Advertisement

Multiphase Flows with Moving Interfaces and Contact Line—Constitutive Modeling

  • Kolumban HutterEmail author
  • Yongqi Wang
Chapter
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)

Abstract

A thermodynamic analysis, based on the müllerLiu thermodynamic approach of the second law of thermodynamics, is performed to derive the expressions of the constitutive variables in thermodynamic equilibrium. Non-equilibrium responses are proposed by use of a quasi-linear theory. A set of constitutive equations for the surface and line constitutive quantities is postulated. Some restrictions for the emerging material parameters are derived by means of the minimum conditions of the surface and line entropy productions in thermodynamic equilibrium. Hence, a complete continuum mechanical model to describe excess surface and line physical quantities is formulated. Technically, in the exploitation of the entropy inequality, all field equations are incorporated with Lagrange parameters into the entropy inequality. In the process of its exploitation, the Lagrange parameter of the energy balance is identified with the inverse of the absolute temperature in the bulk, the phase interface, and in the three-phase contact line. Interesting results, among many others, are the Gibbs relations, which are formally the same in the bulk, on the interface and along the contact line, with the pressure in the compressible bulk replaced by the surface tension on the interface and by the line tension along the contact line, see (28.45), (28.87).

Keywords

Multiphase flows Entropy principle Constitutive equations Phase interface Three-phase contact line 

References

  1. 1.
    Alts, T., Hutter, K.: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water. Part II: thermodynamics. J. Non-Equil. Thermodyn. 13, 250–289 (1988)Google Scholar
  2. 2.
    Alts, T., Hutter, K.: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water. Part III: Thermostatics and consequences. J. Non-Equil. Thermodyn. 13, 301–329 (1988)Google Scholar
  3. 3.
    Baehr, H.D.: Thermodynamik. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bargmann, S., Steinmann, P.: Classical results for a non-classical theory: remarks on thermodynamic relations in Green-Naghdi thermo-hyperelasticity. Continuum Mech. Thermodyn. 19(1–2), 59–66 (2007)CrossRefGoogle Scholar
  5. 5.
    Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat condition and viscosity. Arch. Rat. Mech. Anal. 13, 167–178 (1963)CrossRefGoogle Scholar
  6. 6.
    Ehlers, W.: Poröse Medien, ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Universität-Gesamthochschule Essen, Habilitation (1989)Google Scholar
  7. 7.
    Fang, C., Wang, Y., Hutter, K.: Shearing flows of a dry granular material - hypoplastic constitutive theory and numerical simulations. Int. J. Numer. Anal. Meth. Geomech. 30, 1409–1437 (2006)CrossRefGoogle Scholar
  8. 8.
    Fang, C., Wang, Y., Hutter, K.: A thermo-mechanical continuum theory with internal length for cohesionless granular materials. Part I: a class of constitutive models. Continuum Mech. Thermodyn. 17(8), 545–576 (2006)CrossRefGoogle Scholar
  9. 9.
    Fang, C., Wang, Y., Hutter, K.: A thermo-mechanical continuum theory with internal length for cohesionless granular materials. Part II: non-equilibrium postulates and numerical simulations of simple shear, plane Poiseuille and gravity driven problems. Continuum Mech. Thermodyn. 17(8), 577–607 (2006)CrossRefGoogle Scholar
  10. 10.
    Fang, C., Wang, Y., Hutter, K.: A unified evolution equation for the Cauchy stress tensor of an isotropic elasto-visco-plastic material. I. On thermodynamically consistent evolution. Continuum Mech. Thermodyn. 19, 423–440 (2008)CrossRefGoogle Scholar
  11. 11.
    Grad, H.: Principles of the Kinetic Theory. Handbuch der Physik XII. Springer, Berlin (1958)Google Scholar
  12. 12.
    Hutter, K.: The foundation of thermodynamics, its basic postulates and implications. Acta Mechanica 27, 1–54 (1977)CrossRefGoogle Scholar
  13. 13.
    Hutter, K.: The physics of ice-water phase change surfaces. In: Kosinski, W., Murdoch, A.I. (eds.): Modelling Macroscopic Phenomena at Liquid Boundaries. CISM Course 318, Springer, Vienna (1991)Google Scholar
  14. 14.
    Hutter, K., Jöhnk, K., Svendsen, B.: On interfacial transition conditions in two-phase gravity flow. Z angew. Math. Phys. 45, 746–762 (1994)CrossRefGoogle Scholar
  15. 15.
    Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling. Springer, Berlin (2004)CrossRefGoogle Scholar
  16. 16.
    Hutter, K., Wang, Y.: Phenomenological thermodynamics and entropy principles. In: Greven, A., Keller, G., Warnecke, G. (eds.) Entropy. Princeton University Press, Princeton, pp. 57–78 (2003). ISBN 0-691-11338-6Google Scholar
  17. 17.
    Hutter, K., Wang, Y.: Fluid and Thermodynamics. Volume 1: Basic Fluid Mechanics, P. 639. Springer, Berlin (2016). ISBN: 978-3319336329Google Scholar
  18. 18.
    Hutter, K., Wang, Y.: Fluid and Thermodynamics. Volume II: Advanced Fluid Mechanics and Thermodynamic Fundamentals, p. 633. Springer, Berlin (2016). ISBN: 978-3-319-33635-0Google Scholar
  19. 19.
    Kirchner, N.: Thermodynamically consistent modelling of abrasive granular materials, Part I: Non-equilibrium theory. Proc. R. Soc. Lond. A 458, 2153–2176 (2002)CrossRefGoogle Scholar
  20. 20.
    Kirchner, N., Teufel, A.: Thermodynamically consistent modelling of abrasive granular materials Part II: Thermodynamic equilibrium and applications to steady shear flows. Proc. R. Soc. Lond. A 458, 3053–3077 (2002)CrossRefGoogle Scholar
  21. 21.
    Liu, I.-Shih: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Rat. Mech. Anal. 46, 131–148 (1972)Google Scholar
  22. 22.
    Liu, I-Shih and Müller, I.: Thermodynamics of mixtures of fluids. In: Truesdell, C. (ed): Rational thermodynamics, pp. 264–285. New York, Springer (1984)Google Scholar
  23. 23.
    Luca, I., Fang, C., Hutter, K.: A thermodynamic model of turbulent motions in a granular material. Continuum Mech. Thermodyn. 16, 363–390 (2004)CrossRefGoogle Scholar
  24. 24.
    Müller, I.: On the entropy inequality. Arch. Rat. Mech. Anal. 26, 118–141 (1967)CrossRefGoogle Scholar
  25. 25.
    Müller, I.: Die Kältefunktion, eine universelle Funktion in der Thermodynamik viskoser wärmeleitender Flüssigkeiten. Arch. Rat. Mech. Anal. 40, 1–36 (1971)CrossRefGoogle Scholar
  26. 26.
    Müller, I.: Thermodynamik - Grundlagen der Materialtheorie. Bertelsman Universitätsverlag, Düsseldorf (1972)Google Scholar
  27. 27.
    Müller, I.: Thermodynamics. Pitman, London (1985)Google Scholar
  28. 28.
    Sadiki, A., Bauer, W., Hutter, K.: Thermodynamically consistent coefficient calibration in nonlinear and anisotropic closure models for turbulence. Continuum Mech. Thermodyn. 12, 131–149 (2000)CrossRefGoogle Scholar
  29. 29.
    Spurk, J.H.: Fluid Mechanics. Springer, Berlin (1997)CrossRefGoogle Scholar
  30. 30.
    Svendsen, B., Hutter, K.: On the thermodymics of a mixture of isotropic materials with constraints. Int. J. Eng. Sci. 33, 2021–2054 (1995)CrossRefGoogle Scholar
  31. 31.
    Svendsen, B., Hutter, K., Laloui, L.: Constitutive models for granular materials including quasi-static frictional behaviour: toward a thermodynamic theory of plasticity. Continuum Mech. Thermodyn. 4, 263–275 (1999)CrossRefGoogle Scholar
  32. 32.
    Svendsen, B., Chanda, T.: Continuum thermodynamic formulation of models for electromagnetic thermoinelastic solids with application in electromagnetic metal forming. Continuum Mech. Thermodyn. 17, 1–16 (2005)CrossRefGoogle Scholar
  33. 33.
    Wang, C.C.: A new representation theorem for isotropic functions: An answer to Professor G. F. Smith’s criticism of my papers on representations for isotropic functions. Part I. Arch. Rat. Mech. Anal. 36(3), 166–197 (1970)Google Scholar
  34. 34.
    Wang, C.C.: A new representation theorem for isotropic functions: An answer to Professor G.F. Smith’s criticism of my papers on representations for isotropic functions. Part II. Arch. Rat. Mech. Anal. 36(3), 198–223 (1970)Google Scholar
  35. 35.
    Wang, Y., Hutter, K.: Comparison of two entropy principles and their applications in granular flows with/without fluid. Arch. Mech. 51, 605–632 (1999)Google Scholar
  36. 36.
    Wang, Y., Hutter, K.: Shearing flows in a Goodman-Cowin type granular material - theory and numerical results. Part. Sci. Tech. 17, 97–124 (1999)CrossRefGoogle Scholar
  37. 37.
    Wang, Y., Hutter, K.: A constitutive model for multi-phase mixtures and its application in shearing flows of saturated soil-fluid mixtures. Granul. Matter 1, 163–181 (1999)CrossRefGoogle Scholar
  38. 38.
    Wang, Y., Hutter, K.: A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheologica Acta 38, 214–223 (1999)CrossRefGoogle Scholar
  39. 39.
    Wang, Y., Oberlack, M.: A thermodynamic model of multiphase flows with moving interfaces and contact line. Continuum Mech. Thermodyn. 23, 409–433 (2011)CrossRefGoogle Scholar
  40. 40.
    Wang, Y., Oberlack, M., Zieleniewicz, A.: Constitutive modeling of multiphase flows with moving interfaces and contact line. Continuum Mech. Thermodyn. 25, 705–725 (2013)CrossRefGoogle Scholar
  41. 41.
    Wilmanski, K.: Continuum Thermodynamics, Part 1: Foundations. World Scientific Pub Co. (2009)Google Scholar
  42. 42.
    Wood, L.C.: The bogus axioms of continuum mechanics. Bull. Math. Appl. 17, 98–102 (1981)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.c/o Laboratory of Hydraulics, Hydrology, GlaciologyETH ZürichZürichSwitzerland
  2. 2.Department of Mechanical EngineeringDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations