Sex Determination and Caste Production

  • José Javier G. Quezada-Euán


Like all Hymenopterans, bees are holometabolous; they pass through a series of anatomical and physiological changes, from larva to adult, called metamorphosis (Savard et al. Genome Res 16:1334–1338, 2006; Fig. 4.1). In holometabolous insects, there are five main stages in the ontogenetic development: egg, larva, prepupa, pupa, and adult or imago. After the larva hatches, it experiences a rapid growth. Because the rigid outer cuticle prevents the expansion and growth of the body, the larva needs to shed it in a series of molts or ecdysis. The regulation of growth and the ecdysis is under the effect of various hormones, the most important being the juvenile hormone (JH), insulin, and ecdysone (Hartfelder et al. Apidologie 37:144–163, 2006; Nijhout and Callier. Annu Rev Entomol 60:141–156, 2015). During the larval phase of the bee, there are four molts and five stages (Dade. Anatomy and dissection of the honeybee. International Bee Research Association, 1985). There is also a fifth molt between the prepupal and pupal phases, plus a final one between the pupal and the imago phases, making a total of six molts throughout the ontogenetic development.


Ecdysis Length of development Juvenile hormone Heterochrony Complementary sex determination Parthenogenesis Diploid male Cytogenetics Massive feeding Trophic caste determination Tropho-genetic caste determination Monandry Coefficient of relatedness Supersister Worker reproduction Trophic egg Miniature queen Male parentage 


  1. Alves DA, Imperatriz-Fonseca VL, Francoy TM, Santos-Filho PS, Billen J, Wenseleers T (2011) Successful maintenance of a stingless bee population despite a severe genetic bottleneck. Conserv Genet 12:647–658CrossRefGoogle Scholar
  2. Alves DA, Imperatriz-Fonseca VL, Billen J, Wenseleers T (2012) Reproductive skew, male parentage and social parasitism in the facultatively polygyne eusocial bee Melipona bicolor. In: Anais do X Encontro sobre Abelhas, 2012. Riberão Preto, Brasil, p 111Google Scholar
  3. Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW (2003) The gene csd is the primary signal for sexual development in the honey bee and encodes a SR-type protein. Cell 114:419–429CrossRefGoogle Scholar
  4. Boleli IC, Paulino-Simões ZL, Gentile Bitondi MM (1999) Cell death in ovarioles causes permanent sterility in Frieseomelitta varia worker bees. J Morphol 242:271–282CrossRefPubMedGoogle Scholar
  5. Boomsma JJ (2007) Kin selection versus sexual selection: why the ends do not meet. Curr Biol 17:R673–R683CrossRefPubMedGoogle Scholar
  6. Borges AA, Ferreira-Caliman MJ, Nascimento FS, Campos LAO, Tavares MG (2012) Characterization of cuticular hydrocarbons of diploid and haploid males, workers and queens of the stingless bee Melipona quadrifasciata. Insect Soc 59:479–486CrossRefGoogle Scholar
  7. Bourke AFG, Ratnieks FLW (1999) Kin conflict over caste determination in social Hymenoptera. Behav Ecol Sociobiol 46:287–297CrossRefGoogle Scholar
  8. Cardoso-Júnior CAM, Fujimura PT, Santos-Júnior CD, Borges NA, Ueira-Vieira C, Hartfelder K, Goulart LR, Bonetti AM (2017) Epigenetic modifications and their relation to caste and sex determination and adult division of labor in the stingless bee Melipona scutellaris. Genet Mol Biol 40:61–68CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chinh TX, Gijs GJ, Meeuwsen FJAJ, Sommeijer MJ (2003) Patterns of male production in the stingless bee Melipona favosa (Apidae, Meliponini). Apidologie 34:161–170CrossRefGoogle Scholar
  10. Contel EPB, Kerr WE (1976) Origin of males in Melipona subnitida estimated from data of an isozymic polymorphic system. Genetica 46:271–279CrossRefGoogle Scholar
  11. Cruz-Landim C (2000) Ovarian development in Meliponine bees (Hymenoptera: Apidae): the effect of queen presence and food on worker ovary development and egg production. Genet Mol Biol 23:83–88CrossRefGoogle Scholar
  12. Dade HA (1985) Anatomy and dissection of the honeybee. International Bee Research Association, LondonGoogle Scholar
  13. Darchen R, Delage-Darchen B (1975) Contribution a l’étude d’une abeille du Mexique Melipona beecheii B. (Hymenoptére: Apidae). Le dèterminisme des caste chez les Mélipones. Apidologie 6:295–339CrossRefGoogle Scholar
  14. Drumond PM, Oldroyd BP, Osborne K (2000) Worker reproduction in Austroplebeia australis Friese (Hymenoptera, Apidae, Meliponini). Insect Soc 47:333–336CrossRefGoogle Scholar
  15. Elias-Neto M, Nascimento A, Bonetti A, Nascimento F, Mateus S et al (2014) Heterochrony of cuticular differentiation in eusocial corbiculate bees. Apidologie 45:397–408CrossRefGoogle Scholar
  16. Faustino CD, Silva-Matos EV, Mateus S, Zucchi R (2002) First record of emergency queen rearing in stingless bees (Hymenoptera, Apinae, Meliponini). Insect Soc 49:111–113CrossRefGoogle Scholar
  17. Ferreira NT Jr, Blochtein B, Serrão JE (2013) Seasonal production and spatial distribution of Melipona bicolor schencki (Apidae; Meliponini) castes in brood combs in southern Brazil. Apidologie 44:176–187CrossRefGoogle Scholar
  18. Francini IB, Gross MC, Nunes-Silva CG, Carvalho-Zilse AG (2011) Cytogenetic analysis of the Amazon stingless bee Melipona seminigra merrillae reveals different chromosome number for the genus. Sci Agric 68:592–593CrossRefGoogle Scholar
  19. Francini IB, Nunes-Silva CG, Carvalho-Zilse AG (2012) Diploid male production of two Amazonian Melipona bees (Hymenoptera: Apidae). Psyche. Article ID 484618Google Scholar
  20. Halcroft M, Haigh AM, Spooner-Hart R (2013) Ontogenic time and worker longevity in the Australian stingless bee, Austroplebeia australis. Insect Soc 60:259–264CrossRefGoogle Scholar
  21. Hartfelder K, Makert GR, Judice CC, Pereira GAG, Santana WC, Dalacqua R, Bitondi MMG (2006) Physiological and genetic mechanisms underlying caste development, reproduction and division of labor in stingless bees. Apidologie 37:144–163CrossRefGoogle Scholar
  22. Hasselmann M, Gempe T, Schiøtt M, Nunes-Silva CG, Otte M, Beye M (2008) Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees. Nature 454:519–522CrossRefPubMedGoogle Scholar
  23. Jarau S, van Veen JW, Twele R, Reichle C, Herrera-Gonzales E, Aguilar I, Francke W, Ayasse M (2010) Workers make the queens in Melipona bees: identification of geraniol as a caste determining compound from labial glands of nurse bees. J Chem Ecol 36:565–569CrossRefPubMedGoogle Scholar
  24. Jarošík V, Honekel A (2007) Sexual differences in insect development time in relation to sexual size dimorphism. In: Fairbairn DJ, Blanckenhorn WU, Székely T (eds) Sex, size and gender roles. Oxford University Press, OxfordGoogle Scholar
  25. Kerr WE (1948) Estudos sôbre o gênero Melipona. Annales Escola Superior Agricultura “Luiz de Queiroz” 5:181–276CrossRefGoogle Scholar
  26. Kerr WE (1950) Genetic determination of castes in the genus Melipona. Genetics 35:143–152PubMedPubMedCentralGoogle Scholar
  27. Kerr WE (1969) Some aspects of the evolution of social bees (Apidae). Evol Biol 3:119–175Google Scholar
  28. Kerr WE, Akahira Y, Camargo CA (1975) Sex determination in bees. IV. Genetic control of juvenile hormone production in Melipona quadrifasciata (Apidae). Genetics 81:749–756PubMedPubMedCentralGoogle Scholar
  29. Koedam D (1999) Production of queens, workers and males in the stingless bee Melipona favosa (Apidae: Meliponinae): patterns in time and space. Neth J Zool 49:289–302CrossRefGoogle Scholar
  30. Koedam D, Contrera FAL, Fidalgo AdO, Imperatriz-Fonesca VL (2005) How queen and workers share in male production in the stingless bee Melipona subnitida (Apidae, Meliponini). Insect Soc 52:114–121CrossRefGoogle Scholar
  31. Koedam D, Cepeda Aponte OI, Imperatriz-Fonseca VL (2007) Egg laying and oophagy by reproductive workers in the polygynous stingless bee Melipona bicolor (Hymenoptea, Meliponini). Apidologie 38:55–66CrossRefGoogle Scholar
  32. Lopes DM, Pompolo SdG, Oliveira Campos LAd, Tavares MG (2008) Cytogenetic characterization of Melipona rufiventris Lepeletier 1836 and Melipona mondury Smith 1863 (Hymenoptera, Apidae) by C banding and fluorochromes staining. Genet Mol Biol 31:49–52CrossRefGoogle Scholar
  33. Lopes DM, Fernandes A, Praça-Fontes MM, Werneck HA, Resende HC, Campos LAO (2011) Cytogenetics of three Melipona species (Hymenoptera, Apidae, Meliponini). Sociobiology 57:1–10Google Scholar
  34. Ma WJ, Kuijper B, de Boer JG, van de Zande L, Beukeboom LW, Wertheim B, Pannebakker BA (2013) Absence of complementary sex determination in the parasitoid wasp genus Asobara (Hymenoptera: Braconidae). PLoS One 8:e60459CrossRefPubMedPubMedCentralGoogle Scholar
  35. Machado MFPS, Contel EPB, Kerr WE (1984) Proportion of males sons-of-the-queen and sons-of-workers in Plebeia droryana (Hymenoptera, Apidae) estimated from data of an MDH isozymic polymorphic system. Genetica 65:193–198CrossRefGoogle Scholar
  36. Macías-Macias JO, Quezada-Euán JJG (2015) Stingless bees in a temperate climate: oviposition behavior and duration of ontogenic development stages in Melipona colimana (Hymenoptera: Meliponini). J Apic Res 54:255–259CrossRefGoogle Scholar
  37. Michener CD (1974) The social behavior of the bees: a comparative study. Belknap Press, Harvard University, CambridgeGoogle Scholar
  38. Moo-Valle H, Quezada-Euan JJG, Wenseleers T (2001) The effect of food reserves on the production of sexual offspring in the stingless bee Melipona beecheii (Apidae, Meliponini). Insect Soc 48:398–403CrossRefGoogle Scholar
  39. Moo-Valle H, Quezada-Euán JJG, Canto-Martín J, Gonzalez-Acereto JA (2004) Caste ontogeny and the distribution of reproductive cells on the combs of Melipona beecheii (Apidae: Meliponini). Apidologie 35:587–594CrossRefGoogle Scholar
  40. Morais MM, Nascimento FS, Pereira RA, Bego LR (2006) Colony internal conditions related to caste production in Melipona compressipes fasciculata (Apidae, Meliponini). Insect Soc 53:265–268CrossRefGoogle Scholar
  41. Nates-Parra G, Villa A, Vergara BC (1989) Ciclo de desarrollo de Trigona (Tetragonisca angustula) (development cycle of Trigona) Latreille 1811 (Hymenoptera, Trigonini). Acta Biol Colomb 1:91–98Google Scholar
  42. Nijhout HF, Callier V (2015) Developmental mechanisms of body size and wing-body scaling in insects. Annu Rev Entomol 60:141–156CrossRefPubMedGoogle Scholar
  43. Nogueira-Neto P (1997) Vida e criação de abelhas indígenas sem ferrão. Editora Nogueirapis, São PauloGoogle Scholar
  44. Nogueira-Neto P (2003) Endocruzamentos em colônias de Scaura longula Lepeletier (Hymenoptera, Apidae). In: Melo GAR, Alves dos Santos I (Eds) Apoidea neotropica: homenagem aos 90 anos de Jesus Santiago Moure, pp 189-190. UNESC, CriciúmaGoogle Scholar
  45. Nunes TM, Mateus S, Favaris AP, Amaral MFZJ, von Zuben LG, Clososki GC, Bento JMS, Oldroyd BP, Silva R, Zucchi R, Silva DB, Lopes NP (2014) Queen signals in a stingless bee: suppression of worker ovary activation and spatial distribution of active compounds. Sci Rep 4(1):7449CrossRefPubMedPubMedCentralGoogle Scholar
  46. Palmer KA, Oldroyd BP, Quezada-Euán JJG, Paxton RJ, May-Itzá WdJ (2002) Paternity frequency and maternity of males in some stingless bee species. Mol Ecol 11:2107–2113CrossRefPubMedGoogle Scholar
  47. Paxton RJ, Weiβschuh N, Engels W, Hartfelder K, Quezada-Euán JJG (1999) Not only single mating in stinglees bees. Naturwissenschaften 86:143–146CrossRefGoogle Scholar
  48. Paxton RJ, Ruhnke H, Shah M, Bego LR, Quezada-Euan JJG, Ratnieks FLW (2001) Social evolution in stingless bees: are the workers or is the queen in control of male production? In: II Seminario Mexicano sobre abejas sin aguijón. Universidad Autónoma de Yucatán, Mérida, México, pp 104–107Google Scholar
  49. Peters JM, Queller DC, Imperatriz-Fonseca VL, Roubik DW, Strassmann JE (1999) Mate number, kin selection and social conflicts in stingless bees and honeybees. Proc R Soc Lond Ser B 266:379–384CrossRefGoogle Scholar
  50. Quezada-Euán JJG, López-Velasco A, Pérez-Balam J, Moo-Valle H, Velazquez-Madrazo A, Paxton RJ (2011) Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insect Soc 58:31–38CrossRefGoogle Scholar
  51. Quezada-Euán JJG, May-Itzá WdJ, Medina LA, Paxton RJ (2013) Diploid males at urban congregations of the stingless bee Nannotrigona perilampoides (Hymenoptera: Meliponini). In: Memorias VIII Congreso Mesoamericano de Abejas Nativas. CINAT, Costa Rica, pp 345–350Google Scholar
  52. Ratnieks FLW (1988) Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. Am Nat 132:217–236CrossRefGoogle Scholar
  53. Ratnieks FLW (2001) Heirs and spares: caste conflict and excess queen production in Melipona bees. Behav Ecol Sociobiol 50:467–473CrossRefGoogle Scholar
  54. Ribeiro MdF, Wenseleers T, Filho PdSS, Alves DdA (2006) Miniature queens in stingless bees: basic facts and evolutionary hypotheses. Apidologie 37:191–206CrossRefGoogle Scholar
  55. Rocha MP, Pompolo SG (1998) Karyotypes and heterochromatin variation (C-bands) in Melipona species (Hymenoptera, Apidae, Meliponini) chromosomes. Genet Mol Biol 21:41–45CrossRefGoogle Scholar
  56. Sakagami SF (1982) Stingless bees. In: Hermann HR (ed) Social insects, vol III. Academic Press, London, pp 361–423CrossRefGoogle Scholar
  57. Salmah S, Inoue T, Sakagami SF (1996) Incubation period and post-emergence pigmentation in the Sumatran stinglees bee Trigona (Heterotrigona) itama (Apidae: Meliponinae). Jpn J Entomol 64:401–411Google Scholar
  58. Santos CF, Menezes C, Imperatriz-Fonseca VL, Arias MC (2013) A scientific note on diploid males in a reproductive event of a eusocial bee. Apidologie 44:519–521CrossRefGoogle Scholar
  59. Savard J, Tautz D, Richards S, Weinstock GM, Gibbs RA, Werren JH, Tettelin H, Lercher MJ (2006) Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. Genome Res 16:1334–1338CrossRefPubMedPubMedCentralGoogle Scholar
  60. da Silva DLN (1977) Estudos bionomicos em colônias mistas de Meliponinae. Boletim de Zoologia 2:7–106CrossRefGoogle Scholar
  61. Sommeijer MJ, Chinh TX, Meeuwsen FJAJ (1999) Behavioural data on the production of males by workers in the stingless bee Melipona favosa (Apidae, Meliponinae). Insect Soc 46:92–93CrossRefGoogle Scholar
  62. Sommeijer MJ, de Bruijn LLM, Meeuwsen FJAJ, Martens EP (2003) Natural patterns of caste and sex allocation in the stingless bees Melipona favosa and M. trinitatis related to worker behaviour. Insect Soc 50:38–44CrossRefGoogle Scholar
  63. Strassmann J (2001) The rarity of multiple mating by females in the social Hymenoptera. Insect Soc 48:1–13CrossRefGoogle Scholar
  64. Tavares M, Carvalho C, Soares F, Oliveira Campos L (2012) Genome size diversity in stingless bees (Hymenoptera: Apidae, Meliponini). Apidologie 43:731–736CrossRefGoogle Scholar
  65. Tavares MG, Lopes DM, Campos LAO (2017) An overview of cytogenetics of the tribe Meliponini (Hymenoptera: Apidae). Genetica 145:241–258CrossRefPubMedGoogle Scholar
  66. Teixeira LV (2012) Produção de rainhas em especies de abelhas sem ferrão com células de cria dispostas em cacho (Hymenoptera, Apidae, Meliponini). Tese Doctoral, Universidade Federal do Viçosa, Minas Gerais, BrasilGoogle Scholar
  67. Terada Y (1974) Contribução ao estudo da regulação social em Leurotrigona muelleri e Frieseomelitta varia. Tese Mestrado, Universidade de São Paulo, Riberão Preto, BrasilGoogle Scholar
  68. Tóth E, Strassmann EJ, Nogueira-Neto P, Imperatriz-Fonseca VL, Queller CD (2002) Male production in stingless bees: variable outcomes of queen–worker conflict. Mol Ecol 11:2661–2667CrossRefPubMedGoogle Scholar
  69. Tóth E, Strassmann EJ, Imperatriz-Fonseca VL, Queller CD (2003) Queens, not workers, produce the males in the stingless bee Schwarziana quadripunctata quadripunctata. Anim Behav 66:359–368CrossRefGoogle Scholar
  70. Velthuis HHW, Sommeijer MJ (1991) Roles of morphogenetic hormones in caste polymorphism in stingless bees. In: Gupta AP (ed) Morphogenetic hormones of arthropods. Rutgers University Press, New Brunswick, pp 346–383Google Scholar
  71. Velthuis HHW, Cortopassi-Laurino M, Pereboom Z, Imperatriz-Fonseca VL (2003) Speciation, development, and the conservative egg of the stingless bee genus Melipona. Proc Exper Appl Entomol NEV Amster 14:53–57Google Scholar
  72. Vollet-Neto A, dos Santos CF, Santiago LR, Alves DdA, Figueiredo JPd, Nanzer M, Arias MC, Imperatriz-Fonseca VL (2015) Diploid males of Scaptotrigona depilis are able to join reproductive aggregations (Apidae, Meliponini). J Hymenopt Res 45:125–130CrossRefGoogle Scholar
  73. Vollet-Neto A, Oliveira RC, Schillewaert S, Alves DA, Wenseleers T, Nascimento FS, Imperatriz-Fonseca VL, Ratnieks FLW (2017) Diploid male production results in queen death in the stingless bee Scaptotrigona depilis. J Chem Ecol 43:403–410CrossRefPubMedGoogle Scholar
  74. Wenseleers T, Ratnieks FLW (2004) Tragedy of the commons in Melipona bees. Proc R Soc Lon B 271(Suppl):S310–S312CrossRefGoogle Scholar
  75. Wenseleers T, Ratnieks FLW, Billen J (2003) Caste fate conflict in swarm-founding social Hymenoptera: an inclusive fitness analysis. J Evol Biol 16:647–658CrossRefPubMedGoogle Scholar
  76. Wenseleers T, Hart AG, Ratnieks FLW, Quezada-Euán JJG (2004) Queen execution and caste conflict in the stingless bee Melipona beecheii. Ethology 110:725–736CrossRefGoogle Scholar
  77. Wenseleers T, Ratnieks FLW, Ribeiro MF, Alves DA, Imperatriz-Fonseca VL (2005) Working-class royalty: bees beat the caste system. Biol Lett 1:125–128CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wille A (1983) Biology of the stingless bees. Annu Rev Entomol 28:41–64CrossRefGoogle Scholar
  79. Winston ML (1987) The biology of the honey bee. Harvard University Press, CambridgeGoogle Scholar
  80. Zayed A (2009) Bee genetics and conservation. Apidologie 40:237–262CrossRefGoogle Scholar
  81. Zayed A, Packer L (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Natl Acad Sci USA 102:10742–10746CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • José Javier G. Quezada-Euán
    • 1
  1. 1.Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y AgropecuariasUniversidad Autónoma de YucatánMéridaMexico

Personalised recommendations