Advertisement

Pliocene-Pleistocene Sedimentation

  • Daria V. Elkina
  • Vera I. Petrova
  • Alexey L. Piskarev
  • Irina A. Andreeva
Chapter

Abstract

Paleomagnetic data, including the recent high-quality measurements, estimate the average mean sedimentation rate in the Mendeleev Ridge for the last 4 Ma as 1–1.5 mm/kyr, rising slightly towards the shelf seas of northeast Russia. The rates also increase towards the Lomonosov Ridge: in its near-Greenland sector, the Brunhes/Matuyama transition was identified in the sediment core at 330 cmbsf, giving rates of 4.4 mm/kyr for the Brunhes chron.

Recently established presence of volcanic material in bottom sediments indicates active, at times even catastrophic, the Pleistocene volcanic activity in the Arctic Basin. It could be safe to state that the Eurasian Basin in the Arctic Ocean was a scene for at least one such a powerful volcanic eruption with huge volumes of ejected material at ~1.1 Ma.

The study of hydrocarbon molecular markers and the Late Cenozoic sedimentation in the Amerasian continental margin allowed to examine the importance of different processes (terrigeneous denudation, glacial transport, turbidites, oceanic slope contouring currents, submarine erosion, and bedrock material re-deposition) in accumulation of the sedimentary cover.

Keywords

Arctic Basin Paleomagnetism Sedimentation rate Volcanic eruption Hydrocarbon molecular markers 

References

  1. Adler RA, Polyak L, Ortiz JD et al (2009) Sediments record from the western Arctic Ocean with an improvement late quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev ridge. Glob Planet Chang J 68:18–29CrossRefGoogle Scholar
  2. Andreeva IA, Basov VA, Kupriyanova NV, Shilov VV (2007) Age and depositional environment of bottom sediments in the Mendeleev Rise (Arctic Ocean). Materials on the polar regions and the central part of the mid-Atlantic ridge in the Phanerozoic. Fauna, flora and biostratigraphy, vol 211. VNIIOkeangeologia, pp 131–152Google Scholar
  3. Backman J, Moran K (2009) Expanding the Cenozoic paleoceanographic record in the Central Arctic Ocean : IODP Expedition 302 Synthesis. Cen Euro J Geosci 1(2):157–175Google Scholar
  4. Backman J, Jakobsson M, Lovlie R et al (2004) Is the Central Arctic Ocean a sediment starved basin? Quat Sci Rev J 23:1435–1454CrossRefGoogle Scholar
  5. Bastow TP, Singh RK, van Aarssen BG et al (2001) 2-Methylretene in sedimentary material: a new higher plant biomarker. Org Geochem J 32:1211–1217CrossRefGoogle Scholar
  6. Brozena JM, Childers VA, Lawver LA et al (2003) New aerogeophysical study of the Eurasia Basin and Lomonosov ridge: implications for basin development. Geol J 31(9):825–828CrossRefGoogle Scholar
  7. Bruvoll V, Kristoffersen Y, Coakley B et al (2012) The nature of the acoustic basement on Mendeleev and northwestern alpha ridges, Arctic Ocean. Tectonophysics J 514:123–145CrossRefGoogle Scholar
  8. Buchs DM, Cukur D, Masago H et al (2015) Sediment flow routing during formation of forearc basins: constraints from integrated analysis of detrital pyroxenes and stratigraphy in the Kumano Basin. Jan J Earth Planet Sci Lett 414:164–175CrossRefGoogle Scholar
  9. Channell JET, Xuan C (2009) Self-reversal and apparent magnetic excursions in Arctic sediments. Earth Planet Sci Lett 284(1):124–131CrossRefGoogle Scholar
  10. Clark DL (1970) Magnetic reversals and sedimentation rates in the Arctic Ocean. Geol Soc Am Bull 81(10):3129–3124CrossRefGoogle Scholar
  11. Elkina D, Piskarev A (2017) Comparative paleomagnetic study of the Quaternary-Pliocene sedimentation rates in the Arctic Basin: first results, GP33B-0978, Presented at 2017 Fall Meeting, AGU, New Orleans, LA, 11–15 DecGoogle Scholar
  12. Frederichs T (1995) Regional and temporal variations of rock magnetic parameters in Arctic marine sediments. Ber zur Polarforsch J 164:1–212Google Scholar
  13. Gee JS, Kent DV (2007) Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. Treatise on Geophys J 5:455–507CrossRefGoogle Scholar
  14. Geocap 7.1.1 for Windows http://www.geocap.no/ (2015)Google Scholar
  15. Glebovsky VY, Kaminsky VD, Minakov AN et al (2006) Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field. Geotectonics J 4:21–42Google Scholar
  16. Gorbarenko SA et al (2002) Magnetostratigraphy and tephrochronology of the upper quaternary sediments in the Okhotsk Sea: implication of terrigenous, volcanogenic and biogenic matter supply. Mar Geol J 183:107–129CrossRefGoogle Scholar
  17. Gusev EA, Maksimov FE, Novikhina ES et al (2012) On stratigraphy of bottom sediments from Mendeleev rise (the Arctic Ocean) region. Vestnik Saint-Petersburg University 7(4):102–115Google Scholar
  18. Gusev EA, Maksimov FE, Kuznetsov VY et al (2013) Stratigraphy of bottom sediments in the Mendeleev ridge area (Arctic Ocean). Dokl Earth Sci J 450:602–606CrossRefGoogle Scholar
  19. Gusev EA, Lukashenko RV, Popko AO et al (2014) New information on slope structure of the Mendeleev ridge seamounts (the Arctic Ocean). Dokl RAN J 455(2):184–188Google Scholar
  20. Gusev E, Rekant P, Kaminsky V et al (2017) Morphology of seamounts at the Mendeleev rise, Arctic Ocean. Polar Res J 36:2–10CrossRefGoogle Scholar
  21. Jakobsson M, Lølie R, Al-Hanbali H et al (2000) Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geol J 28:23–26CrossRefGoogle Scholar
  22. Jokat W, Schmidt-Aursch M (2007) Geophysical characteristics of the ultraslow spreading Gakkel ridge. Arctic Ocean Geophys J 168:983–998Google Scholar
  23. Kashirtsev VA, Gayduck VV, Zueva IN (2012) Geochemistry of biomarkers and organic matter catagenesis of cretaceous and Cenozoic formations in the Indigir-Zyriyansk depression (north-eastern Yakutyia). Geol Geofiz 53(8):1027–1039Google Scholar
  24. Khain VE (2001) Tectonics of continents and oceans (year 2000). Scientific World, MoscowGoogle Scholar
  25. Kim BI, Ivanova NM (2000) On the age of seismic units revealed on the Laptev Sea continental slope and adjacent part of the Eurasian Basin. Geological-geophysical features of the lithosphere of the Arctic. Region 3:82–92Google Scholar
  26. Kochegura VV (1992) Implementation of Paleomagnetic methods for geological survey of a shelf. VSEGEI, Saint PetersburgGoogle Scholar
  27. Konstantinova NP, Cherkashev GA, Novikov GV et al (2016) Ferro-manganese plaques of the Mendelelv Ridge: composition and genesis Artika. Ecologia i ekonomika 3(23):16–28Google Scholar
  28. Kontorovich AE, Kashirtsev VA, Danilova VP et al (2009) Molecules-biomarkers in fossilizedn organic matter and naphtides of the Siberian PreCambrian and Phanerozoic formations, SPb, VNIGRI, p 108Google Scholar
  29. Krylov AA, Shilov VV, Andreeva IA et al (2011) Stratigraphy and accumulation of upper quaternary sediments in the northern part of the Mendeleev rise (Amerasian Basin, Arctic Ocean). Probl Arctic Antarctic J 2(88):7–22Google Scholar
  30. Lane CS, Chorn BT, Johnson TC (2013) Reply to Roberts et al.: A subdecadal record of paleoclimate around the Youngest Toba Tuff in Lake Malawi. Proceedings of the National Academy of Sciences 110(33):E3048. doi: https://doi.org/10.1073/pnas.1309815110CrossRefGoogle Scholar
  31. Levitan MA (2015) Sedimentation rates in the Arctic Ocean during the last five marine isotope stages. Oceanology J 55(3):425–433CrossRefGoogle Scholar
  32. Lin’kova TI (1984) Paleomagnetism of upper Cenozoic sediments of the World Ocean. Nauka, Moscow. (in Russian)Google Scholar
  33. Moran K, Backman J, Brinkhuis H et al (2006) The Cenozoic palaeoenvironment of the Arctic Ocean. Nature J 441:601–606CrossRefGoogle Scholar
  34. Morozov AF, Petrov OV, Shokalsky SP et al (2013) New geological evidence justifying the nature of the continental area of the Central Arctic elevations. Reg Geol Metallogeny J 53:34–55Google Scholar
  35. Naryshkin GD (1995) Orographic map of the Arctic basin (GUNiO), VNIIO, St. PetersburgGoogle Scholar
  36. Not C, Hillaire-Marcel C (2010) Time constraints from 230Th and 231Pa data in late quaternary, low sedimentation rate sequence from the Arctic Ocean: an example from the northern Mendeleev ridge. Quat Sci Rev J 29:3665–3675CrossRefGoogle Scholar
  37. Nowaczyk NR, Frederichs TW, Kassens H et al (2001) Sedimentation rates in the Makarov Basin, Central Arctic Ocean: a paleomagnetic and rock magnetic approach. Paleoceanography J 16:368–389CrossRefGoogle Scholar
  38. Nowaczyk NR, Antonow M, Knies J et al (2003) Further rock magnetic and chronostratigraphic results on reversal excursions during the last 50 ka as derived from northern high latitudes and discrepancies in precise AMS14C dating. Geophys J 155:1065–1080CrossRefGoogle Scholar
  39. O’Regan M, King J, Backman J et al (2008) Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge. Paleoceanography J 23:PA1S19Google Scholar
  40. Owens PN et al (2016) Fingerprinting and tracing the sources of soils and sediments: earth and ocean science, geoarchaeological, forensic, and human health applications. J Earth Sci Rev 162:1–23CrossRefGoogle Scholar
  41. Pachalko AG, Krylov AA, Mirolyubova ES et al (2017) First findings of Pleistocene Autogenetic Carbonate Plaques (ACP) on the Mendeleev Ridge, the Arctic Ocean. V International conference of young scientists and specialists in memory of academitian Karpinsky, VSEGEI, Saint Petersburg, 28 February – 3 March 2017Google Scholar
  42. Peters K, Walters C, Moldowan J (2004) The biomarker guide. Cambridge University Press, p 364Google Scholar
  43. Petrova VI, Batova GI, Kursheva AV et al (2010) Geochemistry of the bottom sediments organic matter in Central Arctic Uplifts Province, the Arctic Ocean. Geologiya i geofizika J 51(1):113–125Google Scholar
  44. Petrova VI, Batova GI, Litvinenko I et al (2013) Organic matter in the Lomonosov Ridge Holocene-Pleistocene bottom sediments – biomarkers record 26th International Meeting on Organic Geochemistry (IMOG), 15–20 September 2013, 2:275–276Google Scholar
  45. Petrova VI, Batova GI, Kursheva AV et al (2017) Molecular geochemistry of the north-eastern Barents Sea Triassic formations and affects of tectonics and magmatizm. Geologiya i geofizika J 58(3):398–409Google Scholar
  46. Phomin AN (2011) Catagenesis of organic matter and petroleum potential of Mesozoic and Paleozoic deposits of the western Siberian Megabasin. INGG SO RAN, Novosibirsk. (in Russian)Google Scholar
  47. Piskarev AL (2004) The basement structure of the Eurasia Basin and central ridges in the Arctic Ocean. Geotektonics J 38(6):443–448Google Scholar
  48. Piskarev AL, Elkina DV (2014) Pliocene quaternary sediment accumulation rate at Mendeleev high, the Arctic Ocean from paleomagnetic data on bottom sediment columns. Karotazhnik 5:3–16Google Scholar
  49. Piskarev AL, Andreeva IA, Gus’kova EG (2013) Paleomagnetic data on sedimentation rate in the Mendeleev rise region (Arctic Ocean). Oceanography J 53(5):694–704Google Scholar
  50. Piskarev AL, Kireev AA, Poselov VA et al (2017) Areas of Pre-Cenozoic Basement in the Eurasian Basin (Arctic Ocean). 79th EAGE Conference and Exhibition 2017. doi:  https://doi.org/10.3997/2214-4609.201701311
