Advertisement

Metabolic Relationship between Cancer-Associated Fibroblasts and Cancer Cells

  • Christos Sazeides
  • Anne Le
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1063)

Abstract

Cancer-associated fibroblasts (CAFs), a major component of the tumor microenvironment (TME), play an important role in cancer initiation, progression, and metastasis. Recent findings have demonstrated that the TME not only provides physical support for cancer cells, but also directs cell-to-cell interactions (in this case the interaction between cancer cells and CAFs). As cancer progresses, the CAFs also co evolve—transitioning from an inactivated state to an activated state. The elucidation and understanding of the interaction between cancer cells and CAFs will pave the way for new cancer therapies [1–3].

The TME is a heterogeneous environment consisting of fibroblasts, tumor-associated macrophages, adipocytes, an extracellular matrix, and mesenchymal stem cells [4]. The exact composition of each stroma varies depending on cancer and tissue type. To add to this variation, there is heterogeneity even within the CAF population itself. Different CAFs express different markers and influence stromal pro-tumorigenic capacity and cancer progression in diverse ways [5, 6].

Keywords

Cancer-associated fibroblasts CAF-derived exosomes Glutamine metabolism Hypoxia-inducible factor-1 Reverse Warburg effect 

Abbreviations

α-SMA

α-Smooth muscle actin

CAF

Cancer-associated fibroblast

Cav-1

Caveolin -1

CDE

CAF-derived exosomes

EMT

Epithelial-mesenchymal transition

FASN

Fatty acid synthase

FH

Fumarase

HIF-1

Hypoxia-inducible factor-1

LDHA

Lactate dehydrogenase A

MCT

Monocarboxylate transporter

NF

Normal fibroblasts

PDAC

Pancreatic ductal adenocarcinoma

PKM2

Pyruvate kinase isozymes M1/M2

PSC

Pancreatic stellate cells

ROS

Reactive oxygen species

SDH

Succinate dehydrogenase

TCA

Tricarboxylic acid

TGF-β

Transforming growth factor beta

TME

Tumor microenvironment

References

  1. 1.
    Zhao, X., He, Y., & Chen, H. (2013). Autophagic tumor stroma: Mechanisms and roles in tumor growth and progression. International Journal of Cancer, 132(1), 1–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Martinez-Outschoorn, U. E., et al. (2010). Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle, 9(16), 3256–3276.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gascard, P., & Tlsty, T. D. (2016). Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy. Genes and Development, 30(9), 1002–1019.CrossRefPubMedGoogle Scholar
  4. 4.
    Spill, F., et al. (2016). Impact of the physical microenvironment on tumor progression and metastasis. Current Opinion in Biotechnology, 40, 41–48.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen, Z., et al. (1999). Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clinical Cancer Research, 5(6), 1369–1379.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Sriram, G., Bigliardi, P. L., & Bigliardi-Qi, M. (2015). Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. European Journal of Cell Biology, 94(11), 483–512.CrossRefPubMedGoogle Scholar
  7. 7.
    Shimoda, M., Mellody, K. T., & Orimo, A. (2010). Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Seminars in Cell and Developmental Biology, 21(1), 19–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Rasanen, K., & Vaheri, A. (2010). Activation of fibroblasts in cancer stroma. Experimental Cell Research, 316(17), 2713–2722.CrossRefPubMedGoogle Scholar
  9. 9.
    Xouri, G., & Christian, S. (2010). Origin and function of tumor stroma fibroblasts. Seminars in Cell and Developmental Biology, 21(1), 40–46.CrossRefPubMedGoogle Scholar
  10. 10.
    Albini, A., & Sporn, M. B. (2007). The tumour microenvironment as a target for chemoprevention. Nature Reviews Cancer, 7(2), 139–147.CrossRefPubMedGoogle Scholar
  11. 11.
    Shaykhiev, R., & Bals, R. (2007). Interactions between epithelial cells and leukocytes in immunity and tissue homeostasis. Journal of Leukocyte Biology, 82(1), 1–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.CrossRefGoogle Scholar
  13. 13.
    Pietras, K., & Ostman, A. (2010). Hallmarks of cancer: Interactions with the tumor stroma. Experimental Cell Research, 316(8), 1324–1331.CrossRefPubMedGoogle Scholar
  14. 14.
    DeFilippis, R. A., et al. (2014). Stress signaling from human mammary epithelial cells contributes to phenotypes of mammographic density. Cancer Research, 74(18), 5032–5044.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hu, Y., et al. (2015). Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One, 10(5), e0125625.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pavlides, S., et al. (2010). Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: A transcriptional informatics analysis with validation. Cell Cycle, 9(11), 2201–2219.CrossRefPubMedGoogle Scholar
  17. 17.
    Pavlides, S., et al. (2009). The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 8(23), 3984–4001.CrossRefGoogle Scholar
  18. 18.
    Semenza, G. L. (2008). Tumor metabolism: Cancer cells give and take lactate. The Journal of Clinical Investigation, 118(12), 3835–3837.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. The Journal of General Physiology, 8(6), 519–530.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Crabtree, H. G. (1929). Observations on the carbohydrate metabolism of tumours. The Biochemical Journal, 23(3), 536–545.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Feron, O. (2009). Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiotherapy and Oncology, 92(3), 329–333.CrossRefPubMedGoogle Scholar
  22. 22.
    Christofk, H. R., et al. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233.CrossRefPubMedGoogle Scholar
  23. 23.
    Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shan, T., et al. (2017). Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism. Oncology Reports, 37(4), 1971–1979.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tape, C. J., et al. (2016). Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell, 165(4), 910–920.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chiche, J., Brahimi-Horn, M. C., & Pouyssegur, J. (2010). Tumour hypoxia induces a metabolic shift causing acidosis: A common feature in cancer. Journal of Cellular and Molecular Medicine, 14(4), 771–794.CrossRefPubMedGoogle Scholar
  27. 27.
    Swietach, P., et al. (2010). New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene, 29(50), 6509–6521.CrossRefPubMedGoogle Scholar
  28. 28.
    Gerlinger, M., et al. (2012). Genome-wide RNA interference analysis of renal carcinoma survival regulators identifies MCT4 as a Warburg effect metabolic target. The Journal of Pathology, 227(2), 146–156.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Martinez-Outschoorn, U. E., et al. (2010). Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle, 9(17), 3515–3533.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lohr, M., et al. (2001). Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Research, 61(2), 550–555.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Guido, C., et al. (2012). Metabolic reprogramming of cancer-associated fibroblasts by TGF-beta drives tumor growth: Connecting TGF-beta signaling with “Warburg-like” cancer metabolism and L-lactate production. Cell Cycle, 11(16), 3019–3035.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pan, Y., et al. (2007). Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Molecular and Cellular Biology, 27(3), 912–925.CrossRefPubMedGoogle Scholar
  33. 33.
    Chandel, N. S., et al. (2000). Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: A mechanism of O2 sensing. The Journal of Biological Chemistry, 275(33), 25130–25138.CrossRefPubMedGoogle Scholar
  34. 34.
    Salceda, S., & Caro, J. (1997). Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. The Journal of Biological Chemistry, 272(36), 22642–22647.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang, H., et al. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. The Journal of Biological Chemistry, 283(16), 10892–10903.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bellot, G., et al. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Molecular and Cellular Biology, 29(10), 2570–2581.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Klimova, T., & Chandel, N. S. (2008). Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death and Differentiation, 15(4), 660–666.CrossRefPubMedGoogle Scholar
  38. 38.
    Capparelli, C., et al. (2012). Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle, 11(12), 2285–2302.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mercurio, F., et al. (1997). IKK-1 and IKK-2: Cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science, 278(5339), 860–866.CrossRefPubMedGoogle Scholar
  40. 40.
    Cummins, E. P., et al. (2006). Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18154–18159.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Martinez-Outschoorn, U. E., et al. (2011). Cytokine production and inflammation drive autophagy in the tumor microenvironment: Role of stromal caveolin-1 as a key regulator. Cell Cycle, 10(11), 1784–1793.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wu, S., & Sun, J. (2011). Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. Discovery Medicine, 11(59), 325–335.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Bonello, S., et al. (2007). Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(4), 755–761.CrossRefPubMedGoogle Scholar
  44. 44.
    Garcia-Cardena, G., et al. (1997). Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. The Journal of Biological Chemistry, 272(41), 25437–25440.CrossRefPubMedGoogle Scholar
  45. 45.
    Martinez-Outschoorn, U. E., et al. (2011). Energy transfer in “parasitic” cancer metabolism: Mitochondria are the powerhouse and Achilles’ heel of tumor cells. Cell Cycle, 10(24), 4208–4216.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sotgia, F., et al. (2012). Caveolin-1 and cancer metabolism in the tumor microenvironment: Markers, models, and mechanisms. Annual Review of Pathology, 7, 423–467.CrossRefPubMedGoogle Scholar
  47. 47.
    Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2012). Power surge: Supporting cells “fuel” cancer cell mitochondria. Cell Metabolism, 15(1), 4–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhao, H., et al. (2016). Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife, 5, e10250.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Dang, C. V. (2010). Glutaminolysis: Supplying carbon or nitrogen or both for cancer cells? Cell Cycle, 9(19), 3884–3886.CrossRefPubMedGoogle Scholar
  50. 50.
    Daye, D., & Wellen, K. E. (2012). Metabolic reprogramming in cancer: Unraveling the role of glutamine in tumorigenesis. Seminars in Cell & Developmental Biology, 23(4), 362–369.CrossRefGoogle Scholar
  51. 51.
    Metallo, C. M., et al. (2011). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 481(7381), 380–384.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kamphorst, J. J., et al. (2014). Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer & Metabolism, 2, 23.CrossRefGoogle Scholar
  53. 53.
    Kumar-Sinha, C., et al. (2003). Transcriptome analysis of HER2 reveals a molecular connection to fatty acid synthesis. Cancer Research, 63(1), 132–139.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Pavlides, S., et al. (2010). The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle, 9(17), 3485–3505.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Marino, G., & Kroemer, G. (2010). Ammonia: A diffusible factor released by proliferating cells that induces autophagy. Science Signaling, 3(124), pe19.CrossRefPubMedGoogle Scholar
  56. 56.
    Eng, C. H., & Abraham, R. T. (2010). Glutaminolysis yields a metabolic by-product that stimulates autophagy. Autophagy, 6(7), 968–970.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sousa, C. M., et al. (2016). Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature, 536(7617), 479–483.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Cellular ImmunotherapiesUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaUSA
  2. 2.Department of Pathology and OncologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations