The Heterogeneity of Cancer Metabolism pp 107-118 | Cite as
The Metabolism of Renal Cell Carcinomas and Liver Cancer
Abstract
According to data from the American Cancer Society, cancer is one of the deadliest health problems globally. Annually, renal cell carcinoma (RCC) and liver cancer cause more than 100,000 and 800,000 deaths worldwide, respectively [1–4], creating an urgent need to develop effective therapeutic treatments to increase patient survival outcomes. New therapeutic treatments are expected to address a major factor contributing to cancer’s resistance to standard therapies: oncogenic heterogeneity. Because gene expression can vary tremendously among different types of cancers, different patients of the same tumor type, and even within individual tumors, various metabolic phenotypes can emerge, making single-therapy approaches insufficient. This heterogeneity translates into changes in the landscape of metabolic enzymes and biomolecules within both the cancer cell and tumor microenvironment. Novel strategies targeting the diverse metabolism of cancers aim to overcome this obstacle, and though some have yielded positive results, it remains a challenge to uncover all of the distinct metabolic profiles of RCC and liver cancer. Nonetheless, the metabolic-oriented research focusing on these cancers has offered different, fresh new perspectives, which are expected to contribute heavily to the development of new therapeutic treatments.
Keywords
Renal cell carcinoma Primary liver cancer Metabolic phenotypes Glucose metabolism Glutamine metabolism Oncogenic heterogeneityAbbreviations
- α-KG
α-Ketoglutarate
- ACC
Acetyl-CoA carboxylase
- AMPK
AMP-activated protein kinase
- ATP
Adenosine triphosphate
- ccRCC
Clear-cell renal cell carcinoma
- CL
Cardiolipin
- COX5B
Cytochrome C oxidase subunit 5B
- DEN
Diethylnitrosamine
- ePC
Ether-type phosphatidylcholine
- ePE
Ether-type PE
- ERRα
Estrogen-related receptor Α
- FASN
Fatty acid synthase
- FH
Fumarate hydratase
- G6PH
Glucose-6-phosphate dehydrogenase
- GLS2
Glutaminase 2
- Glu
Glutamine
- GLUT1
Glucose transporter 1
- GLUT2
Glucose transporter 2
- HCC
Hepatocellular carcinoma
- HIF
Hypoxia-inducible factor
- HIF-1α
Hypoxia-inducible factor 1-alpha
- HK2
Hexokinase 2
- LCSCs
Liver cancer stem cells
- LDHA
Lactate dehydrogenase A
- LRH-1
Liver receptor homolog 1
- Me1
Malic enzyme 1
- MIR21
MicroRNAs-21
- mTORC1
Mechanistic target of rapamycin complex 1
- NADPH
Nicotinamide adenine dinucleotide phosphate
- Non-LCSCs
Non-liver cancer stem cells
- PE
Phosphatidylethanolamine
- PGK1
Phosphoglycerate kinase 1
- PGLS
6-Phosphogluconolactonase
- PI3K
Phosphatidylinositol-3 kinases
- PTEN
Phosphatase and tensin homolog deleted in chromosome 10
- RCC
Renal cell carcinoma
- ROS
Reactive oxygen species
- SM
Sphingomyelin
- STF-31
4-[[[[4-(1,1-Dimethylethyl)phenyl]sulfonyl]amino]methyl]-N-3-pyridinyl-benzamide
- TALDO
Transaldolase
- TKT
Transketolase
- TSC2
Tuberous sclerosis 2
- VEGFR
Vascular endothelial growth factor receptor
- VHL
Von Hippel-Lindau tumor suppressor gene
References
- 1.Jemal, A., et al. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90.Google Scholar
- 2.Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 67(1), 7–30.Google Scholar
- 3.GBD 2015 Mortality and Causes of Death Collaborators. (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the global burden of disease study 2015. Lancet, 388(10053), 1459–1544.CrossRefGoogle Scholar
- 4.Global Burden of Disease Liver Cancer Collaboration. (2017). The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national Level: Results from the global burden of disease study 2015. JAMA Oncology, 3(12), 1683–1691.CrossRefGoogle Scholar
- 5.Gu, F. L., et al. (1991). Cellular origin of renal cell carcinoma—an immunohistological study on monoclonal antibodies. Scandinavian Journal of Urology and Nephrology. Supplementum, 138, 203–206.PubMedPubMedCentralGoogle Scholar
- 6.Sudarshan, S., et al. (2013). Metabolism of kidney cancer: From the lab to clinical practice. European Urology, 63(2), 244–251.CrossRefPubMedGoogle Scholar
- 7.Rini, B. I., Campbell, S. C., & Escudier, B. (2009). Renal cell carcinoma. Lancet, 373(9669), 1119–1132.CrossRefPubMedGoogle Scholar
- 8.Nickerson, M. L., et al. (2008). Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clinical Cancer Research, 14(15), 4726–4734.CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Sato, Y., et al. (2013). Integrated molecular analysis of clear-cell renal cell carcinoma. Nature Genetics, 45(8), 860–867.CrossRefPubMedGoogle Scholar
- 10.Czyzyk-Krzeska, M. F., & Meller, J. (2004). von Hippel-Lindau tumor suppressor: Not only HIF’s executioner. Trends in Molecular Medicine, 10(4), 146–149.CrossRefPubMedGoogle Scholar
- 11.Gordan, J. D., Thompson, C. B., & Simon, M. C. (2007). HIF and c-Myc: Sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell, 12(2), 108–113.CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Stubbs, M., & Griffiths, J. R. (2010). The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. Advances in Enzyme Regulation, 50(1), 44–55.CrossRefPubMedGoogle Scholar
- 13.Semenza, G. L. (2007). HIF-1 mediates the Warburg effect in clear cell renal carcinoma. Journal of Bioenergetics and Biomembranes, 39(3), 231–234.CrossRefPubMedGoogle Scholar
- 14.Pinthus, J. H., et al. (2011). Metabolic features of clear-cell renal cell carcinoma: Mechanisms and clinical implications. Canadian Urological Association Journal, 5(4), 274–282.CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Cancer Genome Atlas Research Network. (2013). Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499(7456), 43–49.CrossRefGoogle Scholar
- 16.Rini, B. I., & Atkins, M. B. (2009). Resistance to targeted therapy in renal-cell carcinoma. The Lancet Oncology, 10(10), 992–1000.CrossRefPubMedGoogle Scholar
- 17.Gameiro, P. A., et al. (2013). In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metabolism, 17(3), 372–385.CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Jang, Y., et al. (2015). Suppression of mitochondrial respiration with auraptene inhibits the progression of renal cell carcinoma: Involvement of HIF-1alpha degradation. Oncotarget, 6, 38127.CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Chan, D. A., et al. (2011). Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Science Translational Medicine, 3(94), 94ra70.CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Yang, Y., et al. (2010). UOK 262 cell line, fumarate hydratase deficient (FH-/FH-) hereditary leiomyomatosis renal cell carcinoma: In vitro and in vivo model of an aberrant energy metabolic pathway in human cancer. Cancer Genetics and Cytogenetics, 196(1), 45–55.CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Tong, W. H., et al. (2011). The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell, 20(3), 315–327.CrossRefPubMedPubMedCentralGoogle Scholar
- 22.Xie, H., et al. (2009). LDH-A inhibition, a therapeutic strategy for treatment of hereditary leiomyomatosis and renal cell cancer. Molecular Cancer Therapeutics, 8(3), 626–635.CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Liu, J., et al. (2013). Metformin inhibits renal cell carcinoma in vitro and in vivo xenograft. Urologic Oncology, 31(2), 264–270.CrossRefPubMedGoogle Scholar
- 24.Saito, K., et al. (2016). Lipidomic signatures and associated transcriptomic profiles of clear cell renal cell carcinoma. Scientific Reports, 6, 28932.CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Fagone, P., & Jackowski, S. (2013). Phosphatidylcholine and the CDP-choline cycle. Biochimica et Biophysica Acta, 1831(3), 523–532.CrossRefPubMedGoogle Scholar
- 26.Vance, J. E., & Tasseva, G. (2013). Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochimica et Biophysica Acta, 1831(3), 543–554.CrossRefPubMedGoogle Scholar
- 27.Vance, J. E. (2008). Phosphatidylserine and phosphatidylethanolamine in mammalian cells: Two metabolically related aminophospholipids. Journal of Lipid Research, 49(7), 1377–1387.CrossRefPubMedGoogle Scholar
- 28.Farine, L., & Butikofer, P. (2013). The ins and outs of phosphatidylethanolamine synthesis in Trypanosoma brucei. Biochimica et Biophysica Acta, 1831(3), 533–542.CrossRefPubMedGoogle Scholar
- 29.Barcelo-Coblijn, G., et al. (2011). Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19569–19574.CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Ding, T., et al. (2008). SMS overexpression and knockdown: Impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apoptosis. Journal of Lipid Research, 49(2), 376–385.CrossRefPubMedGoogle Scholar
- 31.Catchpole, G., et al. (2011). Metabolic profiling reveals key metabolic features of renal cell carcinoma. Journal of Cellular and Molecular Medicine, 15(1), 109–118.CrossRefPubMedGoogle Scholar
- 32.Menendez, J. A., & Lupu, R. (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews Cancer, 7(10), 763–777.CrossRefPubMedGoogle Scholar
- 33.Ham, A. J., & Liebler, D. C. (1997). Antioxidant reactions of vitamin E in the perfused rat liver: Product distribution and effect of dietary vitamin E supplementation. Archives of Biochemistry and Biophysics, 339(1), 157–164.CrossRefPubMedGoogle Scholar
- 34.Llovet, J. M., et al. (2016). Hepatocellular carcinoma. Nature Reviews Disease Primers, 2, 16018.CrossRefPubMedGoogle Scholar
- 35.Theise, N. D., et al. (2010). In F. T. Bosman et al. (Eds.), Hepatocellular carcinoma in WHO classification of tumor of the digestive system. Lyon, France: International Agency for Research on Cancer.Google Scholar
- 36.Forner, A., Llovet, J. M., & Bruix, J. (2012). Hepatocellular carcinoma. Lancet, 379(9822), 1245–1255.CrossRefPubMedGoogle Scholar
- 37.Zucman-Rossi, J., et al. (2015). Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology, 149(5), 1226–1239.e4.CrossRefPubMedGoogle Scholar
- 38.Schulze, K., Nault, J.-C., & Villanueva, A. (2016). Genetic profiling of hepatocellular carcinoma using next-generation sequencing. Journal of Hepatology, 65(5), 1031–1042.CrossRefPubMedGoogle Scholar
- 39.Bobrovnikova-Marjon, E., & Hurov, J. B. (2014). Targeting metabolic changes in cancer: Novel therapeutic approaches. Annual Review of Medicine, 65, 157–170.CrossRefPubMedGoogle Scholar
- 40.Wolpaw, A. J., & Dang, C. V. (2018). Exploiting metabolic vulnerabilities of cancer with precision and accuracy. Trends in Cell Biology, 28, 201.CrossRefPubMedGoogle Scholar
- 41.Ally, A., et al. (2017). Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell, 169(7), 1327–1341.e23.CrossRefGoogle Scholar
- 42.Calderaro, J., et al. (2017). Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. Journal of Hepatology, 67(4), 727–738.CrossRefPubMedGoogle Scholar
- 43.Zheng, H., et al. (2018). Single cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology. https://doi.org/10.1002/hep.29778.
- 44.Xue, R., et al. (2016). Variable intra-tumor genomic heterogeneity of multiple lesions in patients with hepatocellular carcinoma. Gastroenterology, 150(4), 998–1008.CrossRefPubMedGoogle Scholar
- 45.Lin, D. C., et al. (2017). Genomic and epigenomic heterogeneity of hepatocellular carcinoma. Cancer Research, 77(9), 2255–2265.CrossRefPubMedPubMedCentralGoogle Scholar
- 46.Yuneva, M. O., et al. (2012). The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metabolism, 15(2), 157–170.CrossRefPubMedPubMedCentralGoogle Scholar
- 47.Wise, D. R., et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18782–18787.CrossRefPubMedPubMedCentralGoogle Scholar
- 48.Xu, P., et al. (2016). LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer. Genes & Development, 30(11), 1255–1260.CrossRefGoogle Scholar
- 49.Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274–293.CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Hu, H., et al. (2017). Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology, 65(2), 515–528.CrossRefPubMedGoogle Scholar
- 51.Dang, C. V., Le, A., & Gao, P. (2009). MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clinical Cancer Research, 15(21), 6479–6483.CrossRefPubMedPubMedCentralGoogle Scholar
- 52.Dang, C. V. (2010). Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Research, 70(3), 859–862.CrossRefPubMedPubMedCentralGoogle Scholar
- 53.Hur, W., et al. (2017). Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133. Scientific Reports, 7, 45557.CrossRefPubMedPubMedCentralGoogle Scholar