T Cell Defects

  • Morna J. DorseyEmail author
  • Morton J. Cowan


T cells play the central role in adaptive immunity and deficiencies affecting this key component of the immune system result in the most severe forms of primary immunodeficiency. The classic example within this group of immunodeficiencies is severe combined immunodeficiency (SCID). The infectious complications include a wide spectrum of organisms, but viral infections and opportunistic infections are commonly found in infants with SCID who are not identified by newborn screening (NBS). With NBS for SCID through quantification of T cell receptor excision circles (TRECs), the prognosis associated with this condition has improved considerably, with the vast majority of these infants in the USA found early and often without infectious complications. Conditions of T cell immunity not as severe as SCID are broad, and, in addition to infection, noninfectious complications can develop including lymphoproliferation, inflammation, and autoimmunity, notably inflammatory bowel disease. The relatively poor prognosis of T cell immune deficiencies requires those affected to initiate extensive antimicrobial prophylaxis often combined with immunosuppressive treatments to control inflammatory complications. Definitive therapy often includes hematopoietic cell transplant. There are nearly 90 primary immunodeficiency conditions that are considered predominantly T cell and combined T cell and B cell conditions, not all of which can be covered in the scope of this chapter (Picard et al., J Clin Immunol. 35(8):696–726, 2015). Instead we will focus on severe combined immunodeficiency (SCID) in its various forms as well as highlight specific immune defects that illustrate unique aspects of aberrant T cell immunity and resultant clinical manifestations.


T cell immunodeficiency Severe combined immunodeficiency (SCID) Newborn screening Combined immunodeficiency CD40L deficiency Wiskott-Aldrich syndrome MHC class II deficiency 


  1. 1.
    Picard C, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for primary immunodeficiency 2015. J Clin Immunol. 2015;35(8):696–726.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Klinkenberg D, Blohm M, Hoehne M, Mas Marques A, Malecki M, Schildgen V, et al. Risk of rotavirus vaccination for children with SCID. Pediatr Infect Dis J. 2015;34(1):114–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Pai SY, Logan BR, Griffith LM, Buckley RH, Parrott RE, Dvorak CC, et al. Transplant outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;371(5):434–46.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Shearer WT, Dunn E, Notarangelo LD, Dvorak CC, Puck JM, Logan BR, et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol. 2014;133(4):1092–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Müller SM, Ege M, Pottharst A, Schulz AS, Schwarz K, Friedrich W. Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood. 2001;98(6):1847–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Kovanen PE, Leonard WJ. Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol Rev. 2004;202:67–83.CrossRefPubMedGoogle Scholar
  8. 8.
    Schatz DG, Ji Y. Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol. 2011;11(4):251–63.CrossRefPubMedGoogle Scholar
  9. 9.
    Hirschhorn R, Martiniuk F, Rosen FS. Adenosine deaminase activity in normal tissues and tissues from a child with severe combined immunodeficiency and adenosine deaminase deficiency. Clin Immunol Immunopathol. 1978;9(3):287–92.CrossRefPubMedGoogle Scholar
  10. 10.
    Schrader WP, Stacy AR. Purification and subunit structure of adenosine deaminase from human kidney. J Biol Chem. 1977;252(18):6409–15.PubMedGoogle Scholar
  11. 11.
    Benveniste P, Cohen A. p53 expression is required for thymocyte apoptosis induced by adenosine deaminase deficiency. Proc Natl Acad Sci U S A. 1995;92(18):8373–7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cowan MJ, Gennery AR. Radiation-sensitive severe combined immunodeficiency: the arguments for and against conditioning before hematopoietic cell transplantation-what to do? J Allergy Clin Immunol. 2015;136(5):1178–85.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ma Y, Pannicke U, Schwarz K, Lieber MR. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V (D) J recombination. Cell. 2002;108(6):781–94.CrossRefPubMedGoogle Scholar
  14. 14.
    Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL-7R expression in T(2)B(1)NK(1) severe combined immunodeficiency. Nat Genet. 1998;20(4):394–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Buckley RH, Schiff RI, Schiff SE, Markert ML, Williams LW, Harville TO, et al. Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr. 1997;130:378–87.CrossRefPubMedGoogle Scholar
  16. 16.
    Stephan JL, Vlekova V, Le Deist F, Blanche S, Donadieu J, DeSaint-Basile G, et al. Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients. J Pediatr. 1993;123(4):564–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Omenn GS. Familial reticuloendotheliosis with eosinophilia. N Engl J Med. 1965;273:427–32.CrossRefPubMedGoogle Scholar
  18. 18.
    Chan SK, Gelfand EW. Primary immunodeficiency masquerading as allergic disease. Immunol Allergy Clin N Am. 2015;35(4):767–78.CrossRefGoogle Scholar
  19. 19.
    Geier CB, Piller A, Linder A, Sauerwein KM, Eibl MM, Wolf HM. Leaky RAG deficiency in adult patients with impaired antibody production against bacterial polysaccharide antigens. PLoS One. 2015;10(7):1–16.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kesserwan C, Sokolic R, Cowen EW, Garabedian E, Heselmeyer-Haddad K, Lee CC, Pittaluga S, Ortiz C, Baird K, Lopez-Terrada D, Bridge J. Multicentric dermatofibrosarcoma protuberans in patients with adenosine deaminase–deficient severe combined immune deficiency. J Allergy Clin Immunol. 2012;129(3):762–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Albuquerque W, Gaspar HB. Bilateral sensorineural deafness in adenosine deaminase-deficient severe combined immunodeficiency. J Pediatr. 2004;144(2):278–80.CrossRefPubMedGoogle Scholar
  22. 22.
    Shovlin CL, Hughes JM, Simmonds HA, Fairbanks L, Deacock S, Lechler R, et al. Adult presentation of adenosine deaminase deficiency. Lancet. 1993;341(8858):1471.CrossRefPubMedGoogle Scholar
  23. 23.
    Ozsahin H, Arredondo-Vega FX, Santisteban I, Fuhrer H, Tuchschmid P, Jochum W, et al. Adenosine deaminase deficiency in adults. Blood. 1997;89(8):2849–55.PubMedGoogle Scholar
  24. 24.
    Li L, Moshous D, Zhou Y, Wang J, Xie G, Salido E, et al. A founder mutation in Artemis, an SNM1-like protein, causes SCID in Athabascan-speaking Native Americans. J Immunol. 2002;168(12):6323–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Mazzucchelli RI, Riva A, Durum SK. The human IL-7 receptor gene: deletions, polymorphisms and mutations. Semin Immunol. 2012;24(3):225–30.CrossRefPubMedGoogle Scholar
  26. 26.
    Kwan A, Puck JM. History and current status of newborn screening for severe combined immunodeficiency. Semin Perinatol. 2015;39(3):194–205. WB SaundersCrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Speckmann C, Pannicke U, Wiech E, Schwarz K, Fisch P, Friedrich W, Niehues T, Gilmour K, Buiting K, Schlesier M, Eibel H. Clinical and immunologic consequences of a somatic reversion in a patient with X-linked severe combined immunodeficiency. Blood. 2008;112(10):4090–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Cicalese MP, Aiuti A. Clinical applications of gene therapy for primary immunodeficiencies. Hum Gene Ther. 2015;26(4):210–9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med. 2009;360(5):447–58.CrossRefPubMedGoogle Scholar
  30. 30.
    Winkelstein JA, Marino MC, Ochs H, Fuleihan R, Scholl PR, Geha R, et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine. 2003;82(6):373–84.CrossRefPubMedGoogle Scholar
  31. 31.
    van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol. 2000;67(1):2–17.CrossRefPubMedGoogle Scholar
  32. 32.
    Notarangelo LD, Duse MA, Ugazio AG. Immunodeficiency with hyper-IgM (HIM). Immunodefic Rev. 1991;3(2):101–21.Google Scholar
  33. 33.
    Levy J, Espanol-Boren T, Thomas C, Fischer A, Tovo P, Bordigoni P, Resnick I, Fasth A, Baer M, Gomez L, Sanders EA. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr. 1997;131(1):47–54.CrossRefPubMedGoogle Scholar
  34. 34.
    Harry W. Primary antibody deficiencies. Clin Immunol Princ Pract. 2012;26:421.Google Scholar
  35. 35.
    Hayward AR, Levy J, Facchetti F, Notarangelo L, Ochs HD, Etzioni A, et al. Cholangiopathy and tumors of the pancreas, liver, and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J Immunol. 1997;158(2):977–83.PubMedGoogle Scholar
  36. 36.
    Cunningham CK, Bonville CA, Ochs HD, Seyama K, John PA, Rotbart HA, Weiner LB. Enteroviral meningoencephalitis as a complication of X-linked hyper IgM syndrome. J Pediatr. 1999;134(5):584–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Kwan SP, Lehner T, Hagemann T, Lu B, Blaese M, Ochs H, et al. Localization of the gene for the Wiskott-Aldrich syndrome between two flanking markers, TIMP and DXS255, on Xp11. 22–Xp11. 3. Genomics. 1991;10(1):29–33.CrossRefPubMedGoogle Scholar
  38. 38.
    Beel K, Vandenberghe P. G-CSF receptor (CSF3R) mutations in X-linked neutropenia evolving to acute myeloid leukemia or myelodysplasia. Haematologica. 2009;94(10):1449–52.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ochs HD, Thrasher AJ. The Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2006;117(4):725–38.CrossRefPubMedGoogle Scholar
  40. 40.
    Fuller CL, Braciale VL, Samelson LE. All roads lead to actin: the intimate relationship between TCR signaling and the cytoskeleton. Immunol Rev. 2003;191(1):220–36.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhu Q, Watanabe C, Liu T, Hollenbaugh D, Blaese RM, Kanner SB, Aruffo A, Ochs HD. Wiskott-Aldrich syndrome/X-linked thrombocytopenia: WASP gene mutations, protein expression, and phenotype. Blood. 1997;90(7):2680–9.PubMedGoogle Scholar
  42. 42.
    Orange JS. Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol. 2008;8(9):713–25.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ochs HD, Filipovich AH, Veys P, Cowan MJ, Kapoor N. Wiskott-Aldrich syndrome: diagnosis, clinical and laboratory manifestations, and treatment. Biol Blood Marrow Transpl. 2009;15(1):84–90.CrossRefGoogle Scholar
  44. 44.
    Molina IJ, Sancho J, Terhorst C, Rosen FS, Remold-O’Donnell E. T cells of patients with the Wiskott-Aldrich syndrome have a restricted defect in proliferative responses. J Immunol. 1993;151(8):4383–90.PubMedGoogle Scholar
  45. 45.
    Naumova AK, Plenge RM, Bird LM, Leppert M, Morgan K, Willard HF, Sapienza C. Heritability of X chromosome-inactivation phenotype in a large family. Am J Hum Genet. 1996;58(6):1111.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Moratto D, Giliani S, Bonfim C, Mazzolari E, Fischer A, Ochs HD, et al. Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980–2009: an international collaborative study. Blood. 2011;118(6):1675–84.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Braun CJ, Boztug K, Paruzynski A, Witzel M, Schwarzer A, Rothe M, et al. Gene therapy for Wiskott-Aldrich syndrome – long-term efficacy and genotoxicity. Sci Transl Med. 2014;6(227):227–33.CrossRefGoogle Scholar
  48. 48.
    Ouederni M, Vincent QB, Frange P, Touzot F, Scerra S, Bejaoui M, et al. Major histocompatibility complex class II expression deficiency caused by a RFXANK founder mutation: a survey of 35 patients. Blood. 2011;118(19):5108–18.CrossRefPubMedGoogle Scholar
  49. 49.
    Shrestha D, Szöllősi J, Jenei A. Bare lymphocyte syndrome: an opportunity to discover our immune system. Immunol Lett. 2012;141(2):147–57.CrossRefPubMedGoogle Scholar
  50. 50.
    Hanna S, Etzioni A. MHC class I and II deficiencies. J Allergy Clin Immunol. 2014;134(2):269–75.CrossRefPubMedGoogle Scholar
  51. 51.
    Picard C, Fischer A. Hematopoietic stem cell transplantation and other management strategies for MHC class II deficiency. Immunol Allergy Clin N Am. 2010;30(2):173–8.CrossRefGoogle Scholar
  52. 52.
    Siepermann M, Gudowius S, Beltz K, Strier U, Feyen O, Troeger A, et al. MHC class II deficiency cured by unrelated mismatched umbilical cord blood transplantation: case report and review of 68 cases in the literature. Pediatr Transplant. 2011;15(4):E80–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Allergy, Immunology, and Blood and Marrow Transplant Division, Department of PediatricsUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations