Advertisement

Thermodynamics of Class I and Class II Classical Mixtures

  • Kolumban HutterEmail author
  • Yongqi Wang
Chapter
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)

Abstract

In this chapter, two versions of mixtures of Boltzmann-type continua are subject to thermodynamic analyses for viscous fluids. Of the two forms of the Second Law that were introduced—the ClausiusDuhem inequality applied to open systems and the entropy principle of Müller—the latter principle is employed in the process of deduction of the implications revealed by the particular Second Law. The goal in the two parts of the chapter is to derive the ultimate forms of the governing equations, which describe the thermomechanical response of the postulated constitutive behavior without violation of the Second Law of thermodynamics. The versions of mixtures which are analyzed are
  • Diffusion of tracers in a classical fluid: The conceptual prerequisites of this type of processes are mixtures of class I, in which the major component is the bearer fluid within which a finite number of constituents with minute concentration are suspended or solved in the bearer fluid. The motion of these tracers is described by the difference of the constituent velocities relative to the barycentric velocity of the mixture as a whole. For the dissipative constitutive class applied to the entropy principle, the existence of the Kelvin temperature is proved, the form of the Gibbs relation could be determined as could the conditions of thermodynamic equilibrium and the constitutive behavior in its vicinity.

  • Thermodynamics of a saturated mixture of nonpolar solid–fluid constituents: Conceptually these systems are treated as classical mixtures of class II, in which the individual motions of the constituents are separately accounted for by their own balances of mass and momentum, but subject to a common temperature. The analysis of the dissipation inequality is performed subject to the assumption of constant true density of all constituents and the supposition of saturation of the mixture. The constitutive relations are postulated for a mixture of viscous heat conducting fluids. The explanation of the entropy principle is structurally analogous to that of the class I-diffusion theory, but is analytically much more complex. Unfortunately, intermediate ad hoc assumptions must be introduced to deduce concrete results that will lead to fully identifiable fluid dynamical equations, which are in conformity with the Second Law for the presented type of mixtures.

Keywords

Diffusion of classical fluid mixtures Müller-type thermodynamics Thermodynamic equilibrium and nonequilibrium Classical saturated solid–fluid mixtures 

References

  1. 1.
    Albers, B., Wilmanski, K.: Continuum Thermodynamics, Part II: Applications and Examples, p. 464. World Scientific, New Jersey (2015). ISBN 978-981-4412-37-7Google Scholar
  2. 2.
    Bauer, G.: Thermodynamische Betrachtung einer gesättigten Mischung. Doctoral dissertation, Department of Mechanics, Darmstadt University of Technology, 126p. (1997)Google Scholar
  3. 3.
    Biot, M.A.: General theory of three dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefGoogle Scholar
  4. 4.
    Biot, M.A.: Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27, 459–467 (1956)CrossRefGoogle Scholar
  5. 5.
    Bluhm, J.: A Consistent Model for Saturated and Empty Porous Media. Forschungsberichte aus dem Fachbereich Bauwesen, vol. 74, p. 133p. Universität GH Essen, Essen (1997)Google Scholar
  6. 6.
    Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)CrossRefGoogle Scholar
  7. 7.
    Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–763 (1982)CrossRefGoogle Scholar
  8. 8.
    Bowen, R.M., Wang, C.-C.: Introduction to Vectors and Tensors. Vol. 1: Linear and Multillinear Algebra, pp. 1–296; Vol. 2: Vector and Tensor Analysis, pp. 297–520. Plenum Press (1976)Google Scholar
  9. 9.
    de Boer, R.: Theory of Porous Media. Highlights in the Historical Development and Current State, 618p. Springer, Berlin (2000)Google Scholar
  10. 10.
    Drew, D.A., Passman, S.L.: Theory of Multicomponent Fluids. Applied Mathematical Sciences, vol. 135l, 308p. Springer, New York (1998)Google Scholar
  11. 11.
    Ehlers, W.: Poröse Medien – Ein kontinuumsmechanisches Model auf der Basis der Mischungstheorie. Forschungsberichte aus dem Fachbereich Bauwesen, vol. 47, 322p. Universität GH Essen, Essen (1989)Google Scholar
  12. 12.
    Ehlers, W.: Constitutive equations for granular materials in geomechanical context. In: Hutter, K. (ed.) Continuum Mechanics in Environmental Sciences and Geophysics. CISM Courses and Lectures, vol. 337, pp. 313–402. Springer, Vienna (1993)CrossRefGoogle Scholar
  13. 13.
    Goodman, M.A., Cowin, S.C.: A continuum theory of granular materials. Arch. Ration. Mech. Anal. 44, 249–266 (1972)CrossRefGoogle Scholar
  14. 14.
    Gray, W.G.: Elements of a systematic procedure for the derivation of macroscale conservation equations for multiphase flows in porous media. In: Hutter, K. (ed.) Kinematic and Continuum Theories of Granular and Porous Media. CISM Courses and Lectures, vol. 400, pp. 67–129. Springer, Berlin (1999)CrossRefGoogle Scholar
  15. 15.
    Gray, W.G., Miller, C.T.: Introduction to the thermodynamically constrained averaging theory for porous media systems. In: Hutter, K. (ed.) Advances in Geophysical and Environmental Mechanics and Mathematics (AGEM\(^{2}\)). Springer, Cham (2014)Google Scholar
  16. 16.
    Gurtin, M.E.: On the thermodynamics of chemically reacting fluid mixtures. Arch. Ration. Mech. Anal. 43, 198–212 (1971)CrossRefGoogle Scholar
  17. 17.
    Hassaniazadeh, S.M., Gray, W.G.: General conservation equations for multiphase systems: 1. Averaging procedure. Adv. Water Res. 2, 25–40 (1979)Google Scholar
  18. 18.
    Hassaniazadeh, S.M., Gray, W.G.: General conservation equations for multiphase systems: 1. Averaging procedure. Adv. Water Res. 2, 131–144 (1979)CrossRefGoogle Scholar
  19. 19.
    Hassaniazadeh, S.M., Gray, W.G.: General conservation equations for multiphase systems: 2. Mass, momenta, energy and entropy equations. Adv. Water Res. 2, 191–208 (1979)CrossRefGoogle Scholar
  20. 20.
    Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling, p. 635. Springer, Berlin (2004)CrossRefGoogle Scholar
  21. 21.
    Hutter, K., Wang, Y.: Fluid and Thermodynamics. Volume 1: Basic Fluid Mechanics, 639p. Springer, Berlin (2016). ISBN: 978-3319336329Google Scholar
  22. 22.
    Hutter, K., Wang, Y.: Fluid and Thermodynamics. Volume II: Advanced Fluid Mechanics and Thermodynamic Fundamentals. Springer, Berlin, 633p. (2016). ISBN: 978-3-319-33635-0Google Scholar
  23. 23.
    Ludwig, C.: Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösungen. Sitzungsbericbht Kaiser. Akad. Wiss. (Mathem-Naturwiss. Cl.) Wien, 65, 539 (1856)Google Scholar
  24. 24.
    Müller, I.: Thermodynamics. Pitman, 521p. (1985)Google Scholar
  25. 25.
    Schneidere, L., Hutter, K.: Solid-fluid mixtures of frictional materials in geophysical and geotechnical context. In: Hutter, K. (ed.) Advances in Geophysical and Environmental Mechanics and Mathematics (AGEM\(^{2}\)), p. 247. Springer, Berlin (2009)Google Scholar
  26. 26.
    Soret, C.: Sur l’état d‘ équilibre que prend, du point de vue de sa concentration, une dissolution saline primitivement homogéne, dont deux parties sont portées à des tempéeratures difféerantes. Archives de Genève, 3e période, tome II, 48 (1879)Google Scholar
  27. 27.
    Svendsen, B., Hutter, K.: On the thermodynamics of a mixture of isotropic viscous materials with kinematic constraints. Int. J. Eng. Sci. 33, 2021–2054 (1995)CrossRefGoogle Scholar
  28. 28.
    Truesdell, C.A., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/1, pp. 226–793. Springer, Berlin (1957)Google Scholar
  29. 29.
    Truesdell, C.A.: Essays in the History of Mechanics, 383p. Springer, Berlin (1968)Google Scholar
  30. 30.
    Truesdell, C.A.: Rational Thermodynamics, 2nd edn, 578p. Springer, Berlin (1984)Google Scholar
  31. 31.
    Wilmanski, K.: Continuum Thermodynamics, Part I: Foundations, p. 402. Wold Scientific, Singapore (2008). ISBN 978-981-283-556-7CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.c/o Laboratory of Hydraulics, Hydrology, GlaciologyETH ZürichZürichSwitzerland
  2. 2.Department of Mechanical EngineeringDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations