An Alternative Potential Natural Genetic Resource: Sea Buckthorn [Elaeagnus rhamnoides (syn.: Hippophae rhamnoides)]

  • Wudeneh Letchamo
  • Munir Ozturk
  • Volkan Altay
  • Mirza Musayev
  • Nazim A. MamedovEmail author
  • Khalid Rehman Hakeem


Elaeagnus rhamnoides (syn.: Hippophae rhamnoides), also known as sea buckthorn, is a member of the Elaeagnaceae family. Every part of the plant is used as medicine, nutritional supplement, fuel and fence, and therefore sea buckthorn is popularly known as ‘Gold Mine’, ‘Wonder Plant’ or ‘Golden Bush’. This plant contains a series of chemical compounds, possessing various biological as well as therapeutic activities including hepato-protective, antitumoural and immunumodulatory properties. The fruits of sea buckthorn have been used as a raw material for foods and medicines for decades in various regions of the world including China, Russia, North America and Europe. Berry products of sea buckthorn are nowadays becoming popular foods in the United States, Canada, Finland, Germany, and some other European countries. During the last decade sea buckthorn has attracted special attention and became an important subject for domestication in many countries as it is one of the most interesting plants for human use. However, the commercial cultivation and exploitation of sea buckthorn berries using its secondary compounds such as flavonoids, vitamins and carotenes for high quality food products or even to produce basic products such as juices is differently developed in Europe, Asia and Russia/NIS. Industrial cultivation, medicinal use, and processing of sea buckthorn berries need to be aligned according to different purposes, e.g. direct consumption, processing, juice or oil production, juice yield or composition of active compounds, seed oil or pulp oil, compounds to be enriched, etc. The medicinal and/or nutritional components of berries will provide very cheap raw material for national and international pharmaceutical industries, benefiting humanity worldwide. That’s why, sea buckthorn is one among the R&D subjects of the pharmaceutical industries all over the world. For this purpose, this chapter highlights the latest information about the sea buckthorn with an emphasis on its morphological features, taxonomic status, ecological and ecophysiological characteristics, biomorphological characteristics of some cultivars, phytochemical contents, traditional uses, potential medicinal characteristics, and other potential economical uses.


Biochemical composition Ecophysiology Healthy benefits Multipurpose use Nutritional value Sea buckthorn Sea buckthorn cultivars Sustainability Traditional use 


  1. Abdel-Salam AM (2010) Functional foods: hopefulness to good health. Am J Food Technol 5:86–99CrossRefGoogle Scholar
  2. Aksenova NA, Dolgacheva VS (2003) Sea buckthorn culture in the botanical garden of the Moscow State University. In: Singh V (ed) Seabuckthorn (Hippophae L.) a multipurpose wonder plant, vol 1. Indus Publishing Company, New Delhi, pp 165–169Google Scholar
  3. Anderberg AA, Anderberg AL (1997) Den virtuella floran. Electronic publication:
  4. Antonelli M, Raffo A, Paoletti F (2005) Biochemical changes during ripening of seabuckthorn (Hippophae rhamnoides) fruits. In: Singh V (ed) Seabuckthorn (Hippophae L.) a multipurpose wonder plant, vol 2. Daya Publishing House, New Delhi, pp 285–312Google Scholar
  5. Avdeyev VI (1983) Novaya taxonomiya roda oblepikha: Hippophae L. Izvestiya Akademii Nauk Tadzhikskoy SSR, Otdeleniye Biologicheskih Nauk 93:11–17Google Scholar
  6. Bal LM, Meda V, Naik SN, Satya S (2011) Sea buckthorn berries: a potential source of valuable nutrients for neutraceuticals and cosmoceuticals. Food Res Int 44:1718–1727CrossRefGoogle Scholar
  7. Ballabh B, Chaurasia OP (2007) Traditional medicinal plants of cold desert Ladakh-used in treatment of cold, cough and fever. J Ethnopharmacol 112:341–349PubMedCrossRefGoogle Scholar
  8. Bartish IV, Jeppsson N, Nybom H (1999) Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by RAPD markers. Mol Ecol 8:791–802CrossRefGoogle Scholar
  9. Bartish IV, Jeppsson N, Bartish GI (2000) Inter- and intraspecific genetic variation in Hippophae (Elaeagnaceae) investigated by RAPD markers. Plant Syst Evol 225(1-4):85–101CrossRefGoogle Scholar
  10. Bartish IV, Jeppsson N, Nybom H, Swenson U (2002) Phylogeny of Hippophae (Elaeagnaceae) inferred from parsimony analysis of chloroplast dna and morphology. Systematic Botany 27(1):41–54Google Scholar
  11. Bartish IV, Kadereit JW, Comes HP (2006) Late Quaternary history of Hippophae rhamnoides L. (Elaeagnaceae) inferred from chalcone synthase intron (Chsi) sequences and chloroplast DNA variation. Mol Ecol 15(13):4065–4083PubMedCrossRefGoogle Scholar
  12. Beveridge T, Li TSC, Oamah BD, Smith A (1999) Sea buckthorn products: manufacture and composition. J Agric Food Chem 47:3480–3488PubMedCrossRefGoogle Scholar
  13. Binggeli P, Eakin M, Macfadyen A, Power J, McConnell J (1992) Impact of the alien sea buckthorn (Hippophae rhamnoides L.) on sand dune ecosystems in Ireland. In: Carter et al. (eds) Coastal dunes: geomorphology, ecology and management for conservation. In: Proceedings of the third European dune congress, Galway, Ireland. Balkema, Rotterdam, pp 325–337Google Scholar
  14. Boivin C, Rousseau H, Rioux J-A, Bergeron D (2007) The effect of irrigation, cultivars and mulch types on nutrient availability and vegetative growth of seabuckthorn (Hippophae rhamnoides L.). In: Proceedings of the 3rd International Seabuckthorn Association Conference Loews Le Concorde Hotel, Quebec City, Quebec, Canada, August 12–16, pp 203–212Google Scholar
  15. Bukshtynov AD, Trofimov TT, Ermakov BS, Koykov NT, Eliseev IP, Avdeev VI, Faustov VV, Shapiro DK (1985) Seabuckthorn. Forestry, Moscow, p.183Google Scholar
  16. Cakilcioglu U, Khatun S, Turkoglu I, Hayta S (2011) Ethnopharmacological survey of medicinal plants in Maden (Elazig-Turkey). J Ethnopharmacol 137:469–486PubMedCrossRefGoogle Scholar
  17. Cakir A (2004) Essential oil and fatty acid composition of the fruits of Hippophae rhamnoides L. (Sea Buckthorn) and Myrtus communis L. from Turkey. Biochem Syst Ecol 32:809–816CrossRefGoogle Scholar
  18. Cenkowski S, Yakimishen R, Przybylski R, Muir WE (2006) Quality of extracted sea buckthorn seed and pulp oil. Canadian Biosystems Engineering 48(3):9–16Google Scholar
  19. Chaurasia OP, Ahmed Z (2005) Challenging nutrition at heights. Food Nutr 3:22–24Google Scholar
  20. Chen YM, Chen YQ (2003) Mechanism of hydrology and soil and water conservation effect of artificial sea buckthorn forest in Loess Hilly Region. Acta Botanica Boreali Occidentalia Sinica 23:1357–1361Google Scholar
  21. Chen W, Su X, Zhang H, Sun K, Ma R, Chen X (2010) High genetic differentiation of Hippophaerhamnoides ssp. yunnanensis (Elaeagnaceae), a plant endemic to the Qinghai-Tibet Plateau. Biochem Genet 48:565–576PubMedCrossRefGoogle Scholar
  22. Chengjiang R, Daiqiong L (2002) Function and benefit of Hippophae rhamnoides L. improving eco-environment of Loess Plateau of China. In: 12th ISCO Conferencee, Beijing, China, pp 210–214Google Scholar
  23. Dharmananda S (2004) Sea buckthorn. Institute of Traditional Medicine, Portland, Oregon. Google Scholar
  24. Dhyani D, Maikhuri RK, Rao KS, Kumar L, Purohit VK, Sundriyal M, Saxena KG (2007) Basic nutritional attributes of Hippophae rhamnoides (Seabuckthorn) populations from Uttarakhand Himalaya, India. Curr Sci 92(8):1148–1152Google Scholar
  25. Dwivedi SK, Singh R, Ahmed Z (2006) The seabuckthorn. Field Research Laboratory (DRDO), Leh-LadakhGoogle Scholar
  26. Eliseev IP, Mazaeva EY, Malena TV, Ivashin II (1989) Formovae raznoobrazie nekotorykh populyatsii Hippophae rhamnoides L. v Kirgizskoi SSR. Rast Resursy 20:502–509Google Scholar
  27. Er J (2003) The important role of seabuckthorn development in improving ecological environment of West China. The global Seabuckthorn Research and Development No. 2. vol 1, pp 1–2 (in Chinese)Google Scholar
  28. Ercisli S, Orhan E, Ozdemir O, Sengul M (2007) The genotypic effects on the chemical composition and antioxidant activity of sea buckthorn (Hippophae rhamnoides L.) berries grown in Turkey. Sci Hortic 115:27–33CrossRefGoogle Scholar
  29. EU project EAN-SEABUCK (2005–2007) Contract No. COOP-CT-2005-016106 “EAN-SEABUCK: Establishment of European-Asian Network for the development of strategies to enhance the sustainable use of Sea Buckthorn”.
  30. Eydelnant AS (1998) Sea buckthorn in medicine, cosmetics, cooking. Crown Press, Moscow, p 137Google Scholar
  31. Fan J, Ding X, Gu W (2007) Radical-scavenging proanthocyanidins from sea buckthorn seed. Food Chem 102:168–177CrossRefGoogle Scholar
  32. Fefelov VA, Smirnova NG (2003) Influence of different factors on biochemical composition of sea-buckthorn (Hippophae rhamnoides L.) fruits. Cong. Int. Sea-buckthorn Association, ISA, Berlin, GermanyGoogle Scholar
  33. Fischer M, Albrecht HJ (2003) The sea buckthorn collection in Germany—an example for the necessity of keeping and sustainable using of genetic resources. In: Proceeding of 1st congress of the international seabuckthorn association, sea buckthorn—a resource of health, a challenge to modern technology on September 14–18, 2003: selected papers. Berlin, Germany, pp 12–19Google Scholar
  34. Goel HC, Prasad J, Singh S, Sagar RK, Kumar IP, Sinha AK (2002) Radioprotection by a herbal preparation of Hippophae rhamnoides, RH-3, against whole body lethal irradiation in mice. Phytomedicine 9:15–25PubMedCrossRefGoogle Scholar
  35. Guliyev VB, Gul M, Yildirim A (2004) Hippophae rhamnoides L.: chromatographic methods to determine chemical composition, use in traditional medicine and pharmacological effects. J Chromatogr B 812:291–307CrossRefGoogle Scholar
  36. Guo W-H, Li B, Huang YM, Zhao HX, Zhang XS (2003) Effects of different water stresses on eco-physiological characteristics of Hippophae rhamnoides seedling. Acta Botanica Sinica 45(10):1238–1244Google Scholar
  37. Hermoso M, Wahling A, Gimmler G, Demidova N, Xia J (2007) EAN-SEABUCK: a successful story of international seabuckthorn cooperation. In: Proceedings of the 3rd international seabuckthorn association conference Loews Le Concorde Hotel, Quebec City, Quebec, Canada, August 12–16, pp 223–227Google Scholar
  38. Hodgkin SE (1984) Scrub encroachment and its effects on soil fertility on Newborough Warren, Anglesey, Wales. Biol Conserv 29:99–119CrossRefGoogle Scholar
  39. Hou XL, Bai GS, Cao QY (1995) Contrast study on soil infiltration capacity and anti scourability in Robinia pseudoacacia, Caragana microphylla and Hippophae rhamnoides woodlands. J Soil Water Conserv 9:90–95Google Scholar
  40. Hyvönen J (1996) On phylogeny of Hippophae (Elaeagnaceae). Nordic Journal of Botany 16:51–62CrossRefGoogle Scholar
  41. Ianev E, Radev S, Balutsov M, Klouchek E, Popov A (1995) The effect of an extract of sea buckthorn (Hippophae rhamnoides L.) on the healing of experimental skin wound in rats. Khirurgiia (Sofiia) 48:30–33Google Scholar
  42. Imamaliyev GN, Musayev MK (2002) Agroecological characteristics of sea buckthorn (Hippophae rhamnoides L.) in Azerbaijan. In: Int. sci. practical conf. environmental aspects of the intensification of agricultural production. Penza, vol 1, pp 31–33Google Scholar
  43. Isermann M, Diekmann M, Heemann S (2007) Effects of the expansion by Hippophae rhamnoides on plant species richness in coastal dunes. Appl Veg Sci 10:33–42CrossRefGoogle Scholar
  44. Jalakas M, Kelt K, Karp K (2003) The yield and fruit quality of sea buckthorn (Hippophae rhamnoides L.) after rejuvenation cutting. Agronomy Research 1:31–36Google Scholar
  45. Jike Z, Xiaoming Z (1992) Progress of study on Frankia in nodules of Seabuckthorn. Hippophae 2:4–10Google Scholar
  46. Kallio H, Yang BR, Peippo P (2002) Effects of different origins and harvesting time on vitamin C, tocopherols, and tocotrienols in sea buckthorn (Hippophae rhamnoides) berries. J Agric Food Chem 50:6136–6142.PubMedCrossRefGoogle Scholar
  47. Kalinina IP (2005) The role of research inheritance of I.V. Michurin in development of Siberian horticulture. Vestnik Russian Acad Agric Sci 6:42–45Google Scholar
  48. Kanayama Y, Ohkawa W, Kanahama K (2006) Oblepikha: a new fruit with high contents of unsaturated fatty acids and vitamins A/C/E (2). Foods Food Ingredients J Jpn 211:421–545Google Scholar
  49. Kanayama Y, Kato K, Stobdan T, Galitsyn GG, Kochetov AV, Kanahama K (2012) Research progress on the medicinal and nutritional properties of sea buckthorn (Hippophae rhamnoides): A review. J Hortic Sci Biotech 87(3):203–210CrossRefGoogle Scholar
  50. Korovina MA, Fefelov VA (2005) Biochemical variations in seabuckthorn (Hippophae rhamnoides L.) growing in different regions of CIS states. In: Singh V (ed) Seabuckthorn (Hippophae L.) a multipurpose wonder plant, vol 2. Daya Publishing House, New Delhi, pp 108–132Google Scholar
  51. Kumar V (2003) Seabuckthorn—a potential bioresource in Himalayas. Invent Intell 38:159–167Google Scholar
  52. Kumar R, Kumar GP, Chaurasia OP, Singh B (2011) Phytochemical and Pharmacological profile of seabuckthorn oil: a rewiev. Res J Med Plant 5(5):491–499CrossRefGoogle Scholar
  53. Letchamo W, Molnar T, Funk CR (2007) Eco-genetic variations in biological activities of sea berry (Hippophae rhamnoides). Acta Horticulturae (756):229–243Google Scholar
  54. Li TSC (1999) Sea buckthorn: new crop opportunity. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, VA, pp 335–337Google Scholar
  55. Li M (2004) The function of protection bio-diversity of sea buckthorn in semiarid region. Hippophae 17:17–22Google Scholar
  56. Li TSC (2007) Next generation of new botanical seabuckthorn (Hippophae rhamnoides L.). In: McKenzie et al. (eds) Proceedings of the 3rd international seabuckthorn association conference Loews Le Concorde Hotel, Quebec City, Quebec, Canada, August 12–16, pp 1–2Google Scholar
  57. Li TSC, Schroeder WR (1996) Sea Buckthorn (Hippophae rhamnoides L.): multipurpose plant. HortTechnology 6(4):370–380Google Scholar
  58. Li M, Zhang L (2008) Utilization of Seabuckthorn resources for the development of Chinese rural economy. In: Singh V (ed) Seabuckthorn (Hippophae L.): a multipurpose wonder plant, vol 3. Daya Publishing House, New Delhi, India, pp 511–518Google Scholar
  59. Li C, Xu G, Zang R, Korpelainen H, Berninger F (2007) Sex-related differences in leaf morphological and physiological responses in Hippophae rhamnoides along an altitudinal gradient. Tree Physiol 27:399–406PubMedCrossRefGoogle Scholar
  60. Lian YS, Chen XL (1993) Study on the germplasmresource of the genus Hippophae L. In: International symposium on sea buckthorn (Hippophae rhamnoides L.), Novosibirsk, Russia, pp 157161Google Scholar
  61. Lian YS, Chen XL, Sun K (1995) New discoveries of the genus Hippophae L. In: Proceedings of international workshop on seabuckthorn. China Science and Technology Press, Beijing, pp 60–66Google Scholar
  62. Lian YS, Chen XL, Lian H (1998) Systematic classification of the genus Hippophae L. Seabuckthorn Res 1:13–23Google Scholar
  63. Lian YS, Lu SG, Xue SK, Chen XL (2000) Biology and chemistry of the genus Hippophae. Gansu Science Technology Press, Lanzhou, pp 1–226Google Scholar
  64. Lian YS, Chen XL, Sun K, Ma R (2003) A new subspecies of Hippophae (Elaeagnaceae) from China. Novon 13(2):200–202CrossRefGoogle Scholar
  65. Lu R (1992) Sea buckthorn: a multipurpose plant species for fragile mountains. ICIMOD Occasional Paper No. 20. Kathmandu, Nepal, p 26Google Scholar
  66. Mingyu X, Sun X, Tong W (1994) Medical research and development on sea buckthorn. Hippophae 7:32–39Google Scholar
  67. Mingyu X, Xiaoxuan S, Jinhua C (2001) The medicinal research on seabuckthorn. In: International workshop on seabuckthorn, 18–21 Feb 2001Google Scholar
  68. Mironov VA (1989) Chemical composition of Hippophae rhamnoides of different populations of the USSR. In: Proceedings of international symposium on sea buckthorn (H. rhamnoides L.), Xian, China, 19–23 Oct, pp 67–70Google Scholar