  51. Polyak L, Bischof J, Ortiz JD et al (2009) Late quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Glob Planet Chang 68:5–17CrossRefGoogle Scholar
  52. Pospelova GA (2004) Geomagnetic excursus in brief history and current conditions of geomagnetic studies carried out in the Institute of Earth’s physics, Russian Academy of Sciences. Inst Fiz Zemli RAN, Moscow pp 44–55Google Scholar
  53. Radke M (1988) Application of aromatic compounds as maturity indicators in source rocks and crude oils. Mar Pet Geol J 5:224–236CrossRefGoogle Scholar
  54. Rekant PV, Petrov OV, Kashubin SN et al (2015) History of formation of the sedimentary cover of Arctic basin. Multychannel seismic approach. Reg Geol Metallogeny 64:11–27Google Scholar
  55. Romankevich EA (ed) (1982) Arctic seas – biogeochemistry of organic matter. Nauka, MoscowGoogle Scholar
  56. Romankevitch EA (1977) Geochemistry of oceanic organic matter. Nauka, MoscowGoogle Scholar
  57. Schneider DA, Backman J, Curry WB et al (1996) Paleomagnetic constraints on sedimentation rates in eastern Arctic Ocean. Quat Res J 46:62–71CrossRefGoogle Scholar
  58. Snow JE, Edmonds HN (2007) Ultraslow-spreading ridges. Rapid paradigm changes. Oceanography J 20(1):90–101CrossRefGoogle Scholar
  59. Sohn RA, Willis C, Humphris S et al (2008) Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature J 453:1236–1238CrossRefGoogle Scholar
  60. Spielhagen RF, Baumann K-H, Erlenkeuser H et al (2004) Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quat Sci Rev J 23(11–13):1455–1483CrossRefGoogle Scholar
  61. Stein R, Matthiessen J, Niessen F (2009) Towards a better (litho-) stratigraphy and reconstruction of quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung J 79(2):97–121Google Scholar
  62. Stein R, Mattheissen J, Niessen F et al (2010) Towards a better (Litho-) stratigraphy and reconstruction of quaternary Paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung J 79:97–121Google Scholar
  63. Stein R (2015) The expedition PS87 of the research vessel polarstern to the Arctic Ocean in 2014. Berichte zur Polar-und Meeresforschung = Reports on polar and marine research, vol 688.Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, p 273Google Scholar
  64. Steuerwald BA, Clark DL, Andrew JA (1968) Magnetic stratigraphy and faunal patterns in Arctic Ocean sediments. Earth Planet Sci Lett 5:79–85CrossRefGoogle Scholar
  65. Taldenkova EE, Nikolaev CD, Stepanova AY et al (2016) Stratigraphy and paleogeograaphy of the Arctic Amerasian Basin in neo-Pleistocene in light of lithology and paleontology information. Vestnik Moskovskogo Universiteta (ser. 5). Aust Geogr 6:3–17Google Scholar
  66. The Arctic Basin (Geology and Geomorphology) (2017) Kaminsky VD (ed) VNIIOkeangeologia, Saint PetersburgGoogle Scholar
  67. Thiede J, the Shipboard Scientific Party (2002) Polarstern Arktis XVII/2 cruise report: AMORE 2001 (Arctic Mid-Ocean ridge expedition). Report polar mar. Res, vol 421Google Scholar
  68. Tretyak AN, Vigilyanskaya LI, Dudkin VP et al (1989) Fine structure of geomagnetic field in late Cainozoe. Naukova Dumka, KievGoogle Scholar
  69. Vishnyakov A, Piskarev A, Cherkashev G et al (1992) Detailed mapping of deep water bottom sediments by towing geophysical complex. Vestn Ross Akad Nauk 324(1):77–80Google Scholar
  70. Kaban’kov VY, Andreeva IA, Ivanov VN (2004) On bottom sediments sampled on geo-traverse “Arktika-2000” in the Arctic Ocean ( the Mendeleev ridge region). Dokl RAN J 399(2):224–226Google Scholar
  71. Kaban’kov VY, Andreeva IA, Krupskaya VV et al (2008) New information on on composition and origin of seafloor sediments in the southern part of the Mendeleev ridge (the Arctic Ocean). Dokl RAN J 419(5):653–655Google Scholar
  72. Witte WK, Kent DV (1988) Revised magnetostratigraphies confirm low sedimentation rates in Arctic Ocean cores. Quat Res J 29:43–53CrossRefGoogle Scholar
  73. Xuan C, Channell JET (2010) Origin of apparent magnetic excursions in deep-sea sediments from Mendeleev-alpha ridge, Arctic Ocean. Geochem Geophys Geosyst 11(2)CrossRefGoogle Scholar
  74. Yamamoto M, Polyak L (2009) Changes in terrestrial organic matter input to the Mendeleev ridge, Arctic Ocean during the late quaternary. Glob Planet Change 68:30–37CrossRefGoogle Scholar
  75. Yamamoto M, Okino T, Sugisaki S et al (2008) Late Pleistocene changes in terrestrial biomarkers in sediments from the Central Arctic Ocean. Org Geochem 39(6):754–763CrossRefGoogle Scholar
  76. Zhamoida AI et al (2000) Supplements to the stratigraphic code of Russia. VSEGEI, Saint PetersburgGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Daria V. Elkina
    • 1
    • 2
  • Vera I. Petrova
    • 1
    • 2
  • Alexey L. Piskarev
    • 1
    • 2
  • Irina A. Andreeva
    • 1
  1. 1.All-Russian Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)Saint PetersburgRussia
  2. 2.Saint Petersburg UniversitySaint PetersburgRussia

Personalised recommendations