Non-Hodgkin Lymphoma Metabolism

  • Brian James Kirsch
  • Shu-Jyuan Chang
  • Anne LeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1063)


Non-Hodgkin lymphomas (NHLs) are a heterogeneous group of lymphoid neoplasms with differing biological characteristics. About 90% of all lymphomas in the United States originate from B lymphocytes, while the remaining originate from T cells [1]. The treatment of NHLs depends on neoplastic histology and the stage of the tumor, which will indicate whether radiotherapy, chemotherapy, or a combination is the best suitable treatment [2]. The American Cancer Society describes the staging of lymphoma as follows: Stage I is lymphoma in a single node or area. Stage II is when that lymphoma has spread to another node or organ tissue. Stage III is when it has spread to lymph nodes in two sides of the diaphragm. Stage IV is when the cancer has significantly spread to organs outside the lymph system. Radiation therapy is the traditional therapeutic route for localized follicular and mucosa-associated lymphomas. Chemotherapy is utilized for the treatment of large cell lymphomas and high-grade lymphomas [2]. However, treatment of indolent lymphomas remains problematic as the patients often have metastasis for which no standard approach exists [2].


Heterogeneous malignant lymphomas Lactic acidosis Aerobic glycolysis Glutamine metabolism Fatty acid metabolism Gene expression mTOR signaling 