  69. Mohammad Salahat A, Farah SH, Al-Degs SY (2002) Importance of HDL cholesterol as predictor of coronary heart disease in Jordan population: the role of HDL-subfractions in reserve cholesterol transport. Pak J Biol Sci 5:1189–1191CrossRefGoogle Scholar
  70. Musayev MK (2013) Agro-ecological characteristics of sea buckthorn (Hippophae rhamnoides L.) in Azerbaijan. J Crop Weed 9(11):114–120Google Scholar
  71. Musayev MK, Akparov ZI (2012) Biological and economical characteristics of seabuckthorn varieties of Azerbaijan. Proc. 1st int. symp. wild relatives of subtropical and temperate fruit and nut crops. Davis, California, USA, March 19–23. Acta Horticulturae 948:67–70CrossRefGoogle Scholar
  72. Musayev MK, Imamaliyev GN (2000) Breeding of sea-buckthorn (Hippophae rhamnoides L.). In: Proc. Inst. Genet. and Selection, Baku, pp 274–278Google Scholar
  73. Novruzov EN (2005) Carotenoids and Stearines of seabuckthorn (Hippophae rhamnoides L.) In: Singh V (ed) Seabuckthorn (Hippophae L.) a multipurpose wonder plant, vol 2. Daya Publishing House, New Delhi, India, pp 177–196Google Scholar
  74. Ohkawa W, Kanayama Y, Chiba E, Tiitinen K, Kanahama K (2009) Changes in sugar, titratable acidity, and ascorbic acid content during fruit development in sea buckthorn (Hippophae rhamnoides L.) J Jpn Soc Horticult Sci 78:288–293CrossRefGoogle Scholar
  75. Olorunfemi OB (2010) Nutraceutical effects of fermented whey on the intestinal and immune system of healty albino rats. Res J Microbiol 5:858–862CrossRefGoogle Scholar
  76. Olteanu Z, Zamfirache MM, Surdu S, Oprica L, Truta E, Rati IV, Manzu C, Milian G, Rosu C (2007) Total lipids and carotenoids content in different biotypes of Hippophaë rhamnoides L., harvested in Romania. In: Proceedings of the 3rd international seabuckthorn association conference Loews Le Concorde Hotel, Quebec City, Quebec, Canada, 12–16 Aug, pp 153–158Google Scholar
  77. Oprica L, Olteanu Z, Zamfirache MM, Truta E, Surdu S, Rati IV, Manzu C, Milian G, Rosu C (2007) The content of soluble proteins in Hippophae rhamnoides ssp. carpathica varieties harvested from different regions of Romania. In: Proceedings of the 3rd international seabuckthorn association conference Loews Le Concorde Hotel, Quebec City, Quebec, Canada, 12–16 Aug, pp 73–79.Google Scholar
  78. Packham JR, Willis AJ (1997) Ecology of dunes, salt marsh, and shingle. Chapman & Hall, LondonGoogle Scholar
  79. Parimelazhagan T, Chaurasia OP, Ahmed Z (2005) Seabuckthorn: oil with promising medicinal values. Curr Sci 88:8–9Google Scholar
  80. Pearson MC, Rogers JA (1958) Hippophaë rhamnoides L. List Br Vasc Pl 252:501–513Google Scholar
  81. Privalov GF, Solonenko LP, Skuridin GM (2003) Mutagenesis breeding of seabuckthorn (Hippophae rhamnoides L.) In: Singh V (ed) Seabuckthorn (Hippophae L.): a multipurpose wonder plant, vol I. Indus Publishing Company, New Delhi, India, pp 194–210Google Scholar
  82. Rafalowski R, Zofia Z, Andrzej K, Zbigniew B (2008) Fatty acid composition tocopherols and α-carotene content in polish commercial vegetable oils. Pak J Nutr 7:278–282CrossRefGoogle Scholar
  83. Ranjith A, Kumar KS, Venugopalan VV, Arumughan C, Sawhney RC, Singh V (2006) Fatty acids, tocols, and carotenoids in pulp oil of three sea buckthorn species (Hippophae rhamnoides, H. salicifolia, and H. tibetana) grown in the Indian Himalayas. JAOCS 83(4):359–364CrossRefGoogle Scholar
  84. Reynaud C (1976) Palaeoecological significance of Hippophae rhamnoides, with an example of the protocratic vegetational stage in NE Fennoscandia. Boreas 5:9–24CrossRefGoogle Scholar
  85. Rice J (2006) The global market for ingredients. International food ingredients, 02/03Google Scholar
  86. Richards EG, Burningham H (2011) Hippophae rhamnoides on a coastal dune system: a thorny issue? J Coast Conserv 15:73–85CrossRefGoogle Scholar
  87. Riitta P, Yoshii H, Kallio H, Yang B, Forssell P (2002) Encapsulation of sea buckthorn kernel oil in modified starches. JAOCS 79:219–223CrossRefGoogle Scholar
  88. Rodríguez-Meizoso I, Marin FR, Herrero M, Senorans FJ, Reglero G, Cifuentes A, Ibanez E (2006) Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. J Pharm Biomed Anal 41:1560–1565PubMedCrossRefGoogle Scholar
  89. Rongsen L (2007) The correlation between seabuckthorn berry quality and altitudes of its growing location. In: Proceedings of the 3rd international seabuckthorn association conference Loews Le Concorde Hotel, Quebec City, Quebec, Canada, 12–16 Aug, pp 5–8Google Scholar
  90. Rousi A (1971) The genus Hippophae¨ L. A taxonomic study. Annales Botanici Fennici 8:177–227Google Scholar
  91. Ruan CJ, Li D (2002) Community characteristics of Hippophae rhamnoides forest and water and nutrient condition of the woodland in Loess Hilly region. Chin J Appl Ecol 13:1061–1064Google Scholar
  92. Ruan CJ, Xie QL, Li DQ (2000) Function and benefit of sea buckthorn improving eco environment of Loess Plateau. J Environ Protect 5:30–31Google Scholar
  93. Ryazanova O (1997) Sea buckthorn on recultivated lands. J Hort Viticulture 2:8–9Google Scholar
  94. Sabir SM, Maqsood H, Hayat I, Khan MQ, Khaliq A (2005) Elemental and nutritional analysis of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) berries of pakistani origin. J Med Food 8(4):518–522PubMedCrossRefGoogle Scholar
  95. Savelyev N, Makarov V, Vlazneva L, Cherenkova T (2007) Biologically active substances in seabuckthorn and production of functional foods. In: Proceedings of the 3rd international seabuckthorn association conference Loews Le Concorde Hotel, Quebec City, Quebec, Canada, 12–16 Aug, pp 127–129Google Scholar
  96. Schroeder WR, Yao Y (1995) Sea buckthorn: a promising multipurpose crop for Saskatchewan; PFRA Shelterbelt Center, Supplementary Report. pp 95–102Google Scholar
  97. Seglina D, Ruisa S, Krasnova I, Viskelis P, Lanauskas J (2007) Biochemical characterization of seabuckthorn (Hippophae rhamnoides L.) grown in Latvia. In: Proceedings of the 3rd international seabuckthorn association conference Loews Le Concorde Hotel, Quebec City, Quebec, Canada, 12–16 Aug, pp 159–168Google Scholar
  98. Servettaz C (1908) Monographie der Elaeagnaceae. Beihefte zum Botanischen Centralblatt 25:18Google Scholar
  99. Sheng HM, An LZ, Chen T, Xu SJ, Liu GX, Zheng XL, Pu LL, Liu YJ, Lian YS (2006) Analysis of the genetic diversity and relationships among and within species of Hippophae (Elaeagnaceae) based on RAPD markers. Plant Syst Evol 260:25–37CrossRefGoogle Scholar
  100. Shipulina LD, Tolkachev ON, Krepkova LV, Bortnikova VV, Shkarenkov AA (2005) Anti-viral anti-microbial and toxicological studies on Seabuckthorn (Hippophae rhamnoides). In: Singh V (ed) Seabuckthorn (Hippophae L.): a multipurpose wonder plant, vol 2. Daya Publishing House, New Delhi, India, pp 471–483Google Scholar
  101. Shuunguang L, Chaode M (2001) Direction, focus and contents of Seabuckthorn research and development in China—facing the new century. International Workshop on Seabuckthorn, 18–21 February 2001Google Scholar
  102. Singh V, Mörsel J-T (2005) Development and commercialization of seabuckthorn: a German experience. In: Singh V (ed) Seabuckthorn (Hippophae L.) a multipurpose wonder plant, vol 2. Daya Publishing House, New Delhi, India, pp 576–584Google Scholar
  103. Singh V, Singh B, Awasthi CP (1997) Studies on distribution, taxonomy and nutritional values of sea buckthorn growing in dry temperate Himalayas. In: Lu S et al (eds) Worldwide research & development of sea buckthorn. China Science & Technology Press, Beijing, pp 52–59Google Scholar
  104. Skogen A (1972) The Hippophae rhamnoides alluvial forest at Leimora, Central Norway, a phytosociological and ecological study. Det K Nor Vidensk Selsk 4:1–115Google Scholar
  105. Small E, Catling PM, Li TSC (1992) Blossoming treasures of biodiversity: sea buckthorn (Hippophae rhamnoides)-an ancient crop with modern virtues. Biodiversity 3(2):25–27CrossRefGoogle Scholar
  106. Stobdan T, Angchuk D, Singh SB (2008) Seabuckthorn: an emerging storehouse for researchers in India. Curr Sci 94(10):1236–1237Google Scholar
  107. Stobdan T, Chaurasia OP, Korekar G, Mundra S, Ali Z, Yadav A, Singh SB (2010) Attributes of seabuckthorn (Hippophae rhamnoides L.) to meet nutritional requirements in high altitude. Def Sci J 60(2):226–230CrossRefGoogle Scholar
  108. Stobdan T, Targais K, Lamo D, Srivastava RB (2013a) Judicious use of natural resources: a case study of traditional uses of seabuckthorn (Hippophae rhamnoides L.) in Trans-Himalayan Ladakh, India. Natl Acad Sci Lett (Nov–Dec) 36(6):609–613CrossRefGoogle Scholar
  109. Stobdan T, Korekar G, Srivastava RB (2013b) Nutritional attributes and health application of seabuckthorn (Hippophae rhamnoides L.): a review. Curr Nutr Food Sci 9:151–165CrossRefGoogle Scholar
  110. Suleyman H, Demirezer LO, Buyukkokuroglu ME, Akcay MF, Gepdiremen A, Banoglu ZN, Gocer F (2001) Antiulcerogenic effect of Hippophae rhamnoides L. Phytother Res 15:625–627PubMedCrossRefGoogle Scholar
  111. Sun K, Chen X, Ma R, Li C, Wang Q, Ge S (2002) Molecular phylogenetics of Hippophae L. (Elaeagnaceae) based on the internal transcribed spacer (ITS) sequences of nrDNA. Plant Syst Evol 235:121–134CrossRefGoogle Scholar
  112. Sun K, Chen W, Ma RJ, Chen XL, Li A, Ge S (2006) Genetic variation in Hippophae rhamnoides ssp. sinensis (Elaeagnaceae) revealed by RAPD markers. Biochem Genet 44(5/6):186–197PubMedCrossRefGoogle Scholar
  113. Suryakumar G, Gupta A (2011) Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.) J Ethnopharmacol 138:268–278PubMedCrossRefGoogle Scholar
  114. Swenson U, Bartish IV (2002) Taxonomic synopsis of Hippophae (Elaeagnaceae). Nordic J Bot 22(3):369–374CrossRefGoogle Scholar
  115. Tabassum B, Javed MT, Abbas Alia NA, Pervaiz S, Almas K (1998) Determination of serum vitamin-A, α-carotene, total proteins and fractions in women within 24 hours of delivery from different age and socioeconomic groups. Pak J Biol Sci 1:29–32CrossRefGoogle Scholar
  116. Thomas SCL, Thomas HJB (2003) Sea Buckthorn (Hippophae rhamnoides L.): production and utilization. National Research Council, Canada, Ottawa, p 133Google Scholar
  117. Univer T, Jalakas M, Kelt K (2004) Chemical composition of the fruits of sea buckthorn and how it changes during the harvest season in Estonia. J Fruit Ornament Plant Res 12:339–343Google Scholar
  118. Upadhyay NK, Kumar MSY, Gupta A (2010) Antioxidant, cytoprotective and antibacterial effects of Sea buckthorn (Hippophae rhamnoides L.) leaves. Food Chem Toxicol 48:3443–3448PubMedCrossRefGoogle Scholar
  119. Waehling A (2007) Assessment report on the seabuckthorn market in Europe, Russia, NIS-Countries and China Results of a market investigation in 2005. In: Proceedings of the 3rd international seabuckthorn association conference Loews Le Concorde Hotel, Quebec City, Quebec, Canada, 12–16 Aug, pp 193–202Google Scholar
  120. Wani TA, Wani SM, Ahmad M, Ahmad M, Gani A, Masoodi FA (2016) Bioactive profile, health benefits and safety evaluation of sea buckthorn (Hippophae rhamnoides L.): a review. Cogent Food Agric 2:1128519Google Scholar
  121. Wei TX, Yu XX, Zhu JZ (1998) Litter interception of forests in southwestern Shanxi province. J Beijing Forest Univ 20:1–6Google Scholar
  122. Wohlgemuth T, Boschi K, Longatti P (2005) Swiss Web Flora. Electronic publication.
  123. Wu F (1991) Seabuckthorn medicine in Russia. Seabuckthorn 4:38–41Google Scholar
  124. Xing J, Yang B, Dong Y, Wang B, Wang J, Kallio H (2002) Effects of sea buckthorn (Hippophae rhamnoides L.) seed and pulp oils on experimental models of gastric ulcer in rats. Fitoterapia 73:644–650PubMedCrossRefGoogle Scholar
  125. Yang B (2007) Product development and marketing of seabuckthorn. In: Proceedings of the 3rd international seabuckthorn association conference Loews Le Concorde Hotel, Quebec City, Quebec, Canada, 12–16Aug, pp 171–176Google Scholar
  126. Yang B, Kallio HP (2001) Fatty acid composition of lipids in sea buckthorn (Hippophae rhamnoides L.) berries of different origins. J Agric Food Chem 49:1939–1947PubMedCrossRefGoogle Scholar
  127. Yang Y, Yao Y, Xu G, Li C (2005) Growth and physiological responses to drought and elevated ultraviolet-B in two contrasting populations of Hippophae rhamnoides. Physiol Plant 124:431–440CrossRefGoogle Scholar
  128. Yang Y, Yao Y, Zhang X (2010) Comparison of growth and physiological responses to severe drought between two altitudinal Hippophae rhamnoides populations. Silva Fennica 44(4):603–614CrossRefGoogle Scholar
  129. Yao Y, Tigerstedt PMA (1993) Isozyme studies of genetic diversity and evolution in Hippophae. Genet Resour Crop Evol 40:153–164CrossRefGoogle Scholar
  130. Yao Y, Tigerstedt PMA (1994) Genetic diversity in Hippophae and its use in plant breeding. Euphytica 77:165–169CrossRefGoogle Scholar
  131. Yao Y, Tigerstedt PMA (1995) Geographical variation of growth rhythm, height and hardiness, and their relations in Hippophae rhamnoides. J Am Soc Hortic Sci 121:691–698Google Scholar
  132. Yuzhen Z, Fuheng W (1997) Seabuckthorn flavonoids and their medical value. Hippophae 10:39–41Google Scholar
  133. Zadernowski R, Naczk M, Czaplicki S, Rubinskiene M, Szakiewicz M (2005) Composition of phenolic acids in sea buckthorn (Hippophae rhamnoides L.) berries. J Am Oil Chem Soc 82:175–179CrossRefGoogle Scholar
  134. Zamfirache MM, Olteanu Z, Truta E, Surdu S, Oprica L, Rati IV, Manzu C, Milian G, Rosu C, Zamfirache T (2007) Foliar assimilating pigments in different Hippophaë rhamnoides L. varieties in the Romanian flora. In: Proceedings of the 3rd international seabuckthorn association conference Loews Le Concorde Hotel, Quebec City, Quebec, Canada, 12–16 Aug, pp 67–72Google Scholar
  135. Zeb A (2004a) Important therapeutic uses of sea buckthorn (Hippophae): a review. J Biol Sci 4:687–693CrossRefGoogle Scholar
  136. Zeb A (2004b) Chemical and nutritional constituents of sea buckthorn juice. Pak J Nutr 3:99–106CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wudeneh Letchamo
    • 1
  • Munir Ozturk
    • 2
  • Volkan Altay
    • 3
  • Mirza Musayev
    • 4
  • Nazim A. Mamedov
    • 5
    Email author
  • Khalid Rehman Hakeem
    • 6
  1. 1.Camelina International Co./ Herba MedicaNew BrunswickUSA
  2. 2.Centre for Environmental Studies, Botany DepartmentEge UniversityIzmirTurkey
  3. 3.Biology Department, Faculty of Science & ArtsMustafa Kemal UniversityAntakyaTurkey
  4. 4.Genetic Resources Institute, Azerbaijan National Academy of SciencesBakuAzerbaijan
  5. 5.Stockbridge School of AgricultureUniversity of Massachusetts at AmherstAmherstUSA
  6. 6.Department of Biological Sciences, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations