Different Tumor Microenvironments Lead to Different Metabolic Phenotypes

  • Marjorie Justine Antonio
  • Anne LeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1063)


The beginning of the twenty-first century offered new advances in cancer research, including the expansion of the knowledge about the tumor microenvironment (TME). Because TMEs provide the niches in which cancer cells, fibroblast, lymphocyte, and immune cells reside, they play a key role in cancer cell development, differentiation, survival, and proliferation. Throughout cancer progression, the TME constantly evolves, causing cancer cells to adapt to the new conditions. The heterogeneity of cancer, evidenced by diverse proliferation rates, cellular structure, metabolism, and gene expression, presents challenges for cancer treatments despite the advances in research. This chapter discusses how different tumor microenvironments lead to specific metabolic adaptations which drive cancer progression.


Tumor microenvironments Metabolic phenotypes Fatty acid oxidation Metabolic processes Heterogeneity of cancer 





Acetyl-CoA carboxylase


AMP-activated protein kinase


Adenosine triphosphate


Cancer-associated fibroblasts




Electron transport chain


Fatty acid-binding protein 4


Fatty acid synthase


Hepatitis B virus X protein


Hepatocellular carcinoma


Human mesenchymal stem cells


Kirsten rat sarcoma viral oncogene homolog


Nicotinamide adenine dinucleotide phosphate


Stearoyl-CoA desaturase 1


Tumor microenvironment


  1. 1.
    Ward, P. S., & Thompson, C. B. (2012). Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate. Cancer Cell, 21(3), 297–308.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.CrossRefGoogle Scholar
  3. 3.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.CrossRefGoogle Scholar
  4. 4.
    Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews Cancer, 11(2), 85–95.CrossRefPubMedGoogle Scholar
  5. 5.
    Wang, M. D., et al. (2016). HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress. Oncotarget, 7(6), 6711–6726.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Boroughs, L. K., & DeBerardinis, R. J. (2015). Metabolic pathways promoting cancer cell survival and growth. Nature Cell Biology, 17(4), 351–359.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cheng, T. L., et al. (2011). Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8674–8679.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Choo, A. Y., et al. (2010). Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Molecular Cell, 38(4), 487–499.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pavlova, N. N., & Thompson, C. B. (2016). The emerging hallmarks of cancer metabolism. Cell Metabolism, 23(1), 27–47.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), R453–R462.CrossRefPubMedGoogle Scholar
  11. 11.
    Miyata, T., Takizawa, S., & de Strihou, C. V. (2011). Hypoxia. 1. Intracellular sensors for oxygen and oxidative stress: Novel therapeutic targets. American Journal of Physiology-Cell Physiology, 300(2), C226–C231.CrossRefPubMedGoogle Scholar
  12. 12.
    Jezierska-Drutel, A., Rosenzweig, S. A., & Neumann, C. A. (2013). Role of oxidative stress and the microenvironment in breast cancer development and progression. Advances in Cancer Research, 119, 107–125.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stolarek, R. A., et al. (2010). Increased H2O2 level in exhaled breath condensate in primary breast cancer patients. Journal of Cancer Research and Clinical Oncology, 136(6), 923–930.CrossRefPubMedGoogle Scholar
  14. 14.
    Le, A., et al. (2012). Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metabolism, 15(1), 110–121.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kato, Y., et al. (2013). Acidic extracellular microenvironment and cancer. Cancer Cell International, 13(1), 89.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rofstad, E. K., et al. (2006). Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Research, 66(13), 6699–6707.CrossRefPubMedGoogle Scholar
  17. 17.
    Mashima, T., Seimiya, H., & Tsuruo, T. (2009). De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. British Journal of Cancer, 100(9), 1369–1372.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    DeBerardinis, R. J., et al. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19345–19350.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Young, R. M., et al. (2013). Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes & Development, 27(10), 1115–1131.CrossRefGoogle Scholar
  20. 20.
    Viale, A., et al. (2014). Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 514(7524), 628–632.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kamphorst, J. J., et al. (2013). Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 8882–8887.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ackerman, D., & Simon, M. C. (2014). Hypoxia, lipids, and cancer: Surviving the harsh tumor microenvironment. Trends in Cell Biology, 24(8), 472–478.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nieman, K. M., et al. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yang, C., et al. (2014). Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Molecular Cell, 56(3), 414–424.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Davidson, S. M., et al. (2016). Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metabolism, 23(3), 517–528.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wise, D. R., et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18782–18787.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Solaini, G., et al. (2010). Hypoxia and mitochondrial oxidative metabolism. Biochimica et Biophysica Acta-Bioenergetics, 1797(6-7), 1171–1177.CrossRefGoogle Scholar
  28. 28.
    Mullen, A. R., et al. (2012). Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 481(7381), 385–U171.CrossRefGoogle Scholar
  29. 29.
    Sotgia, F., et al. (2012). Caveolin-1 and cancer metabolism in the tumor microenvironment: Markers, models, and mechanisms. Annual Review of Pathology: Mechanisms of Disease, 7, 423–467.CrossRefGoogle Scholar
  30. 30.
    Rattigan, Y. L., et al. (2012). Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Experimental Cell Research, 318(4), 326–335.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Pathology and OncologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations