Protein–Carbohydrate Interactions in Protein X-Ray Crystal Structures

  • Kieran L. HudsonEmail author
Part of the Springer Theses book series (Springer Theses)


This part of the results and discussion describes my work investigating the nature of PCIs. This primarily consists of the analysis of protein X-ray crystal structures containing carbohydrates. I then correlated the distributions of amino acids around carbohydrates to models of carbohydrate properties to identify trends. Finally, it describes studies to confirm the findings about carbohydrate–aromatic interactions by NMR spectroscopy. This first chapter describes the techniques that I used to analyse data from the protein structures, and the development of these tools.


  1. 1.
    RCSB Protein Data Bank.
  2. 2.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lütteke T, Frank M, von der Lieth C-W (2004) Carbohydr Res 339:1015–1020CrossRefPubMedGoogle Scholar
  4. 4.
    Bohne-Lang A, Lang E, Förster T, von der Lieth C-W (2001) Carbohydr Res 336:1–11CrossRefPubMedGoogle Scholar
  5. 5.
  6. 6.
    Lütteke T, Frank M, von der Lieth C-W (2005) Nucleic Acids Res 33:D242–D246CrossRefPubMedGoogle Scholar
  7. 7.
    The PyMOL Molecular Graphics System, Version 2014Google Scholar
  8. 8.
    Wang G, Dunbrack RL (2005) Nucleic Acids Res 33:W94–W98CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Seddon AM, Curnow P, Booth PJ (2004) Biochim Biophys Acta 1666:105–117CrossRefPubMedGoogle Scholar
  10. 10.
    Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Biochem J 382:769–781CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Taylor ME, Drickamer K (2014) Curr Opin Struct Biol 28C:14–22CrossRefGoogle Scholar
  12. 12.
    Asensio JL, Ardá A, Cañada FJ, Jiménez-Barbero J (2013) Acc Chem Res 46:946–954CrossRefPubMedGoogle Scholar
  13. 13.
    Nishio M (2011) Phys Chem Chem Phys 13:13873–13900CrossRefPubMedGoogle Scholar
  14. 14.
    Brandl M, Weiss MS, Jabs A, Sühnel J, Hilgenfeld R (2001) J Mol Biol 307:357–377CrossRefPubMedGoogle Scholar
  15. 15.
    Hudson KL, Bartlett GJ, Diehl RC, Agirre J, Gallagher T, Kiessling LL, Woolfson DN (2015) J Am Chem Soc 137:15152–15160CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Agirre J, Davies G, Wilson K, Cowtan K (2015) Nat Chem Biol 11:303CrossRefPubMedGoogle Scholar
  17. 17.
    Agirre J, Iglesias-Fernández J, Rovira C, Davies GJ, Wilson KS, Cowtan KD (2015) Nat Struct Mol Biol 22:833–834CrossRefPubMedGoogle Scholar
  18. 18.
    Brown EN, Ramaswamy S (2007) Acta Crystallogr D63:941–950Google Scholar
  19. 19.
    Cremer D, Pople JA (1975) J Am Chem Soc 97:1354–1358CrossRefGoogle Scholar
  20. 20.
    Li W, Godzik A (2006) Bioinformatics 22:1658–1659CrossRefPubMedGoogle Scholar
  21. 21.
    Gandhi NS, Mancera RL (2008) Chem Biol Drug Des 72:455–482CrossRefPubMedGoogle Scholar
  22. 22.
    Werz DB, Ranzinger R, Herget S, Adibekian A, von der Lieth C-W, Seeberger PH (2007) ACS Chem Biol 2:685–691CrossRefPubMedGoogle Scholar
  23. 23.
    Kornfeld R, Kornfeld S (1985) Annu Rev Biochem 54:631–664CrossRefPubMedGoogle Scholar
  24. 24.
    Shental-Bechor D, Levy Y (2009) Curr Opin Struct Biol 19:524–533CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations