Skip to main content

Non-Hodgkin Lymphoma Metabolism

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1063))

Abstract

Non-Hodgkin lymphomas (NHLs) are a heterogeneous group of lymphoid neoplasms with differing biological characteristics. About 90% of all lymphomas in the United States originate from B lymphocytes, while the remaining originate from T cells [1]. The treatment of NHLs depends on neoplastic histology and the stage of the tumor, which will indicate whether radiotherapy, chemotherapy, or a combination is the best suitable treatment [2]. The American Cancer Society describes the staging of lymphoma as follows: Stage I is lymphoma in a single node or area. Stage II is when that lymphoma has spread to another node or organ tissue. Stage III is when it has spread to lymph nodes in two sides of the diaphragm. Stage IV is when the cancer has significantly spread to organs outside the lymph system. Radiation therapy is the traditional therapeutic route for localized follicular and mucosa-associated lymphomas. Chemotherapy is utilized for the treatment of large cell lymphomas and high-grade lymphomas [2]. However, treatment of indolent lymphomas remains problematic as the patients often have metastasis for which no standard approach exists [2].

This is a preview of subscription content, log in via an institution.

Abbreviations

13C MRS:

13C magnetic resonance spectroscopy

2-DG:

2-Deoxyglucose

acetyl-CoA:

Acetyl coenzyme A

AMPK:

5′AMP-activated protein kinase

ATP:

Adenosine triphosphate

BCR:

B-cell receptor

B-NHL:

B-cell non-Hodgkin lymphomas

DLBCL:

Diffuse large B-cell lymphoma

FAO:

Fatty acid oxidation

FAS:

Fatty acid synthesis

FASN:

Fatty acid synthesizing enzyme

FDG-PET:

18F-deoxyglucose positron emission tomography

FL:

Follicular lymphoma

HIF-1:

Hypoxia-inducible factor-1

LDH:

Lactate dehydrogenase

mTOR:

Mammalian target of rapamycin

mTORC:

Mammalian target of rapamycin complex

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NHLs:

Non-Hodgkin lymphomas

OAA:

Oxaloacetate

OXPHOS:

Oxidative phosphorylation

PDK1:

Pyruvate dehydrogenase kinase, isozyme 1

PEL:

Primary effusion lymphoma

PI3K:

Phosphatidylinositol-3-kinase

POX/PRODH:

Proline dehydrogenase

PRPS2:

Phosphoribosyl-pyrophosphate synthetase 2

TCA:

Tricarboxylic acid

tFL:

Transformed follicular lymphoma

VEGF:

Vascular endothelial growth factor

References

  1. Shankland, K. R., Armitage, J. O., & Hancock, B. W. (2012). Non-Hodgkin lymphoma. Lancet, 380(9844), 848–857.

    Article  PubMed  Google Scholar 

  2. Winkfield, K. M., Tsang, R. W., & Gospodarowicz, M. K. (2016). Non-Hodgkin’s lymphoma. In Clinical radiation oncology (4th ed., pp. 1524–1546.e7). Philadelphia: Elsevier.

    Chapter  Google Scholar 

  3. Advani, R. H., et al. (2013). Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. Journal of Clinical Oncology, 31(1), 88–94.

    Article  CAS  PubMed  Google Scholar 

  4. Kridel, R., Sehn, L. H., & Gascoyne, R. D. (2012). Pathogenesis of follicular lymphoma. The Journal of Clinical Investigation, 122(10), 3424–3431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wong, E., & Dickinson, M. (2012). Transformation in follicular lymphoma: Biology, prognosis, and therapeutic options. Current Oncology Reports, 14(5), 424–432.

    Article  PubMed  Google Scholar 

  6. Bouska, A., et al. (2014). Genome-wide copy number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood, 123, 1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Okosun, J., et al. (2014). Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nature Genetics, 46(2), 176–181.

    Article  CAS  PubMed  Google Scholar 

  8. Oricchio, E., & Wendel, H. G. (2014). Frequent disruption of the RB pathway in indolent follicular lymphoma suggests a new combination therapy. Journal of Experimental Medicine, 211, 1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biswas, S. K. (2015). Metabolic reprogramming of immune cells in cancer progression. Immunity, 43(3), 435–449.

    Article  CAS  PubMed  Google Scholar 

  10. Newman, J. S., et al. (1994). Imaging of lymphoma with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose: Correlation with CT. Radiology, 190(1), 111–116.

    Article  CAS  PubMed  Google Scholar 

  11. Okada, J., et al. (1992). Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: A comparison with proliferative activity. Journal of Nuclear Medicine, 33(3), 325–329.

    PubMed  CAS  Google Scholar 

  12. Mediani, L., et al. (2016). Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/mTOR signaling. Oncotarget, 7(5), 5521–5537.

    Article  PubMed  Google Scholar 

  13. Yadav, C., et al. (2016). Serum lactate dehydrogenase in non-Hodgkin’s lymphoma: A prognostic indicator. Indian Journal of Clinical Biochemistry, 31(2), 240–242.

    Article  CAS  PubMed  Google Scholar 

  14. Fasola, G., et al. (1984). Serum LDH concentration in non-Hodgkin’s lymphomas. Relationship to histologic type, tumor mass, and presentation features. Acta Haematologica, 72(4), 231–238.

    Article  CAS  PubMed  Google Scholar 

  15. Cowan, R. A., et al. (1989). Prognostic factors in high and intermediate grade non-Hodgkin’s lymphoma. British Journal of Cancer, 59(2), 276–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Claudino, W. M., et al. (2015). Type B lactic acidosis: A rare but life threatening hematologic emergency. A case illustration and brief review. American Journal of Blood Research, 5(1), 25–29.

    PubMed  PubMed Central  Google Scholar 

  17. de Groot, R., et al. (2011). Type B lactic acidosis in solid malignancies. The Netherlands Journal of Medicine, 69(3), 120–123.

    PubMed  Google Scholar 

  18. Mizock, B. A. (1989). Lactic acidosis. Disease-a-Month, 35(4), 233–300.

    Article  CAS  PubMed  Google Scholar 

  19. Ruiz, J. P., Singh, A. K., & Hart, P. (2011). Type B lactic acidosis secondary to malignancy: Case report, review of published cases, insights into pathogenesis, and prospects for therapy. Scientific World Journal, 11, 1316–1324.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dogan, E., et al. (2005). Fatal lactic acidosis due to leukemic transformation in a patient with non-Hodgkin’s lymphoma: Case report. Advances in Therapy, 22(5), 443–446.

    Article  PubMed  Google Scholar 

  21. Chan, F. H., Carl, D., & Lyckholm, L. J. (2009). Severe lactic acidosis in a patient with B-cell lymphoma: A case report and review of the literature. Case Reports in Medicine, 2009, 534561.

    Article  PubMed  Google Scholar 

  22. Andersen, L. W., et al. (2013). Etiology and therapeutic approach to elevated lactate levels. Mayo Clinic Proceedings, 88(10), 1127–1140.

    Article  CAS  PubMed  Google Scholar 

  23. Sia, P., Plumb, T. J., & Fillaus, J. A. (2013). Type B lactic acidosis associated with multiple myeloma. American Journal of Kidney Diseases, 62(3), 633–637.

    Article  PubMed  Google Scholar 

  24. DeBerardinis, R. J., & Chandel, N. S. (2016). Fundamentals of cancer metabolism. Science Advances, 2(5), e1600200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stine, Z. E., et al. (2015). MYC, metabolism, and cancer. Cancer Discovery, 5(10), 1024–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Korac, P., et al. (2017). Role of MYC in B cell lymphomagenesis. Genes (Basel), 8(4), 115.

    Article  CAS  Google Scholar 

  28. Le, A., et al. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2037–2042.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Doherty, J. R., et al. (2014). Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Research, 74(3), 908–920.

    Article  CAS  PubMed  Google Scholar 

  30. Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews Cancer, 11(2), 85–95.

    Article  CAS  PubMed  Google Scholar 

  31. Tran, T. Q., et al. (2017). Tumor-associated mutant p53 promotes cancer cell survival upon glutamine deprivation through p21 induction. Oncogene, 36(14), 1991–2001.

    Article  CAS  PubMed  Google Scholar 

  32. Bhatt, A. P., et al. (2012). Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 109(29), 11818–11823.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bhatt, A. P., et al. (2010). Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas. Blood, 115(22), 4455–4463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Faber, A. C., et al. (2006). Inhibition of phosphatidylinositol 3-kinase-mediated glucose metabolism coincides with resveratrol-induced cell cycle arrest in human diffuse large B-cell lymphomas. Biochemical Pharmacology, 72(10), 1246–1256.

    Article  CAS  PubMed  Google Scholar 

  35. Sin, S. H., et al. (2007). Rapamycin is efficacious against primary effusion lymphoma (PEL) cell lines in vivo by inhibiting autocrine signaling. Blood, 109(5), 2165–2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeon, S. M., Chandel, N. S., & Hay, N. (2012). AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature, 485(7400), 661–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Caro, P., et al. (2012). Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell, 22(4), 547–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Young, R. M., et al. (2015). B-cell receptor signaling in diffuse large B-cell lymphoma. Seminars in Hematology, 52(2), 77–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Havranek, O., et al. (2017). Tonic B-cell receptor signaling in diffuse large B-cell lymphoma. Blood, 130(8), 995–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martinez-Outschoorn, U. E., et al. (2017). Cancer metabolism: A therapeutic perspective. Nature Reviews Clinical Oncology, 14(1), 11–31.

    Article  CAS  PubMed  Google Scholar 

  41. Wilson, P. M., et al. (2014). Standing the test of time: Targeting thymidylate biosynthesis in cancer therapy. Nature Reviews Clinical Oncology, 11(5), 282–298.

    Article  CAS  PubMed  Google Scholar 

  42. Visentin, M., Zhao, R., & Goldman, I. D. (2012). The antifolates. Hematology/Oncology Clinics of North America, 26(3), 629–648. ix.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cunningham, J. T., et al. (2014). Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell, 157(5), 1088–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duvel, K., et al. (2010). Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Molecular Cell, 39(2), 171–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuhajda, F. P. (2000). Fatty-acid synthase and human cancer: New perspectives on its role in tumor biology. Nutrition, 16(3), 202–208.

    Article  CAS  PubMed  Google Scholar 

  46. Vazquez-Martin, A., et al. (2008). Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells. Cell Proliferation, 41(1), 59–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Flavin, R., et al. (2010). Fatty acid synthase as a potential therapeutic target in cancer. Future Oncology, 6(4), 551–562.

    Article  CAS  PubMed  Google Scholar 

  48. Gasperini, P., & Tosato, G. (2009). Targeting the mammalian target of Rapamycin to inhibit VEGF and cytokines for the treatment of primary effusion lymphoma. Leukemia, 23(10), 1867–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shestov, A. A., et al. (2016). (13)C MRS and LC-MS flux analysis of tumor intermediary metabolism. Frontiers in Oncology, 6, 135.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dang, C. V. (2010). Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Research, 70(3), 859–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, J., Lee, J. H., & Iyer, V. R. (2008). Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One, 3(3), e1798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, J. W., et al. (2007). Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Molecular and Cellular Biology, 27(21), 7381–7393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, F., et al. (2005). Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Molecular and Cellular Biology, 25(14), 6225–6234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Folmes, C. D., et al. (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metabolism, 14(2), 264–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Le, A., et al. (2012). Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metabolism, 15(1), 110–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miller, D. M., et al. (2012). c-Myc and cancer metabolism. Clinical Cancer Research, 18(20), 5546–5553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, W., et al. (2012). Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 8983–8988.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bertout, J. A., Patel, S. A., & Simon, M. C. (2008). The impact of O2 availability on human cancer. Nature Reviews Cancer, 8(12), 967–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qiao, Q., et al. (2010). NF-kappaB mediates aberrant activation of HIF-1 in malignant lymphoma. Experimental Hematology, 38(12), 1199–1208.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Kirsch, B.J., Chang, SJ., Le, A. (2018). Non-Hodgkin Lymphoma Metabolism. In: Le, A. (eds) The Heterogeneity of Cancer Metabolism. Advances in Experimental Medicine and Biology, vol 1063. Springer, Cham. https://doi.org/10.1007/978-3-319-77736-8_7

Download citation

Publish with us

Policies and ethics