-Cervantes E, Arnold NI (2015) First detection of honey bee viruses in stingless bees in North America. J Apic Res 54:93–95CrossRefGoogle Scholar
  66. Habib H, Fazili KM (2007) Plant protease inhibitors: a defense strategy in plants. Biotechnol Mol Biol Rev 2:68–85Google Scholar
  67. Hadley AS, Betts MG (2012) The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biol Rev 87:526–544PubMedCrossRefGoogle Scholar
  68. Hanley AV, Huang ZY, Pett WL (2003) Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonella. J Apic Res 42:77–81CrossRefGoogle Scholar
  69. Hanski I (2011) Habitat loss, the dynamics of biodiversity and a perspective on conservation. Ambio 40:248–255PubMedPubMedCentralCrossRefGoogle Scholar
  70. Haughton AJ, Champion GT, Hawes C, Heard MS, Brooks DR, Bohan DA et al (2003) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops: II. Within-field epigeal and aerial arthropods. Phylos Trans R Soc Lond B 358:1863–1877CrossRefGoogle Scholar
  71. Hawes C, Haughton AJ, Osborne JL, Roy DB, Clark SJ, Perry JN et al (2003) Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the farm scale evaluations of genetically modified herbicide-tolerant crops. Phylos Trans R Soc Lond B 358:1899–1913CrossRefGoogle Scholar
  72. Hendriksma HP, Küting M, Härtel S, Näther A, Dohrmann AB, Steffan-Dewenter I et al (2013) Effect of stacked insecticidal cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria. PLoS One 8:e59589PubMedPubMedCentralCrossRefGoogle Scholar
  73. Herbert LT, Vázquez DE, Arenas A, Farina WM (2014) Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. J Exp Biol 217(Pt 19):3457–3464PubMedCrossRefGoogle Scholar
  74. Hérnandez JL, Frankie GW, Thorp RW (2009) Ecology of urban bees: a review of current knowledge and directions for future study. Cities Environ 2:1–15CrossRefGoogle Scholar
  75. Herrera y Herrera B. (2003) Análisis de la deforestación y dinámica territorial en México periodo 1980–2000. Universidad Autónoma de Chapingo, División de Ciencias Forestales, MéxicoGoogle Scholar
  76. Higes M, Martín-Hernández R, Garrido-Bailón E, González-Porto AV, García-Palencia P, Meana A et al (2009) Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environ Microbiol Rep 1:110–113PubMedCrossRefGoogle Scholar
  77. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeCrossRefGoogle Scholar
  78. Huang ZY, Hanley AV, Pett WL, Langenberg M, Duan JJ (2004) Field and semifield evaluation of impacts of transgenic canola pollen on survival and development of worker honey bees. J Econ Entomol 97:1517–1523PubMedCrossRefGoogle Scholar
  79. INEGI (2011) Carta de uso de suelo y vegetación Serie IV. Instituto Nacional de Estadística, Geografía e InformáticaGoogle Scholar
  80. Inglesfield C (1989) Pyrethroids and terrestrial non-target organisms. Pestic Sci 27:387–428CrossRefGoogle Scholar
  81. IPBES (2016) In: Potts SG et al (eds) Summary for policymakers of the assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services on pollinators, pollination and food production. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, p 36Google Scholar
  82. Iwasa T, Motoyama N, Ambrose JT, Roe MR (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot 23:371–378CrossRefGoogle Scholar
  83. Jacob CRO, Soares HM, Carvalho SM, Nocelli RCF, Malaspina O (2013) Acute toxicity of fipronil to the stingless bee Scaptotrigona postica Latreille. Bull Environ Contam Toxicol 90:69–72PubMedCrossRefGoogle Scholar
  84. Jacob CRO, Soares HM, Nocelli RC, Malaspina O (2015) Impact of fipronil on the mushroom bodies of the stingless bee Scaptotrigona postica. Pest Manag Sci 71:114–122PubMedCrossRefGoogle Scholar
  85. Johansen CA, Mayer DF (1990) Pollinator protection: a bee pesticide handbook. Wicwas Press, Kalamazoo, MichiganGoogle Scholar
  86. Johansen CA, Mayer DF, Eves J, Kious CW (1983) Pesticides and bees. Environ Entomol 12:1513–1518CrossRefGoogle Scholar
  87. Johnson RM (2015) Honey bee toxicology. Annu Rev Entomol 60:415–434PubMedCrossRefGoogle Scholar
  88. Kaspari M, O’Donell S (2003) High rates of army ant raids in the Neotropics and implications for ant colony and community structure. Evol Ecol Res 5:933–939Google Scholar
  89. Kerr W. E. (2002) Extincão de especies: a grande crise biológica do momento e como afeta os meliponinios. En: Anais do V encontro sobre abelhas, pp 4-9. Riberao Preto, São PauloGoogle Scholar
  90. Kiatoko N, Raina SK, Langevelde F (2016) A vertical compartmented hive design for reducing post-harvest colony losses in three Afrotropical stingless bee species (Apidae: Meliponinae). Int J Develop Res 06:9026–9034Google Scholar
  91. Koul O. (2004) Neem: a global prespective. En: Koul O, Wahab S (eds). Neem: today and in the new millennium. Kluwer Academic. DordrechtGoogle Scholar
  92. Kremen C, M’Gonigle LK (2015) Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J Appl Ecol 52:602–610CrossRefGoogle Scholar
  93. Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16812–16816PubMedCrossRefGoogle Scholar
  94. Leahey JP (1985) The pyrethroid insecticides. Taylor and Francis, LondonGoogle Scholar
  95. Landaverde-González P, Quezada-Euán JJG, Theodorou P, Murray TE, Husemann M, Ayala R, Moo-Valle JH, Vandame R, Paxton RJ (2017) Sweat bees on hot chillies: provision of pollination services by native bees in traditional slash-and-burn agriculture in the Yucatan peninsula of tropical Mexico. J Appl Ecol 54(6):1814–1824PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lasota JA, Dybas RA (1991) Avermectina, a novel class of compounds: implications for use in arthropod pest control. Annu Rev Entomol 36:91–117PubMedCrossRefGoogle Scholar
  97. Laurence WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116CrossRefGoogle Scholar
  98. Lima MAP, Pires CSS, Guedes RNC, Nakasu EYT, Lara MS, Fontes EMG, Sujii ER, Dias SC, Campos LAO (2011) Does Cry1Ac BT-toxin impair development of worker larvae of Africanized honey bee? J Appl Entomol 135:415–422CrossRefGoogle Scholar
  99. Lima MAP, Pires C, Guedes R, Campos L (2013) Lack of lethal and sublethal effects of Cry1Ac Bt-toxin on larvae of the stingless bee Trigona spinipes. Apidologie 44:21–28CrossRefGoogle Scholar
  100. Lima MA, Martins GF, Oliveira EE, Guedes RN (2016) Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges. J Comp Physiol A 202:733–747CrossRefGoogle Scholar
  101. Liu B, Xu CG, Yan FM, Gong RZ (2005) The impacts of the pollen of insect-resistant transgenic cotton on honeybees. Biodivers Conserv 14:3487–3496CrossRefGoogle Scholar
  102. Long EY, Krupke CH (2016) Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat Commun 7:11629PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lourenço CT, Carvalho SM, Malaspina O, Nocelli RCF (2012) Oral toxicity of Fipronil insecticide against the stingless bee Melipona scutellaris (Latreille, 1811). Bull Environ Contam Toxicol 89:921–924PubMedCrossRefGoogle Scholar
  104. Lóriga-Peña W, Fonte-Carballo L, Demdio-Lorenzo J (2014) Reporte de Aethina tumida Murray (Coleoptera, Nitidulidae) en colonias de la abeja sin aguijón Melipona beecheii Bennett de Matanzas y Mayabeque. Revista de Salud Animal 36, no.3 La Habana sep.-dicGoogle Scholar
  105. Lundin O, Rundlöf M, Smith HG, Fries I, Bommarco R (2015) Neonicotinoid insecticides and their impacts on bees: a systematic review of research approaches and identification of knowledge. PLoS One 10(8):e0136928PubMedPubMedCentralCrossRefGoogle Scholar
  106. Macías-Macías JO, Otero-Colina G (2004) Infestation of Pyemotes tritici (Acari: Pyemotidae) on Melipona colimana (Hymenoptera: Apidae: Meliponinae): a case study. Agrociencia 38:525–528Google Scholar
  107. Macieira OJD, Hebling-Beraldo MJA (1989) Laboratory toxicity of insecticides to workers of Trigona spinipes (F. 1793) (Hymenoptera: Apidae). J Apic Res 28:3–6CrossRefGoogle Scholar
  108. MacIvor JS, Packer L (2015) ‘Bee hotels’ as tools for native pollinator conservation: a premature verdict? PLoS One 10(3):e0122126PubMedPubMedCentralCrossRefGoogle Scholar
  109. Malaspina O, Stort AC (1983) Estudo da tolerância ao DDT e relação com outros caracteres em abelhas sociais. Revista Brasileira de Biología 43:327–330Google Scholar
  110. Malone LA, Pham-Delegue MH (2001) Effects of transgene products on honeybees (Apis mellifera) and bumble bees (Bombus sp.). Apidologie 32:287–304CrossRefGoogle Scholar
  111. Malone LA, Todd JH, Burgess EPJ, Christeller JT (2004) Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor. Apidologie 35:655–664CrossRefGoogle Scholar
  112. Martin S, Medina ML (2004) Africanized honeybees have unique tolerance to Varroa mites. Trends Parasitol 20:112–114PubMedCrossRefGoogle Scholar
  113. Martin SJ, Hardy J, Villalobos E, Martín-Hernández R, Nikaido S, Higes M (2013) Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically? Environ Microbiol Rep 5:506–510PubMedPubMedCentralCrossRefGoogle Scholar
  114. Medina LM, Hart AG, Ratnieks FLW (2009) Hygienic behavior in the stingless bees Melipona beecheii and Scaptotrigona pectoralis (Hymenoptera: Meliponini). Genet Mol Res 8:571–576PubMedCrossRefGoogle Scholar
  115. Medina-Medina L, Quezada-Euán JJG, Natsopoulou ME, Paxton RJ, Suraporn S (2012) Nosema in Mexican bees. Proceedings 5th European conference of Apidology, Halle der Salle 2012, p. 231Google Scholar
  116. Meled M, Thrasyvoulou A, Belzunces LP (1998) Seasonal variations in susceptibility of Apis mellifera to the synergistic action of prochloraz and deltamethrin. Environ Toxicol Chem 17:2517–2520CrossRefGoogle Scholar
  117. Meneses Calvillo L, Meléndez Ramírez V, Parra Tabla V, Navarro J (2010) Bee diversity in a fragmented landscape of the Mexican neotropic. J Insect Conserv 14:323–334CrossRefGoogle Scholar
  118. Menezes C, Coletto-Silva A, Gazeta GS, Kerr WE (2009) Infestation by Pyemotes tritici (Acari, Pyemotidae) causes death of stingless bee colonies (Hymenoptera: Meliponina). Genet Mol Res 8:630–634PubMedCrossRefGoogle Scholar
  119. Menezes C, Vollet-Neto A, Imperatriz-Fonseca VL (2012) A method for harvesting unfermented pollen from stingless bees (Hymenoptera, Apidae, Meliponini). J Apic Res 51:240–244CrossRefGoogle Scholar
  120. Miles M (2003) The effects of spinosad, a naturally derived insect control agent to the honeybee. B Insectol 56:119–124Google Scholar
  121. Moo-Valle H, Quezada-Euán JJG, Navarro J, Rodriguez-Carvajal LA (2000) Patterns of intranidal temperature fluctuation for Melipona beecheii colonies in natural nesting cavities. J Apic Res 39:3–7CrossRefGoogle Scholar
  122. Moo-Valle H, Quezada-Euan JJG, Wenseleers T (2001) The effect of food reserves on the production of sexual offspring in the stingless bee Melipona beecheii (Apidae, Meliponini). Insect Soc 48:398–403CrossRefGoogle Scholar
  123. Moo-Valle H, Quezada-Euán JJG, Canto J, González-Acereto JA (2004) Caste ontogeny and the distribution of reproductive cells on the combs of Melipona beecheii B. (Hymenoptera: Meliponini). Apidologie 35:587–594CrossRefGoogle Scholar
  124. Moraes SS, Bautista AR, Viana BF (2000) Avaliacão da toxicidade aguda (DL50 e CL50) de insecticidas para Scaptotrigona tubida (Smith) (Hymenoptera: Apidae): via de contacto. Anais da Sociedade Entomologica do Brasil 29:31–37CrossRefGoogle Scholar
  125. Morandin L. A. (2008) Genetically modified crops: effects on bees and pollination. James R.R. y Pitts-Singer T.L. (eds) Bee pollination in agricultural ecosystems, 203-218. Oxford University Press, NYGoogle Scholar
  126. Morandin LA, Winston ML (2005) Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol Appl 15:871–881CrossRefGoogle Scholar
  127. Morandin LA, Winston ML (2006) Pollinators provide economic incentive to preserve natural land in agroecosystems. Agricult Ecosyst Environ 116:289–292CrossRefGoogle Scholar
  128. Moreira MD, Picanço MC, Martins JC, Campos MR, Chediak M (2007) Uso de inseticidas botânicos no controle de pragas. In: Zambolim L, Lopes CA, Picanço MC, Costa H (eds) Manejo integrado de doenças e pragas em hortaliças. Embrapa, Brasília, pp 577–606Google Scholar
  129. Motzke I, Tscharntke T, Wanger TC, Klein AM (2015) Pollination mitigates cucumber yield gaps more than pesticide and fertilizer use in tropical smallholder gardens. J Appl Ecol 52:261–269CrossRefGoogle Scholar
  130. Mureithi JG (2008) Use plant pesticides to control crop pests. Kenya Agricultural Research Institute, KenyaGoogle Scholar
  131. Neumann P, Carreck NL (2010) Honey bee colony losses. J Apic Res 49:1–6CrossRefGoogle Scholar
  132. Norfolk O, Eichhor MP, Gilbert F (2016) Flowering ground vegetation benefits wild pollinators and fruit set of almond within arid smallholder orchards. Insect Conserv Diver 9:236–243CrossRefGoogle Scholar
  133. Nogueira-Neto P (1997) Vida e criação de abelhas indígenas sem ferrão. Editora Nogueirapis, São PauloGoogle Scholar
  134. Novais SMA, Nunes CA, Santos NB, D’Amico AR, Fernandes GW, Quesada M et al (2016) Effects of a possible pollinator crisis on food crop production in Brazil. PLoS One 11:e0167292PubMedPubMedCentralCrossRefGoogle Scholar
  135. Nunes-Silva P, Piot N, Meeus I, Blochtein B, Smagghe G (2016) Absence of Leishmaniinae and Nosematidae in stingless bees. Nat Sci Rep 6:32547CrossRefGoogle Scholar
  136. D’Oliveira APM, Venturieri GC, Contrera FAL (2013) Body size variation, abundance and control techniques of Pseudohypocera kerteszi, a plague of stingless bee keeping. B Insectol 66:203–208Google Scholar
  137. Otterstatter MC, Thomson JD (2008) Does pathogen spillover from commercially reared bumble bees threaten wild pollinators? PLoS One 3(7):e2771PubMedPubMedCentralCrossRefGoogle Scholar
  138. Paxton RJ, Klee J, Korpela S, Fries I (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38:558–565CrossRefGoogle Scholar
  139. Pellet J, Fleishman E, Dobkin DS, Gander A, Murphy DD (2007) An empirical evaluation of the area and isolation paradigm of metapopulation dynamics. Biol Conserv 136:483–495CrossRefGoogle Scholar
  140. Pernal SF, Baird DS, Birmingham AL, Higo HA, Slessor KN, Winston ML (2005) Semiochemicals influencing the host-finding behaviour of Varroa destructor. Exp Appl Acarol 37:1–26PubMedCrossRefGoogle Scholar
  141. Phalan B, Bertzky M, Butchart SHM, Donald PF, Scharlemann JPW, Stattersfield AJ, Balmford A (2013) Crop expansion and conservation priorities in tropical countries. PLoS One 8:e51759PubMedPubMedCentralCrossRefGoogle Scholar
  142. Plischuk S, Martín-Hernández R, Prieto L, Lucía M, Botías C, Meana A, Abrahamovich AH, Lange C, Higes M (2009) South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ Microbiol Rep 1:131–135PubMedCrossRefGoogle Scholar
  143. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts, and drivers. Trends Ecol Evol 25:345–353PubMedCrossRefGoogle Scholar
  144. Quezada-Euán JJG (1988) Estudio comparativo sobre la adaptación y desarrollo preliminar de colonias de Melipona beecheii B. en cuatro tipos de alojamiento en la zona centro del estado de Yucatán, México (Hymenoptera: Apídae). Tesis de Licenciatura, Universidad Autónoma de Yucatán, MéxicoGoogle Scholar
  145. Quezada-Euán JJG, González-Acereto JA (1994) A preliminary study on the development of colonies of Melipona beecheii in traditional and rational hives. J Apic Res 33:167–170CrossRefGoogle Scholar
  146. Quezada-Euán JJG, González-Acereto JA (2002) Notes on the nest habits and host range of cleptobiotic Lestrimelitta niitkib (Ayala 1999) (Hymenoptera: Meliponini) from the Yucatán eninsula. México Acta Zool Mex 86:245–249Google Scholar
  147. Quezada-Euán JJG, Ayala BR (2010) Abejas nativas de México, la importancia de su conservación. Ciencia y Desarrollo, Octubre 2010Google Scholar
  148. Quezada-Euán JJG, May-Itzá W d J, González-Acereto JA (2001) Meliponiculture in México: problems and perspective for development. Bee World 82:160–167CrossRefGoogle Scholar
  149. Quezada-Euán JJG, May-Itzá WdJ, Rincón M, De la Rúa P, Paxton RJ (2012) Genetic and phenotypic differentiation in endemic Scaptotrigona hellwegeri (Apidae: Meliponini): implications for the conservation of stingless bee populations in contrasting environments. Insect Conserv Diver 5:433–443CrossRefGoogle Scholar
  150. Quezada-Euán JJG, Ramírez J, Eltz T, Pokorny T, Medina R, Monsreal R (2013) Does sensory deception matter in eusocial obligate food robber systems? A study of Lestrimelitta and stingless bee hosts. Anim Behav 85:817–823CrossRefGoogle Scholar
  151. Ramos EM, Medina ML, May-Itzá W (2003) Atracción del vinagre y el ácido acético sobre Pseudohypocera kerteszi (Diptera: Phoridae) en Yucatán, México. In: Memorias III seminario Mesoamericano sobre abejas sin aguijón. Tapachula, Chiapas, Mexico, pp 27–30Google Scholar
  152. Rebelo KS, Ferreira AG, Carvalho-Zilse GA (2016) Physicochemical characteristics of pollen collected by Amazonian stingless bees. Ciência Rural 46:927–932CrossRefGoogle Scholar
  153. Rech RA, Schwade MA, Schwade MRM (2013) Abelhas-sem-ferrão amazônicas defendem meliponários contra saques de outras abelhas. Acta Amazon 43:389–394CrossRefGoogle Scholar
  154. Robinson GE (1981) Pseudohypocera kerteszi (Enderlein) (Diptera: Phoridae), a pest of the honeybee. Fla Entomol 64:456–457CrossRefGoogle Scholar
  155. Rickli M, Guerin PM, Diehl PA (1992) Palmitic acid released from honeybee worker larvae attracts the parasitic mite Varroa jacobsoni on a servosphere. Naturwissenschaften 79:320–322CrossRefGoogle Scholar
  156. Robroek BJM, Jong HD, Arce H, Sommeijer MJ (2003) The development of Pseudohypocera kerteszi (Diptera, Phoridae), a kleptoparasite in nests of stingless bees (Hymenoptera, Apidae) in central America. Proc Sec Experimental Appl Entomol Netherlands Entomol Soc 14:71–74Google Scholar
  157. Rodrigues CG, Krüger AP, Barbosa WF, Guedes RNC (2016) Leaf fertilizers affect survival and behavior of the neotropical stingless bee Friesella schrottkyi. J Econ Entomol 109:1001–1008CrossRefGoogle Scholar
  158. Romero MJ, Quezada-Euán JJG (2013) Pollinators in biofuel agricultural systems: the diversity and performance of bees (Hymenoptera: Apoidea) on Jatropha curcas in Mexico. Apidologie 44:419–429CrossRefGoogle Scholar
  159. Rosa AS, Teixeira JSG, Vollet-Neto A, Queiroz EP, Blochtein B, Pires CSS, Imperatriz-Fonseca VL (2016) Consumption of the neonicotinoid thiamethoxam during the larval stage affects the survival and development of the stingless bee, Scaptotrigona aff. depilis. Apidologie 47:729–738CrossRefGoogle Scholar
  160. Rosete-Vergés FA, Pérez-Damián JL, Villalobos-Delgado M, Navarro-Salas EN, Salinas-Chávez E, Remond-Noa R (2014) El avance de la deforestación en México 1976-2007. Madera y Bosques 20:21–35CrossRefGoogle Scholar
  161. Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  162. Rueda X (2010) Understanding deforestation in the southern Yucatán: insights from a sub-regional, multi-temporal analysis. Reg Environ Chang 10:175–189CrossRefGoogle Scholar
  163. SAGARPA (2008) Manual Operativo de la campaña contra la langosta, exploración, muestreo y control. https://www.gob.mx/cms/uploads/attachment/file/157270/Langosta.pdf
  164. Sagili RR, Pankiw T, Zhu-Salzman K (2005) Effect of soybean trypsin inhibitor on hypopharyngeal gland protein content, total midgut protease activity and survival of the honey bee (Apis mellifera L.). J Insect Physiol 51:953–957PubMedCrossRefGoogle Scholar
  165. Sakagami SF, Roubik DW, Zucchi R (1993) Ethology of the robber stingless bee, Lestrimelitta limao (Hymenoptera: Apidae). Sociobiology 21:237–277Google Scholar
  166. Sáncez-Bayo F, Goka K (2016) Impacts of pesticides on honey bees. In: Chambo ED (ed) Beekeeping and bee conservation—advances in research. InTech, Croatia. https://doi.org/10.5772/62487 CrossRefGoogle Scholar
  167. de Silva-Barros JR (2006) Genetic breeding on the bee Melipona scutellaris (Apidae, Meliponinae). Acta Amazon 36:115–120CrossRefGoogle Scholar
  168. Simpson RM, Burgess EPJ, Markwick NP (1997) Bacillus thuringiensis Delta-endotoxin binding sites in two lepidóptera. Wiseana spp. and Epiphyas postvittana. J Invertebr Pathol 70:136–142PubMedCrossRefGoogle Scholar
  169. Soares HM, Jacob CRO, Carvalho SM, Nocelli RCF, Malaspina O (2015) Toxicity of Imidacloprid to the stingless bee Scaptotrigona postica Latreille, 1807 (Hymenoptera: Apidae). Bull Environ Contam Toxicol 94:675–680PubMedCrossRefGoogle Scholar
  170. Sommeijer MJ (1999) Beekeeping with stingless bees: a new type of hive. Bee World 80:70–79CrossRefGoogle Scholar
  171. Soto-Vargas C (2014) Efectos de la inoculación de esporas de Nosema ceranae (Microsporidia) y detección del virus de alas deformes (DWV) en la abeja nativa sin aguijón Melipona beecheii (Hymenoptera: Meliponini) en Yucatán, México. Tesis de Maestría Universidad Autónoma de Yucatán, MéxicoGoogle Scholar
  172. Sparks TC, Crouse GD, Durst G (2001) Natural products as insecticides: the biology, biochemistry and quantitative structure activity relationships of spinosyns and spinosoids. Pest Manag Sci 57:896–905PubMedCrossRefGoogle Scholar
  173. Stoner KA, Eitzer BD (2012) Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS One 7:e39114PubMedPubMedCentralCrossRefGoogle Scholar
  174. Tasei JN (2002) Impact of agrochemicals on non-Apis bees. In: Devillers J, Pham-Delègue MH (eds) Honey bees: estimating the environmental impact of chemicals. Taylor & Francis, London, pp 101–131CrossRefGoogle Scholar
  175. Toledo-Hernández RA, Ruiz-Toledo J, Toledo J, Sánchez D (2016) Effect of three entomopathogenic fungi on three species of stingless bees (Hymenoptera: Apidae) under laboratory conditions. J Econ Entomol 109:1015–1019CrossRefGoogle Scholar
  176. Tomé HVV, Martins GF, Lima MAP, Campos LAO, Guedes RNC (2012) Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLoS One 7:e38406PubMedPubMedCentralCrossRefGoogle Scholar
  177. Tomé HVV, Barbosa WF, Martins GF, Guedes RNC (2015a) Spinosad in the native stingless bee Melipona quadrifasciata: regrettable non-target toxicity of a bioinsecticide. Chemosphere 124:103–109PubMedCrossRefGoogle Scholar
  178. Tomé HVV, Barbosa WF, Corrêa AS, Gontijo LM, Martins GF, Guedes RNC (2015b) Reduced-risk insecticides in Neotropical stingless bee species: impact on survival and activity. Ann Appl Biol 167:186–196CrossRefGoogle Scholar
  179. Ueira-Vieira C, Almeida LO, Almeida FC d, Amaral IMR, Brandemburgo MAM, Bonetti AM (2015) Scientific note on the first molecular detection of the acute bee paralysis virus in Brazilian stingless bees. Apidologie 46:628–630CrossRefGoogle Scholar
  180. Valdovinos-Núñez GR, Quezada-Euán JJG, Marrufo-Olivares J (2003) Efecto de la aplicación aérea de permetrina en Apis mellifera y abejas nativas sin aguijón (Hymenoptera: Apidae) en Yucatán, México. In: Memorias XVII Seminario Americano de Apicultura. Aguascalientes, México, pp 147–149Google Scholar
  181. Valdovinos-Nuñez GR, Quezada-Euán JJG, Ancona-Xiu P, Moo-Valle H, Carmona A, Ruiz-Sanchez E (2009) Comparative toxicity of pesticides to stingless bees (Hymenoptera: Apidae: Meliponini). J Econ Entomol 102:1737–1742PubMedCrossRefGoogle Scholar
  182. Vandame R, Meled M, Colin ME, Belzunces LP (1995) Alteration of the homing-flight in the honey bee Apis mellifera exposed to sublethal dose of deltamethrin. Environ Toxicol Chem 14:855–860CrossRefGoogle Scholar
  183. Vandame R, Palacio MA (2010) Preserved honey bee health in Latin America: a fragile equilibrium due to low-intensity agriculture and beekeeping? Apidologie 41:243–255CrossRefGoogle Scholar
  184. van der Sluijs JP, Simon-Delso N, Goulson D, Maxim L, Bonmatin JM, Belzunces LP (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ Sustain 5:293–305CrossRefGoogle Scholar
  185. van Engelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS (2009) Colony collapse disorder: a descriptive study. PLoS One 4:e6481CrossRefGoogle Scholar
  186. Venturieri GC, Oliveira PS, Vasconcelos MAM, Mattietto RA (2007) Caracterização, colheita, conservação e embalagem de méis de abelhas indígenas sem ferrão. Embrapa Amazonia OrientalGoogle Scholar
  187. Venturieri GC (2008) A criação de abelhas indígenas sem ferrão. Embrapa Amazonia OrientalGoogle Scholar
  188. Vidal O, López-García J, Rendón-Salinas E (2013) Trends in deforestation and forest degradation after a decade of monitoring in the monarch butterfly biosphere Reserve in Mexico. Conserv Biol 28:177–186PubMedCrossRefGoogle Scholar
  189. Villanueva-Gutiérrez R, Roubik DW, Colli-Ucán W, Güemez-Ricalde FJ, Buchmann SL (2013) A critical view of colony losses in managed Mayan honey-making bees (Apidae: Meliponini) in the heart of Zona Maya. J Kansas Entomol Soc 86:352–362CrossRefGoogle Scholar
  190. Villas-Bôas J (2012) Manual tecnológico Mel de abelhas sem ferrão. Brasilia, DF. Instituto Sociedade, População e Natureza (ISPN). In: Vit P, Pedro SRM, Roubik DW (eds) Pot-honey: a legacy of stingless bees. Springer, New YorkGoogle Scholar
  191. Vit P, Pedro SRM, Roubik DW (eds) (2013) Pot-honey: a legacy of stingless bees. Springer, New YorkGoogle Scholar
  192. Waliszewski SM, Caba M, Gómez-Arroyo S, Villalobos-Pietrini R, Martinez A, Valencia-Quintana R, Lozano-Flores ME, Regalado-Torres MA (2013) Niveles de plaguicidas organoclorados en habitantes de México. Rev Int Contam Ambiental 29:121–131Google Scholar
  193. Watkins JF II (1982) The army ants of Mexico (Hymenoptera: Formicidae: Ecitoninae). J Kansas Entomol Soc 55:197–247Google Scholar
  194. Winfree R, Fox JW, Williams NM, Reilly JR, Cariveau DP (2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol Lett 18:626–635PubMedCrossRefGoogle Scholar
  195. Wolff LF, Nava DE (2007) Ocorrência da mosca dos favos Pseudohypocera kerteszi (Diptera: Phoridae) em colméias de abelhas melíferas africanizadas no Rio Grande do Sul. Comunicado Técnico Embrapa Clima Temperado 178:1–4Google Scholar
  196. Xavier VM, Message D, Picanço MC, Bacci L, Silva GA, Benevenute JS (2010) Impact of botanical insecticides on indigenous stingless bees (Hymenoptera: Apidae). Sociobiology 56:713–726Google Scholar
  197. Xavier VM, Message D, Picanço MC, Chediak M, Santana Júnior PA, Ramos RS, Martins JC (2015) Acute toxicity and sublethal effects of botanical insecticides to honey bees. J Insect Sci 15:137CrossRefGoogle Scholar
  198. Yu SJ, Robinson FA, Nation JL (1984) Detoxication capacity in the honey bee, Apis mellifera L. Pest Biochem Physiol 22:360–368CrossRefGoogle Scholar
  199. Zayed A, Packer L (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Nat Acad Sci USA 102:10742–10746PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • José Javier G. Quezada-Euán
    • 1
  1. 1.Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y AgropecuariasUniversidad Autónoma de YucatánMéridaMexico

Personalised recommendations