13C magnetic resonance spectroscopy




Acetyl coenzyme A


5′AMP-activated protein kinase


Adenosine triphosphate


B-cell receptor


B-cell non-Hodgkin lymphomas


Diffuse large B-cell lymphoma


Fatty acid oxidation


Fatty acid synthesis


Fatty acid synthesizing enzyme


18F-deoxyglucose positron emission tomography


Follicular lymphoma


Hypoxia-inducible factor-1


Lactate dehydrogenase


Mammalian target of rapamycin


Mammalian target of rapamycin complex


Nuclear factor kappa-light-chain-enhancer of activated B cells


Non-Hodgkin lymphomas




Oxidative phosphorylation


Pyruvate dehydrogenase kinase, isozyme 1


Primary effusion lymphoma




Proline dehydrogenase


Phosphoribosyl-pyrophosphate synthetase 2


Tricarboxylic acid


Transformed follicular lymphoma


Vascular endothelial growth factor


  1. 1.
    Shankland, K. R., Armitage, J. O., & Hancock, B. W. (2012). Non-Hodgkin lymphoma. Lancet, 380(9844), 848–857.CrossRefPubMedGoogle Scholar
  2. 2.
    Winkfield, K. M., Tsang, R. W., & Gospodarowicz, M. K. (2016). Non-Hodgkin’s lymphoma. In Clinical radiation oncology (4th ed., pp. 1524–1546.e7). Philadelphia: Elsevier.CrossRefGoogle Scholar
  3. 3.
    Advani, R. H., et al. (2013). Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. Journal of Clinical Oncology, 31(1), 88–94.CrossRefPubMedGoogle Scholar
  4. 4.
    Kridel, R., Sehn, L. H., & Gascoyne, R. D. (2012). Pathogenesis of follicular lymphoma. The Journal of Clinical Investigation, 122(10), 3424–3431.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wong, E., & Dickinson, M. (2012). Transformation in follicular lymphoma: Biology, prognosis, and therapeutic options. Current Oncology Reports, 14(5), 424–432.CrossRefPubMedGoogle Scholar
  6. 6.
    Bouska, A., et al. (2014). Genome-wide copy number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood, 123, 1681.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Okosun, J., et al. (2014). Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nature Genetics, 46(2), 176–181.CrossRefPubMedGoogle Scholar
  8. 8.
    Oricchio, E., & Wendel, H. G. (2014). Frequent disruption of the RB pathway in indolent follicular lymphoma suggests a new combination therapy. Journal of Experimental Medicine, 211, 1379.CrossRefPubMedGoogle Scholar
  9. 9.
    Biswas, S. K. (2015). Metabolic reprogramming of immune cells in cancer progression. Immunity, 43(3), 435–449.CrossRefGoogle Scholar
  10. 10.
    Newman, J. S., et al. (1994). Imaging of lymphoma with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose: Correlation with CT. Radiology, 190(1), 111–116.CrossRefPubMedGoogle Scholar
  11. 11.
    Okada, J., et al. (1992). Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: A comparison with proliferative activity. Journal of Nuclear Medicine, 33(3), 325–329.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Mediani, L., et al. (2016). Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/mTOR signaling. Oncotarget, 7(5), 5521–5537.CrossRefPubMedGoogle Scholar
  13. 13.
    Yadav, C., et al. (2016). Serum lactate dehydrogenase in non-Hodgkin’s lymphoma: A prognostic indicator. Indian Journal of Clinical Biochemistry, 31(2), 240–242.CrossRefPubMedGoogle Scholar
  14. 14.
    Fasola, G., et al. (1984). Serum LDH concentration in non-Hodgkin’s lymphomas. Relationship to histologic type, tumor mass, and presentation features. Acta Haematologica, 72(4), 231–238.CrossRefPubMedGoogle Scholar
  15. 15.
    Cowan, R. A., et al. (1989). Prognostic factors in high and intermediate grade non-Hodgkin’s lymphoma. British Journal of Cancer, 59(2), 276–282.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Claudino, W. M., et al. (2015). Type B lactic acidosis: A rare but life threatening hematologic emergency. A case illustration and brief review. American Journal of Blood Research, 5(1), 25–29.PubMedPubMedCentralGoogle Scholar
  17. 17.
    de Groot, R., et al. (2011). Type B lactic acidosis in solid malignancies. The Netherlands Journal of Medicine, 69(3), 120–123.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Mizock, B. A. (1989). Lactic acidosis. Disease-a-Month, 35(4), 233–300.CrossRefPubMedGoogle Scholar
  19. 19.
    Ruiz, J. P., Singh, A. K., & Hart, P. (2011). Type B lactic acidosis secondary to malignancy: Case report, review of published cases, insights into pathogenesis, and prospects for therapy. Scientific World Journal, 11, 1316–1324.CrossRefPubMedGoogle Scholar
  20. 20.
    Dogan, E., et al. (2005). Fatal lactic acidosis due to leukemic transformation in a patient with non-Hodgkin’s lymphoma: Case report. Advances in Therapy, 22(5), 443–446.CrossRefPubMedGoogle Scholar
  21. 21.
    Chan, F. H., Carl, D., & Lyckholm, L. J. (2009). Severe lactic acidosis in a patient with B-cell lymphoma: A case report and review of the literature. Case Reports in Medicine, 2009, 534561.CrossRefPubMedGoogle Scholar
  22. 22.
    Andersen, L. W., et al. (2013). Etiology and therapeutic approach to elevated lactate levels. Mayo Clinic Proceedings, 88(10), 1127–1140.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sia, P., Plumb, T. J., & Fillaus, J. A. (2013). Type B lactic acidosis associated with multiple myeloma. American Journal of Kidney Diseases, 62(3), 633–637.CrossRefPubMedGoogle Scholar
  24. 24.
    DeBerardinis, R. J., & Chandel, N. S. (2016). Fundamentals of cancer metabolism. Science Advances, 2(5), e1600200.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Stine, Z. E., et al. (2015). MYC, metabolism, and cancer. Cancer Discovery, 5(10), 1024–1039.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274–293.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Korac, P., et al. (2017). Role of MYC in B cell lymphomagenesis. Genes (Basel), 8(4), 115.CrossRefGoogle Scholar
  28. 28.
    Le, A., et al. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2037–2042.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Doherty, J. R., et al. (2014). Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Research, 74(3), 908–920.CrossRefPubMedGoogle Scholar
  30. 30.
    Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews Cancer, 11(2), 85–95.CrossRefPubMedGoogle Scholar
  31. 31.
    Tran, T. Q., et al. (2017). Tumor-associated mutant p53 promotes cancer cell survival upon glutamine deprivation through p21 induction. Oncogene, 36(14), 1991–2001.CrossRefPubMedGoogle Scholar
  32. 32.
    Bhatt, A. P., et al. (2012). Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 109(29), 11818–11823.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bhatt, A. P., et al. (2010). Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas. Blood, 115(22), 4455–4463.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Faber, A. C., et al. (2006). Inhibition of phosphatidylinositol 3-kinase-mediated glucose metabolism coincides with resveratrol-induced cell cycle arrest in human diffuse large B-cell lymphomas. Biochemical Pharmacology, 72(10), 1246–1256.CrossRefPubMedGoogle Scholar
  35. 35.
    Sin, S. H., et al. (2007). Rapamycin is efficacious against primary effusion lymphoma (PEL) cell lines in vivo by inhibiting autocrine signaling. Blood, 109(5), 2165–2173.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jeon, S. M., Chandel, N. S., & Hay, N. (2012). AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature, 485(7400), 661–665.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Caro, P., et al. (2012). Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell, 22(4), 547–560.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Young, R. M., et al. (2015). B-cell receptor signaling in diffuse large B-cell lymphoma. Seminars in Hematology, 52(2), 77–85.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Havranek, O., et al. (2017). Tonic B-cell receptor signaling in diffuse large B-cell lymphoma. Blood, 130(8), 995–1006.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Martinez-Outschoorn, U. E., et al. (2017). Cancer metabolism: A therapeutic perspective. Nature Reviews Clinical Oncology, 14(1), 11–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Wilson, P. M., et al. (2014). Standing the test of time: Targeting thymidylate biosynthesis in cancer therapy. Nature Reviews Clinical Oncology, 11(5), 282–298.CrossRefPubMedGoogle Scholar
  42. 42.
    Visentin, M., Zhao, R., & Goldman, I. D. (2012). The antifolates. Hematology/Oncology Clinics of North America, 26(3), 629–648. ix.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cunningham, J. T., et al. (2014). Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell, 157(5), 1088–1103.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Duvel, K., et al. (2010). Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Molecular Cell, 39(2), 171–183.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kuhajda, F. P. (2000). Fatty-acid synthase and human cancer: New perspectives on its role in tumor biology. Nutrition, 16(3), 202–208.CrossRefPubMedGoogle Scholar
  46. 46.
    Vazquez-Martin, A., et al. (2008). Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells. Cell Proliferation, 41(1), 59–85.CrossRefPubMedGoogle Scholar
  47. 47.
    Flavin, R., et al. (2010). Fatty acid synthase as a potential therapeutic target in cancer. Future Oncology, 6(4), 551–562.CrossRefPubMedGoogle Scholar
  48. 48.
    Gasperini, P., & Tosato, G. (2009). Targeting the mammalian target of Rapamycin to inhibit VEGF and cytokines for the treatment of primary effusion lymphoma. Leukemia, 23(10), 1867–1874.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Shestov, A. A., et al. (2016). (13)C MRS and LC-MS flux analysis of tumor intermediary metabolism. Frontiers in Oncology, 6, 135.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dang, C. V. (2010). Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Research, 70(3), 859–862.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kim, J., Lee, J. H., & Iyer, V. R. (2008). Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One, 3(3), e1798.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kim, J. W., et al. (2007). Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Molecular and Cellular Biology, 27(21), 7381–7393.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Li, F., et al. (2005). Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Molecular and Cellular Biology, 25(14), 6225–6234.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Folmes, C. D., et al. (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metabolism, 14(2), 264–271.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Le, A., et al. (2012). Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metabolism, 15(1), 110–121.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Miller, D. M., et al. (2012). c-Myc and cancer metabolism. Clinical Cancer Research, 18(20), 5546–5553.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Liu, W., et al. (2012). Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 8983–8988.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bertout, J. A., Patel, S. A., & Simon, M. C. (2008). The impact of O2 availability on human cancer. Nature Reviews Cancer, 8(12), 967–975.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Qiao, Q., et al. (2010). NF-kappaB mediates aberrant activation of HIF-1 in malignant lymphoma. Experimental Hematology, 38(12), 1199–1208.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Brian James Kirsch
    • 1
    • 2
  • Shu-Jyuan Chang
    • 3
  • Anne Le
    • 4
    Email author
  1. 1.Department of PathologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Johns Hopkins University, Whiting School of Engineering, Chemical and Biomolecular EngineeringBaltimoreUSA
  3. 3.Graduate Institute of MedicineCollege of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
  4. 4.Department of Pathology and OncologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations