Advertisement

Complement

  • Srinjoy Chakraborti
  • Sanjay Ram
Chapter

Abstract

The complement system was initially viewed as an arm of innate immune defenses against invading pathogens by tagging them for elimination by professional phagocytes or by direct killing through pore formation. The association between hereditary or acquired complement deficiencies and invasive meningococcal infection is well established. Over the past few decades, the diverse roles of complement, including bridging innate and adaptive immunity, disposal of apoptotic cells and immune complexes, tissue regeneration, organogenesis, and metabolism, have been elucidated. Elucidation of the intracellular complement system in T cells, macrophages, and even nonimmune cells is an exciting new area of investigation. Novel therapeutics that block complement activation are actively being developed. The current review provides an overview of how complement combats infections and its increasingly appreciated roles in maintenance of physiology of the host and in the pathogenesis of noninfectious conditions.

Keywords

Complement Classical pathway Alternative pathway Lectin pathway Ficolin Complement receptors 

References

  1. 1.
    von Fodor J. Die Faehigkeit des Blutes Bakterien zu vernichten. Deut Med Wschr. 1887;13:745.CrossRefGoogle Scholar
  2. 2.
    Nutall G. Experimente uber die bacterienfeindlichen Eiflusse des thierischen. Korpers Z Hyg Infectionskir. 1888;4:353.Google Scholar
  3. 3.
    Buchner H. Uber die nehere Natur der bakterientodtenden Substanz in Blutserum. Zbl Bakt (Naturwiss). 1889;6:561.Google Scholar
  4. 4.
    Pfeiffer F, Issaeff R. Uber die Specifishche der Bedeutung der Choleraimmunitat. Z Hyg Infecktionskr. 1894;17:355.CrossRefGoogle Scholar
  5. 5.
    Bordet J. Les leukocytes et les proprietes actives du serum chez les vaccines. Ann Inst Pasteur (Paris). 1895;9:462–506.Google Scholar
  6. 6.
    Bordet J. Sur l’agglutination et le dissolution des globules rouges par le sérum d’animaux injectés de sang défibriné. Ann Inst Pasteur (Paris). 1898;12:688.Google Scholar
  7. 7.
    Ehrlich P, Morgenroth J. Zur Theorie der Lysinwirkung. Berlin Klin Wschr. 1899;36:6.Google Scholar
  8. 8.
    Bordet J, Gengou O. Sur l’existence de substances sensibilisatrices dans la plupart des serums antimicrobiens. Ann Inst Pasteur (Paris). 1901;15:289.Google Scholar
  9. 9.
    Ferrata A. Die Unwirksamkeit der Komplexen Hämolysine in salzfreien Lösungen und ihre Ursache. Berlin Klin Wschr. 1907;44:366.Google Scholar
  10. 10.
    Muller-Eberhard HJ, Nilsson U, Aronsson T. Isolation and characterization of two beta1-glycoproteins of human serum. J Exp Med. 1960;111:201–15.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Coca AF. A study of the anticomplementary action of yeast of certain bacteria and of cobra venom. Z Immunitaetsforsch. 1914;21:604.Google Scholar
  12. 12.
    Ritz H. Über die Wirkung des Cobragiftes auf die Komplemente. Z Immunitaetsforsch. 1912;13:62.Google Scholar
  13. 13.
    Pillemer L, Blum L, Lepow IH, Ross OA, Todd EW, Wardlaw AC. The properdin system and immunity. I. Demonstration and isolation of a new serum protein, properdin, and its role in immune phenomena. Science. 1954;120:279–85.CrossRefPubMedGoogle Scholar
  14. 14.
    Nelson RA Jr. An alternative mechanism for the properdin system. J Exp Med. 1958;108:515–35.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Fujita T, Matsushita M, Endo Y. The lectin-complement pathway – its role in innate immunity and evolution. Immunol Rev. 2004;198:185–202.CrossRefPubMedGoogle Scholar
  16. 16.
    Sottrup-Jensen L, Stepanik TM, Kristensen T, Lonblad PB, Jones CM, Wierzbicki DM, Magnusson S, Domdey H, Wetsel RA, Lundwall A, et al. Common evolutionary origin of alpha 2-macroglobulin and complement components C3 and C4. Proc Natl Acad Sci U S A. 1985;82:9–13.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Nonaka M, Takahashi M. Complete complementary DNA sequence of the third component of complement of lamprey. Implication for the evolution of thioester containing proteins. J Immunol. 1992;148:3290–5.PubMedGoogle Scholar
  18. 18.
    Nonaka M, Azumi K, Ji X, Namikawa-Yamada C, Sasaki M, Saiga H, Dodds AW, Sekine H, Homma MK, Matsushita M, Endo Y, Fujita T. Opsonic complement component C3 in the solitary ascidian, Halocynthia roretzi. J Immunol. 1999;162:387–91.PubMedGoogle Scholar
  19. 19.
    Al-Sharif WZ, Sunyer JO, Lambris JD, Smith LC. Sea urchin coelomocytes specifically express a homologue of the complement component C3. J Immunol. 1998;160:2983–97.PubMedGoogle Scholar
  20. 20.
    Nonaka M, Miyazawa S. Evolution of the initiating enzymes of the complement system. Genome Biol. 2002;3:REVIEWS1001.PubMedGoogle Scholar
  21. 21.
    Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell. 2001;104:709–18.CrossRefPubMedGoogle Scholar
  22. 22.
    Alper CA, Raum D, Awdeh ZL, Petersen BH, Taylor PD, Starzl TE. Studies of hepatic synthesis in vivo of plasma proteins, including orosomucoid, transferrin, alpha 1-antitrypsin, C8, and factor B. Clin Immunol Immunopathol. 1980;16:84–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Edwards JL, Apicella MA. The role of lipooligosaccharide in Neisseria gonorrhoeae pathogenesis of cervical epithelia: lipid A serves as a C3 acceptor molecule. Cell Microbiol. 2002;4:585–98.CrossRefPubMedGoogle Scholar
  24. 24.
    Morgan BP, Gasque P. Extrahepatic complement biosynthesis: where, when and why? Clin Exp Immunol. 1997;107:1–7.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Perlmutter DH, Colten HR. Molecular immunobiology of complement biosynthesis: a model of single-cell control of effector-inhibitor balance. Annu Rev Immunol. 1986;4:231–51.CrossRefPubMedGoogle Scholar
  26. 26.
    Ruddy S, Carpenter CB, Chin KW, Knotsman JN, Soter NA, Gotze O, Muller-Eberhard HJ, Austen KF. Human complement metabolism: an analysis of 144 studies. Medicine. 1975;54:165–78.CrossRefGoogle Scholar
  27. 27.
    Mier JW, Dinarello CA, Atkins MB, Punsal PI, Perlmutter DH. Regulation of hepatic acute phase protein synthesis by products of interleukin 2 (IL 2)-stimulated human peripheral blood mononuclear cells. J Immunol. 1987;139:1268–72.PubMedGoogle Scholar
  28. 28.
    Price RJ, Boettcher B. The presence of complement in human cervical mucus and its possible relevance to infertility in women with complement-dependent sperm- immobilizing antibodies. Fertil Steril. 1979;32:61–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Kaul A, Nagamani M, Nowicki B. Decreased expression of endometrial decay accelerating factor (DAF), a complement regulatory protein, in patients with luteal phase defect. Am J Reprod Immunol. 1995;34:236–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Nogawa Fonzar-Marana RR, Ferriani RA, Soares SG, Cavalcante-Neto FF, Teixeira JE, Barbosa JE. Expression of complement system regulatory molecules in the endometrium of normal ovulatory and hyperstimulated women correlate with menstrual cycle phase. Fertil Steril. 2006;86:758–61.CrossRefPubMedGoogle Scholar
  31. 31.
    Palomino WA, Argandona F, Azua R, Kohen P, Devoto L. Complement C3 and decay-accelerating factor expression levels are modulated by human chorionic gonadotropin in endometrial compartments during the implantation window. Reprod Sci. 2013;20:1103–10.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Wolach B, Carmi D, Gilboa S, Satar M, Segal S, Dolfin T, Schlesinger M. Some aspects of the humoral immunity and the phagocytic function in newborn infants. Isr J Med Sci. 1994;30:331–5.PubMedGoogle Scholar
  33. 33.
    Adinolfi M, Beck SE. Human complement C7 and C9 in fetal and newborn sera. Arch Dis Child. 1975;50:562–4.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Feinstein PA, Kaplan SR. The alternative pathway of complement activation in the neonate. Pediatr Res. 1975;9:803–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Hogasen AK, Overlie I, Hansen TW, Abrahamsen TG, Finne PH, Hogasen K. The analysis of the complement activation product SC5 b-9 is applicable in neonates in spite of their profound C9 deficiency. J Perinat Med. 2000;28:39–48.CrossRefPubMedGoogle Scholar
  36. 36.
    Notarangelo LD, Chirico G, Chiara A, Colombo A, Rondini G, Plebani A, Martini A, Ugazio AG. Activity of classical and alternative pathways of complement in preterm and small for gestational age infants. Pediatr Res. 1984;18:281–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Prabhakar P, Singhi S, Sharma A, James O. Immunoglobulin and C3 levels in maternal and cord blood in Jamaica. Trop Geogr Med. 1985;37:304–8.PubMedGoogle Scholar
  38. 38.
    Sonntag J, Brandenburg U, Polzehl D, Strauss E, Vogel M, Dudenhausen JW, Obladen M. Complement system in healthy term newborns: reference values in umbilical cord blood. Pediatr Dev Pathol Off J Soc Pediatr Pathol Paediatr Pathol Soc. 1998;1:131–5.CrossRefGoogle Scholar
  39. 39.
    Yonemasu K, Kitajima H, Tanabe S, Ochi T, Shinkai H. Effect of age on C1q and C3 levels in human serum and their presence in colostrum. Immunology. 1978;35:523–30.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Davis CA, Vallota EH, Forristal J. Serum complement levels in infancy: age related changes. Pediatr Res. 1979;13:1043–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Drossou V, Kanakoudi F, Diamanti E, Tzimouli V, Konstantinidis T, Germenis A, Kremenopoulos G, Katsougiannopoulos V. Concentrations of main serum opsonins in early infancy. Arch Dis Child Fetal Neonatal Ed. 1995;72:F172–5.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Kemper C, Pangburn MK, Fishelson Z. Complement nomenclature 2014. Mol Immunol. 2014;61:56–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Feinstein A, Richardson N, Taussig MI. Immunoglobulin flexibility in complement activation. Immunol Today. 1986;7:169–74.CrossRefPubMedGoogle Scholar
  44. 44.
    Hughes-Jones NC, Gardner B. Reaction between the isolated globular sub-units of the complement component C1q and IgG-complexes. Mol Immunol. 1979;16:697–701.CrossRefPubMedGoogle Scholar
  45. 45.
    Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, Voorhorst M, Ugurlar D, Rosati S, Heck AJ, van de Winkel JG, Wilson IA, Koster AJ, Taylor RP, Saphire EO, Burton DR, Schuurman J, Gros P, Parren PW. Complement is activated by IgG hexamers assembled at the cell surface. Science. 2014;343:1260–3.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Arlaud GJ, Gaboriaud C, Thielens NM, Rossi V. Structural biology of C1. Biochem Soc Trans. 2002;30:1001–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Kishore U, Reid KB. C1q: structure, function, and receptors. Immunopharmacology. 2000;49:159–70.CrossRefPubMedGoogle Scholar
  48. 48.
    Czajkowsky DM, Shao Z. The human IgM pentamer is a mushroom-shaped molecule with a flexural bias. Proc Natl Acad Sci U S A. 2009;106:14960–5.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Muller R, Grawert MA, Kern T, Madl T, Peschek J, Sattler M, Groll M, Buchner J. High-resolution structures of the IgM Fc domains reveal principles of its hexamer formation. Proc Natl Acad Sci U S A. 2013;110:10183–8.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Nauta AJ, Bottazzi B, Mantovani A, Salvatori G, Kishore U, Schwaeble WJ, Gingras AR, Tzima S, Vivanco F, Egido J, Tijsma O, Hack EC, Daha MR, Roos A. Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. Eur J Immunol. 2003;33:465–73.CrossRefPubMedGoogle Scholar
  51. 51.
    Roumenina LT, Ruseva MM, Zlatarova A, Ghai R, Kolev M, Olova N, Gadjeva M, Agrawal A, Bottazzi B, Mantovani A, Reid KB, Kishore U, Kojouharova MS. Interaction of C1q with IgG1, C-reactive protein and pentraxin 3: mutational studies using recombinant globular head modules of human C1q A, B, and C chains. Biochemistry. 2006;45:4093–104.CrossRefPubMedGoogle Scholar
  52. 52.
    Ying SC, Gewurz AT, Jiang H, Gewurz H. Human serum amyloid P component oligomers bind and activate the classical complement pathway via residues 14–26 and 76–92 of the A chain collagen-like region of C1q. J Immunol. 1993;150:169–76.PubMedGoogle Scholar
  53. 53.
    Kang YS, Yamazaki S, Iyoda T, Pack M, Bruening SA, Kim JY, Takahara K, Inaba K, Steinman RM, Park CG. SIGN-R1, a novel C-type lectin expressed by marginal zone macrophages in spleen, mediates uptake of the polysaccharide dextran. Int Immunol. 2003;15:177–86.CrossRefPubMedGoogle Scholar
  54. 54.
    Law SK, Lichtenberg NA, Levine RP. Covalent binding and hemolytic activity of complement proteins. Proc Natl Acad Sci U S A. 1980;77:7194–8.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Dodds AW, Ren XD, Willis AC, Law SK. The reaction mechanism of the internal thioester in the human complement component C4. Nature. 1996;379:177–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Awdeh ZL, Alper CA. Inherited structural polymorphism of the fourth component of human complement. Proc Natl Acad Sci U S A. 1980;77:3576–80.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Carroll MC, Fathallah DM, Bergamaschini L, Alicot EM, Isenman DE. Substitution of a single amino acid (aspartic acid for histidine) converts the functional activity of human complement C4B to C4A. Proc Natl Acad Sci U S A. 1990;87:6868–72.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Reilly BD, Mold C. Quantitative analysis of C4Ab and C4Bb binding to the C3b/C4b receptor (CR1, CD35). Clin Exp Immunol. 1997;110:310–6.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Christiansen FT, Dawkins RL, Uko G, McCluskey J, Kay PH, Zilko PJ. Complement allotyping in SLE: association with C4A null. Aust NZ J Med. 1983;13:483–8.CrossRefGoogle Scholar
  60. 60.
    Yang Y, Chung EK, Wu YL, Savelli SL, Nagaraja HN, Zhou B, Hebert M, Jones KN, Shu Y, Kitzmiller K, Blanchong CA, McBride KL, Higgins GC, Rennebohm RM, Rice RR, Hackshaw KV, Roubey RA, Grossman JM, Tsao BP, Birmingham DJ, Rovin BH, Hebert LA, Yu CY. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet. 2007;80:1037–54.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Carroll MC, Campbell RD, Bentley DR, Porter RR. A molecular map of the human major histocompatibility complex class III region linking complement genes C4, C2 and factor B. Nature. 1984;307:237–41.CrossRefPubMedGoogle Scholar
  62. 62.
    Carroll MC, Palsdottir A, Belt KT, Porter RR. Deletion of complement C4 and steroid 21-hydroxylase genes in the HLA class III region. EMBO J. 1985;4:2547–52.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Schneider PM, Carroll MC, Alper CA, Rittner C, Whitehead AS, Yunis EJ, Colten HR. Polymorphism of the human complement C4 and steroid 21-hydroxylase genes. Restriction fragment length polymorphisms revealing structural deletions, homoduplications, and size variants. J Clin Invest. 1986;78:650–7.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Blanchong CA, Chung EK, Rupert KL, Yang Y, Yang Z, Zhou B, Moulds JM, Yu CY. Genetic, structural and functional diversities of human complement components C4A and C4B and their mouse homologues, Slp and C4. Int Immunopharmacol. 2001;1:365–92.CrossRefPubMedGoogle Scholar
  65. 65.
    Agnello V. Lupus diseases associated with hereditary and acquired deficiencies of complement. Springer Semin Immunopathol. 1986;9:161–78.CrossRefPubMedGoogle Scholar
  66. 66.
    Hauptmann G, Goetz J, Uring-Lambert B, Grosshans E. Component deficiencies. 2. The fourth component. Prog Allergy. 1986;39:232–49.PubMedGoogle Scholar
  67. 67.
    Hauptmann G, Tappeiner G, Schifferli JA. Inherited deficiency of the fourth component of human complement. Immunodefic Rev. 1988;1:3–22.PubMedGoogle Scholar
  68. 68.
    Blanchong CA, Zhou B, Rupert KL, Chung EK, Jones KN, Sotos JF, Zipf WB, Rennebohm RM, Yung Yu C. Deficiencies of human complement component C4A and C4B and heterozygosity in length variants of RP-C4-CYP21-TNX (RCCX) modules in Caucasians. The load of RCCX genetic diversity on major histocompatibility complex-associated disease. J Exp Med. 2000;191:2183–96.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Simon S, Truedsson L, Marcus-Bagley D, Awdeh Z, Eisenbarth GS, Brink SJ, Yunis EJ, Alper CA. Relationship between protein complotypes and DNA variant haplotypes: complotype-RFLP constellations (CRC). Hum Immunol. 1997;57:27–36.CrossRefPubMedGoogle Scholar
  70. 70.
    Dommett RM, Klein N, Turner MW. Mannose-binding lectin in innate immunity: past, present and future. Tissue Antigens. 2006;68:193–209.CrossRefPubMedGoogle Scholar
  71. 71.
    Ikeda K, Sannoh T, Kawasaki N, Kawasaki T, Yamashina I. Serum lectin with known structure activates complement through the classical pathway. J Biol Chem. 1987;262:7451–4.PubMedGoogle Scholar
  72. 72.
    Thiel S. Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins. Mol Immunol. 2007;44:3875–88.CrossRefPubMedGoogle Scholar
  73. 73.
    Thiel S, Gadjeva M. Humoral pattern recognition molecules: mannan-binding lectin and ficolins. Adv Exp Med Biol. 2009;653:58–73.CrossRefPubMedGoogle Scholar
  74. 74.
    Ma YJ, Skjoedt MO, Garred P. Collectin-11/MASP complex formation triggers activation of the lectin complement pathway – the fifth lectin pathway initiation complex. J Innate Immun. 2013;5:242–50.CrossRefPubMedGoogle Scholar
  75. 75.
    Matsushita M. Ficolins in complement activation. Mol Immunol. 2013;55:22–6.CrossRefPubMedGoogle Scholar
  76. 76.
    Zhang XL, Ali MA. Ficolins: structure, function and associated diseases. Adv Exp Med Biol. 2008;632:105–15.PubMedGoogle Scholar
  77. 77.
    Jack DL, Klein NJ, Turner MW. Mannose-binding lectin: targeting the microbial world for complement attack and opsonophagocytosis. Immunol Rev. 2001;180:86–99.CrossRefPubMedGoogle Scholar
  78. 78.
    Schwaeble W, Dahl MR, Thiel S, Stover C, Jensenius JC. The mannan-binding lectin-associated serine proteases (MASPs) and MAp19: four components of the lectin pathway activation complex encoded by two genes. Immunobiology. 2002;205:455–66.CrossRefPubMedGoogle Scholar
  79. 79.
    Degn SE, Jensen L, Hansen AG, Duman D, Tekin M, Jensenius JC, Thiel S. Mannan-binding lectin-associated serine protease (MASP)-1 is crucial for lectin pathway activation in human serum, whereas neither MASP-1 nor MASP-3 is required for alternative pathway function. J Immunol. 2012;189:3957–69.CrossRefPubMedGoogle Scholar
  80. 80.
    Madsen HO, Garred P, Kurtzhals JA, Lamm LU, Ryder LP, Thiel S, Svejgaard A. A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics. 1994;40:37–44.CrossRefPubMedGoogle Scholar
  81. 81.
    Madsen HO, Garred P, Thiel S, Kurtzhals JA, Lamm LU, Ryder LP, Svejgaard A. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol. 1995;155:3013–20.PubMedGoogle Scholar
  82. 82.
    Thiel S, Frederiksen PD, Jensenius JC. Clinical manifestations of mannan-binding lectin deficiency. Mol Immunol. 2006;43:86–96.CrossRefPubMedGoogle Scholar
  83. 83.
    Steffensen R, Thiel S, Varming K, Jersild C, Jensenius JC. Detection of structural gene mutations and promoter polymorphisms in the mannan-binding lectin (MBL) gene by polymerase chain reaction with sequence-specific primers. J Immunol Methods. 2000;241:33–42.CrossRefPubMedGoogle Scholar
  84. 84.
    Turner MW. The role of mannose-binding lectin in health and disease. Mol Immunol. 2003;40:423–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Selman L, Hansen S. Structure and function of collectin liver 1 (CL-L1) and collectin 11 (CL-11, CL-K1). Immunobiology. 2012;217:851–63.CrossRefPubMedGoogle Scholar
  86. 86.
    Laffly E, Lacroix M, Martin L, Vassal-Stermann E, Thielens NM, Gaboriaud C. Human ficolin-2 recognition versatility extended: an update on the binding of ficolin-2 to sulfated/phosphated carbohydrates. FEBS Lett. 2014;588:4694–700.CrossRefPubMedGoogle Scholar
  87. 87.
    Walport MJ. Complement. First of two parts. N Engl J Med. 2001;344:1058–66.CrossRefGoogle Scholar
  88. 88.
    Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol. 2007;171:715–27.PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Schmaier AH. The elusive physiologic role of Factor XII. J Clin Invest. 2008;118:3006–9.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, Lambris JD, Warner RL, Flierl MA, Hoesel LM, Gebhard F, Younger JG, Drouin SM, Wetsel RA, Ward PA. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med. 2006;12:682–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Krisinger MJ, Goebeler V, Lu Z, Meixner SC, Myles T, Pryzdial EL, Conway EM. Thrombin generates previously unidentified C5 products that support the terminal complement activation pathway. Blood. 2012;120:1717–25.CrossRefPubMedGoogle Scholar
  92. 92.
    DiScipio RG. The activation of the alternative pathway C3 convertase by human plasma kallikrein. Immunology. 1982;45:587–95.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Hiemstra PS, Daha MR, Bouma BN. Activation of factor B of the complement system by kallikrein and its light chain. Thromb Res. 1985;38:491–503.CrossRefPubMedGoogle Scholar
  94. 94.
    Janssen BJ, Huizinga EG, Raaijmakers HC, Roos A, Daha MR, Nilsson-Ekdahl K, Nilsson B, Gros P. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature. 2005;437:505–11.CrossRefPubMedGoogle Scholar
  95. 95.
    Janssen BJ, Christodoulidou A, McCarthy A, Lambris JD, Gros P. Structure of C3b reveals conformational changes that underlie complement activity. Nature. 2006;444:213–6.CrossRefPubMedGoogle Scholar
  96. 96.
    Sim RB, Twose TM, Paterson DS, Sim E. The covalent-binding reaction of complement component C3. Biochem J. 1981;193:115–27.PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    Pangburn MK, Muller-Eberhard HJ. Initiation of the alternative complement pathway due to spontaneous hydrolysis of the thioester of C3. Ann N Y Acad Sci. 1983;421:291–8.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Pangburn MK, Schreiber RD, Muller-Eberhard HJ. Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J Exp Med. 1981;154:856–67.CrossRefPubMedGoogle Scholar
  99. 99.
    Fearon DT, Austen KF. Properdin: binding to C3b and stabilization of the C3b-dependent C3 convertase. J Exp Med. 1975;142:856–63.CrossRefPubMedGoogle Scholar
  100. 100.
    Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE. Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J Immunol. 2007;179:2600–8.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Pangburn MK. Analysis of the natural polymeric forms of human properdin and their functions in complement activation. J Immunol. 1989;142:202–7.PubMedGoogle Scholar
  102. 102.
    Schwaeble W, Dippold WG, Schafer MK, Pohla H, Jonas D, Luttig B, Weihe E, Huemer HP, Dierich MP, Reid KB. Properdin, a positive regulator of complement activation, is expressed in human T cell lines and peripheral blood T cells. J Immunol. 1993;151:2521–8.PubMedGoogle Scholar
  103. 103.
    Wirthmueller U, Dewald B, Thelen M, Schafer MK, Stover C, Whaley K, North J, Eggleton P, Reid KB, Schwaeble WJ. Properdin, a positive regulator of complement activation, is released from secondary granules of stimulated peripheral blood neutrophils. J Immunol. 1997;158:4444–51.PubMedGoogle Scholar
  104. 104.
    Holt GD, Pangburn MK, Ginsburg V. Properdin binds to sulfatide [Gal(3-SO4)beta 1-1 Cer] and has a sequence homology with other proteins that bind sulfated glycoconjugates. J Biol Chem. 1990;265:2852–5.PubMedGoogle Scholar
  105. 105.
    Kemper C, Mitchell LM, Zhang L, Hourcade DE. The complement protein properdin binds apoptotic T cells and promotes complement activation and phagocytosis. Proc Natl Acad Sci U S A. 2008;105:9023–8.PubMedCentralCrossRefPubMedGoogle Scholar
  106. 106.
    Cortes C, Ferreira VP, Pangburn MK. Native properdin binds to Chlamydia pneumoniae and promotes complement activation. Infect Immun. 2011;79:724–31.CrossRefPubMedGoogle Scholar
  107. 107.
    Saggu G, Cortes C, Emch HN, Ramirez G, Worth RG, Ferreira VP. Identification of a novel mode of complement activation on stimulated platelets mediated by properdin and C3(H2O). J Immunol. 2013;190:6457–67.PubMedCentralCrossRefPubMedGoogle Scholar
  108. 108.
    Pangburn MK, Rawal N. Structure and function of complement C5 convertase enzymes. Biochem Soc Trans. 2002;30:1006–10.CrossRefPubMedGoogle Scholar
  109. 109.
    Rawal N, Pangburn MK. C5 convertase of the alternative pathway of complement. Kinetic analysis of the free and surface-bound forms of the enzyme. J Biol Chem. 1998;273:16828–35.CrossRefPubMedGoogle Scholar
  110. 110.
    Rawal N, Pangburn MK. Formation of high affinity C5 convertase of the classical pathway of complement. J Biol Chem. 2003;278:38476–83.CrossRefPubMedGoogle Scholar
  111. 111.
    Matthews KW, Mueller-Ortiz SL, Wetsel RA. Carboxypeptidase N: a pleiotropic regulator of inflammation. Mol Immunol. 2004;40:785–93.CrossRefPubMedGoogle Scholar
  112. 112.
    Hadders MA, Beringer DX, Gros P. Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science. 2007;317:1552–4.CrossRefPubMedGoogle Scholar
  113. 113.
    Rosado CJ, Buckle AM, Law RH, Butcher RE, Kan WT, Bird CH, Ung K, Browne KA, Baran K, Bashtannyk-Puhalovich TA, Faux NG, Wong W, Porter CJ, Pike RN, Ellisdon AM, Pearce MC, Bottomley SP, Emsley J, Smith AI, Rossjohn J, Hartland EL, Voskoboinik I, Trapani JA, Bird PI, Dunstone MA, Whisstock JC. A common fold mediates vertebrate defense and bacterial attack. Science. 2007;317:1548–51.CrossRefPubMedGoogle Scholar
  114. 114.
    Podack ER, Tschopp J. Polymerization of the ninth component of complement (C9): formation of poly(C9) with a tubular ultrastructure resembling the membrane attack complex of complement. Proc Natl Acad Sci U S A. 1982;79:574–8.PubMedCentralCrossRefPubMedGoogle Scholar
  115. 115.
    Dudkina NV, Spicer BA, Reboul CF, Conroy PJ, Lukoyanova N, Elmlund H, Law RH, Ekkel SM, Kondos SC, Goode RJ, Ramm G, Whisstock JC, Saibil HR, Dunstone MA. Structure of the poly-C9 component of the complement membrane attack complex. Nat Commun. 2016;7:10588.PubMedCentralCrossRefPubMedGoogle Scholar
  116. 116.
    Serna M, Giles JL, Morgan BP, Bubeck D. Structural basis of complement membrane attack complex formation. Nat Commun. 2016;7:10587.PubMedCentralCrossRefPubMedGoogle Scholar
  117. 117.
    Arbore G, West EE, Spolski R, Robertson AAB, Klos A, Rheinheimer C, Dutow P, Woodruff TM, Yu ZX, O'Neill LA, Coll RC, Sher A, Leonard WJ, Kohl J, Monk P, Cooper MA, Arno M, Afzali B, Lachmann HJ, Cope AP, Mayer-Barber KD, Kemper C. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells. Science. 2016;352:aad1210.PubMedCentralCrossRefPubMedGoogle Scholar
  118. 118.
    Arbore G, Kemper C, Kolev M. Intracellular complement – the complosome – in immune cell regulation. Mol Immunol. 2017;89:2–9.CrossRefPubMedGoogle Scholar
  119. 119.
    Liszewski MK, Kolev M, Le Friec G, Leung M, Bertram PG, Fara AF, Subias M, Pickering MC, Drouet C, Meri S, Arstila TP, Pekkarinen PT, Ma M, Cope A, Reinheckel T, Rodriguez de Cordoba S, Afzali B, Atkinson JP, Kemper C. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity. 2013;39:1143–57.PubMedCentralCrossRefPubMedGoogle Scholar
  120. 120.
    Elvington M, Liszewski MK, Bertram P, Kulkarni HS, Atkinson JP. A C3(H20) recycling pathway is a component of the intracellular complement system. J Clin Invest. 2017;127:970–81.PubMedCentralCrossRefPubMedGoogle Scholar
  121. 121.
    Kolev M, Dimeloe S, Le Friec G, Navarini A, Arbore G, Povoleri GA, Fischer M, Belle R, Loeliger J, Develioglu L, Bantug GR, Watson J, Couzi L, Afzali B, Lavender P, Hess C, Kemper C. Complement regulates nutrient influx and metabolic reprogramming during Th1 cell responses. Immunity. 2015;42:1033–47.PubMedCentralCrossRefPubMedGoogle Scholar
  122. 122.
    Samstad EO, Niyonzima N, Nymo S, Aune MH, Ryan L, Bakke SS, Lappegard KT, Brekke OL, Lambris JD, Damas JK, Latz E, Mollnes TE, Espevik T. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J Immunol. 2014;192:2837–45.PubMedCentralCrossRefPubMedGoogle Scholar
  123. 123.
    Satyam A, Kannan L, Matsumoto N, Geha M, Lapchak PH, Bosse R, Shi GP, Dalle Lucca JJ, Tsokos MG, Tsokos GC. Intracellular activation of complement 3 is responsible for intestinal tissue damage during mesenteric ischemia. J Immunol. 2017;198:788–97.CrossRefPubMedGoogle Scholar
  124. 124.
    Patston PA, Gettins P, Beechem J, Schapira M. Mechanism of serpin action: evidence that C1 inhibitor functions as a suicide substrate. Biochemistry. 1991;30:8876–82.CrossRefPubMedGoogle Scholar
  125. 125.
    Bock SC, Skriver K, Nielsen E, Thogersen HC, Wiman B, Donaldson VH, Eddy RL, Marrinan J, Radziejewska E, Huber R, et al. Human C1 inhibitor: primary structure, cDNA cloning, and chromosomal localization. Biochemistry. 1986;25:4292–301.CrossRefPubMedGoogle Scholar
  126. 126.
    Sim RB, Reboul A, Arlaud GJ, Villiers CL, Colomb MG. Interaction of 125I-labelled complement subcomponents C-1r and C-1s with protease inhibitors in plasma. FEBS Lett. 1979;97:111–5.CrossRefPubMedGoogle Scholar
  127. 127.
    Ziccardi RJ. Activation of the early components of the classical complement pathway under physiologic conditions. J Immunol. 1981;126:1769–73.PubMedGoogle Scholar
  128. 128.
    Sim RB, Arlaud GJ, Colomb MG. C1 inhibitor-dependent dissociation of human complement component C1 bound to immune complexes. Biochem J. 1979;179:449–57.PubMedCentralCrossRefPubMedGoogle Scholar
  129. 129.
    Ziccardi RJ, Cooper NR. Active disassembly of the first complement component, C-1, by C-1 inactivator. J Immunol. 1979;123:788–92.PubMedGoogle Scholar
  130. 130.
    Chen CH, Boackle RJ. A newly discovered function for C1 inhibitor, removal of the entire C1qr2s2 complex from immobilized human IgG subclasses. Clin Immunol Immunopathol. 1998;87:68–74.CrossRefPubMedGoogle Scholar
  131. 131.
    Jiang H, Wagner E, Zhang H, Frank MM. Complement 1 inhibitor is a regulator of the alternative complement pathway. J Exp Med. 2001;194:1609–16.PubMedCentralCrossRefPubMedGoogle Scholar
  132. 132.
    Davis AE 3rd, Lu F, Mejia P. C1 inhibitor, a multi-functional serine protease inhibitor. Thromb Haemost. 2010;104:886–93.CrossRefPubMedGoogle Scholar
  133. 133.
    Morris KM, Aden DP, Knowles BB, Colten HR. Complement biosynthesis by the human hepatoma-derived cell line HepG2. J Clin Invest. 1982;70:906–13.PubMedCentralCrossRefPubMedGoogle Scholar
  134. 134.
    Vyse TJ, Morley BJ, Bartok I, Theodoridis EL, Davies KA, Webster AD, Walport MJ. The molecular basis of hereditary complement factor I deficiency. J Clin Invest. 1996;97:925–33.PubMedCentralCrossRefPubMedGoogle Scholar
  135. 135.
    Whaley K. Biosynthesis of the complement components and the regulatory proteins of the alternative complement pathway by human peripheral blood monocytes. J Exp Med. 1980;151:501–16.CrossRefPubMedGoogle Scholar
  136. 136.
    Timar KK, Junnikkala S, Dallos A, Jarva H, Bhuiyan ZA, Meri S, Bos JD, Asghar SS. Human keratinocytes produce the complement inhibitor factor I: synthesis is regulated by interferon-gamma. Mol Immunol. 2007;44:2943–9.CrossRefPubMedGoogle Scholar
  137. 137.
    Julen N, Dauchel H, Lemercier C, Sim RB, Fontaine M, Ripoche J. In vitro biosynthesis of complement factor I by human endothelial cells. Eur J Immunol. 1992;22:213–7.CrossRefPubMedGoogle Scholar
  138. 138.
    Dauchel H, Julen N, Lemercier C, Daveau M, Ozanne D, Fontaine M, Ripoche J. Expression of complement alternative pathway proteins by endothelial cells. Differential regulation by interleukin 1 and glucocorticoids. Eur J Immunol. 1990;20:1669–75.CrossRefPubMedGoogle Scholar
  139. 139.
    Nilsson SC, Sim RB, Lea SM, Fremeaux-Bacchi V, Blom AM. Complement factor I in health and disease. Mol Immunol. 2011;48:1611–20.CrossRefPubMedGoogle Scholar
  140. 140.
    van Lookeren Campagne M, Strauss EC, Yaspan BL. Age-related macular degeneration: complement in action. Immunobiology. 2016;221:733–9.CrossRefPubMedGoogle Scholar
  141. 141.
    Fujita T, Gigli I, Nussenzweig V. Human C4-binding protein. II. Role in proteolysis of C4b by C3b- inactivator. J Exp Med. 1978;148:1044–51.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Fujita T, Nussenzweig V. The role of C4-binding protein and beta 1H in proteolysis of C4b and C3b. J Exp Med. 1979;150:267–76.PubMedCentralCrossRefPubMedGoogle Scholar
  143. 143.
    Gigli I, Fujita T, Nussenzweig V. Modulation of the classical pathway C3 convertase by plasma proteins C4 binding protein and C3b inactivator. Proc Natl Acad Sci U S A. 1979;76:6596–600.PubMedCentralCrossRefPubMedGoogle Scholar
  144. 144.
    Scharfstein J, Ferreira A, Gigli I, Nussenzweig V. Human C4-binding protein. I. Isolation and characterization. J Exp Med. 1978;148:207–22.PubMedCentralCrossRefPubMedGoogle Scholar
  145. 145.
    Reid KB, Bentley DR, Campbell RD, Chung LP, Sim RB, Kristensen T, Tack BF. Complement system proteins which interact with C3b or C4b A superfamily of structurally related proteins. Immunol Today. 1986;7:230–4.CrossRefPubMedGoogle Scholar
  146. 146.
    Seya T. Human regulator of complement activation (RCA) gene family proteins and their relationship to microbial infection. Microbiol Immunol. 1995;39:295–305.CrossRefPubMedGoogle Scholar
  147. 147.
    Villoutreix BO, Hardig Y, Wallqvist A, Covell DG, Garcia de Frutos P, Dahlback B. Structural investigation of C4b-binding protein by molecular modeling: localization of putative binding sites. Proteins. 1998;31:391–405.CrossRefPubMedGoogle Scholar
  148. 148.
    Fearon DT, Austen KF. Activation of the alternative complement pathway due to resistance of zymosan-bound amplification convertase to endogenous regulatory mechanisms. Proc Natl Acad Sci U S A. 1977;74:1683–7.PubMedCentralCrossRefPubMedGoogle Scholar
  149. 149.
    Pangburn MK, Schreiber RD, Muller-Eberhard HJ. Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein beta1H for cleavage of C3b and C4b in solution. J Exp Med. 1977;146:257–70.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Sim E, Wood AB, Hsiung LM, Sim RB. Pattern of degradation of human complement fragment, C3b. FEBS Lett. 1981;132:55–60.CrossRefPubMedGoogle Scholar
  151. 151.
    Weiler JM, Daha MR, Austen KF, Fearon DT. Control of the amplification convertase of complement by the plasma protein beta1H. Proc Natl Acad Sci U S A. 1976;73:3268–72.PubMedCentralCrossRefPubMedGoogle Scholar
  152. 152.
    Whaley K, Ruddy S. Modulation of the alternative complement pathways by beta 1 H globulin. J Exp Med. 1976;144:1147–63.CrossRefPubMedGoogle Scholar
  153. 153.
    Ripoche J, Day AJ, Harris TJ, Sim RB. The complete amino acid sequence of human complement factor H. Biochem J. 1988;249:593–602.PubMedCentralCrossRefPubMedGoogle Scholar
  154. 154.
    Sharma AK, Pangburn MK. Identification of three physically and functionally distinct binding sites for C3b in human complement factor H by deletion mutagenesis. Proc Natl Acad Sci U S A. 1996;93:10996–1001.PubMedCentralCrossRefPubMedGoogle Scholar
  155. 155.
    Blaum BS, Hannan JP, Herbert AP, Kavanagh D, Uhrin D, Stehle T. Structural basis for sialic acid-mediated self-recognition by complement factor H. Nat Chem Biol. 2015;11:77–83.CrossRefPubMedGoogle Scholar
  156. 156.
    Kajander T, Lehtinen MJ, Hyvarinen S, Bhattacharjee A, Leung E, Isenman DE, Meri S, Goldman A, Jokiranta TS. Dual interaction of factor H with C3d and glycosaminoglycans in host-nonhost discrimination by complement. Proc Natl Acad Sci U S A. 2011;108:2897–902.PubMedCentralCrossRefPubMedGoogle Scholar
  157. 157.
    Fearon DT. Regulation by membrane sialic acid of beta1H-dependent decay- dissociation of amplification C3 convertase of the alternative complement pathway. Proc Natl Acad Sci U S A. 1978;75:1971–5.PubMedCentralCrossRefPubMedGoogle Scholar
  158. 158.
    Pangburn MK, Muller-Eberhard HJ. Complement C3 convertase: cell surface restriction of beta1H control and generation of restriction on neuraminidase-treated cells. Proc Natl Acad Sci U S A. 1978;75:2416–20.PubMedCentralCrossRefPubMedGoogle Scholar
  159. 159.
    Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308:419–21.CrossRefPubMedGoogle Scholar
  160. 160.
    Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308:385–9.PubMedCentralCrossRefPubMedGoogle Scholar
  161. 161.
    Weismann D, Hartvigsen K, Lauer N, Bennett KL, Scholl HP, Charbel Issa P, Cano M, Brandstatter H, Tsimikas S, Skerka C, Superti-Furga G, Handa JT, Zipfel PF, Witztum JL, Binder CJ. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature. 2011;478:76–81.PubMedCentralCrossRefPubMedGoogle Scholar
  162. 162.
    Pouw RB, Vredevoogd DW, Kuijpers TW, Wouters D. Of mice and men: the factor H protein family and complement regulation. Mol Immunol. 2015;67:12–20.CrossRefPubMedGoogle Scholar
  163. 163.
    Skerka C, Chen Q, Fremeaux-Bacchi V, Roumenina LT. Complement factor H related proteins (CFHRs). Mol Immunol. 2013;56:170–80.CrossRefPubMedGoogle Scholar
  164. 164.
    Caesar JJ, Lavender H, Ward PN, Exley RM, Eaton J, Chittock E, Malik TH, Goiecoechea De Jorge E, Pickering MC, Tang CM, Lea SM. Competition between antagonistic complement factors for a single protein on N. meningitidis rules disease susceptibility. eLife 2014;3:e04008 DOI: 10.7554/eLife.04008.Google Scholar
  165. 165.
    de Cordoba SR, Tortajada A, Harris CL, Morgan BP. Complement dysregulation and disease: from genes and proteins to diagnostics and drugs. Immunobiology. 2012;217:1034–46.CrossRefPubMedGoogle Scholar
  166. 166.
    de Cordoba SR, de Jorge EG. Translational mini-review series on complement factor H: genetics and disease associations of human complement factor H. Clin Exp Immunol. 2008;151:1–13.PubMedCentralCrossRefPubMedGoogle Scholar
  167. 167.
    Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A. Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet. 2014;15:151–71.PubMedCentralCrossRefPubMedGoogle Scholar
  168. 168.
    Hofer J, Giner T, Jozsi M. Complement factor H-antibody-associated hemolytic uremic syndrome: pathogenesis, clinical presentation, and treatment. Semin Thromb Hemost. 2014;40:431–43.CrossRefPubMedGoogle Scholar
  169. 169.
    Kavanagh D, Goodship T. Genetics and complement in atypical HUS. Pediatr Nephrol. 2010;25:2431–42.PubMedCentralCrossRefPubMedGoogle Scholar
  170. 170.
    Liszewski MK, Atkinson JP. Complement regulators in human disease: lessons from modern genetics. J Intern Med. 2015;277:294–305.CrossRefPubMedGoogle Scholar
  171. 171.
    McHarg S, Clark SJ, Day AJ, Bishop PN. Age-related macular degeneration and the role of the complement system. Mol Immunol. 2015;67:43–50.CrossRefPubMedGoogle Scholar
  172. 172.
    Pickering MC, Cook HT. Translational mini-review series on complement factor H: renal diseases associated with complement factor H: novel insights from humans and animals. Clin Exp Immunol. 2008;151:210–30.PubMedCentralCrossRefPubMedGoogle Scholar
  173. 173.
    Rodriguez de Cordoba S, Hidalgo MS, Pinto S, Tortajada A. Genetics of atypical hemolytic uremic syndrome (aHUS). Semin Thromb Hemost. 2014;40:422–30.CrossRefPubMedGoogle Scholar
  174. 174.
    van Lookeren Campagne M, Strauss EC, Yaspan BL. Age-related macular degeneration: complement in action. Immunobiology. 2016;221:733–9.CrossRefPubMedGoogle Scholar
  175. 175.
    Preissner KT, Wassmuth R, Muller-Berghaus G. Physicochemical characterization of human S-protein and its function in the blood coagulation system. Biochem J. 1985;231:349–55.PubMedCentralCrossRefPubMedGoogle Scholar
  176. 176.
    Bhakdi S, Tranum-Jensen J. Membrane damage by complement. Biochim Biophys Acta. 1983;737:343–72.CrossRefPubMedGoogle Scholar
  177. 177.
    Preissner KP, Podack ER, Muller-Eberhard HJ. SC5b-7, SC5b-8 and SC5b-9 complexes of complement: ultrastructure and localization of the S-protein (vitronectin) within the macromolecules. Eur J Immunol. 1989;19:69–75.CrossRefPubMedGoogle Scholar
  178. 178.
    Podack ER, Preissner KT, Muller-Eberhard HJ. Inhibition of C9 polymerization within the SC5b-9 complex of complement by S-protein. Acta Pathol Microbiol Immunol Scand Suppl. 1984;284:89–96.PubMedGoogle Scholar
  179. 179.
    Tschopp J, Masson D, Schafer S, Peitsch M, Preissner KT. The heparin binding domain of S-protein/vitronectin binds to complement components C7, C8, and C9 and perforin from cytolytic T-cells and inhibits their lytic activities. Biochemistry. 1988;27:4103–9.CrossRefPubMedGoogle Scholar
  180. 180.
    Ekmekci OB, Ekmekci H. Vitronectin in atherosclerotic disease. Clin Chim Acta. 2006;368:77–83.CrossRefPubMedGoogle Scholar
  181. 181.
    Schvartz I, Seger D, Shaltiel S. Vitronectin. Int J Biochem Cell Biol. 1999;31:539–44.CrossRefPubMedGoogle Scholar
  182. 182.
    O’Bryan MK, Baker HW, Saunders JR, Kirszbaum L, Walker ID, Hudson P, Liu DY, Glew MD, d’Apice AJ, Murphy BF. Human seminal clusterin (SP-40,40). Isolation and characterization. J Clin Invest. 1990;85:1477–86.PubMedCentralCrossRefPubMedGoogle Scholar
  183. 183.
    Murphy BF, Saunders JR, O’Bryan MK, Kirszbaum L, Walker ID, d’Apice AJ. SP-40,40 is an inhibitor of C5b-6-initiated haemolysis. Int Immunol. 1989;1:551–4.CrossRefPubMedGoogle Scholar
  184. 184.
    Rosenberg ME, Silkensen J. Clusterin: physiologic and pathophysiologic considerations. Int J Biochem Cell Biol. 1995;27:633–45.CrossRefPubMedGoogle Scholar
  185. 185.
    Liszewski MK, Atkinson JP. Complement regulator CD46: genetic variants and disease associations. Hum Genomics. 2015;9:7.PubMedCentralCrossRefPubMedGoogle Scholar
  186. 186.
    Nicholson-Weller A, Burge J, Austen KF. Purification from guinea pig erythrocyte stroma of a decay-accelerating factor for the classical c3 convertase, C4b,2a. J Immunol. 1981;127:2035–9.PubMedGoogle Scholar
  187. 187.
    Nicholson-Weller A, Spicer DB, Austen KF. Deficiency of the complement regulatory protein, “decay-accelerating factor,” on membranes of granulocytes, monocytes, and platelets in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1985;312:1091–7.CrossRefPubMedGoogle Scholar
  188. 188.
    Klickstein LB, Bartow TJ, Miletic V, Rabson LD, Smith JA, Fearon DT. Identification of distinct C3b and C4b recognition sites in the human C3b/C4b receptor (CR1, CD35) by deletion mutagenesis. J Exp Med. 1988;168:1699–717.CrossRefPubMedGoogle Scholar
  189. 189.
    Klickstein LB, Wong WW, Smith JA, Weis JH, Wilson JG, Fearon DT. Human C3b/C4b receptor (CR1). Demonstration of long homologous repeating domains that are composed of the short consensus repeats characteristics of C3/C4 binding proteins. J Exp Med. 1987;165:1095–112.CrossRefPubMedGoogle Scholar
  190. 190.
    Krych-Goldberg M, Hauhart RE, Subramanian VB, Yurcisin BM 2nd, Crimmins DL, Hourcade DE, Atkinson JP. Decay accelerating activity of complement receptor type 1 (CD35). Two active sites are required for dissociating C5 convertases. J Biol Chem. 1999;274:31160–8.CrossRefPubMedGoogle Scholar
  191. 191.
    Nelson RA Jr. The immune-adherence phenomenon; an immunologically specific reaction between microorganisms and erythrocytes leading to enhanced phagocytosis. Science. 1953;118:733–7.CrossRefPubMedGoogle Scholar
  192. 192.
    Arend WP, Mannik M. Studies on antigen-antibody complexes. II. Quantification of tissue uptake of soluble complexes in normal and complement-depleted rabbits. J Immunol. 1971;107:63–75.PubMedGoogle Scholar
  193. 193.
    Benacerraf B, Sebestyen M, Cooper NS. The clearance of antigen antibody complexes from the blood by the reticuloendothelial system. J Immunol. 1959;82:131–7.PubMedGoogle Scholar
  194. 194.
    Cornacoff JB, Hebert LA, Smead WL, VanAman ME, Birmingham DJ, Waxman FJ. Primate erythrocyte-immune complex-clearing mechanism. J Clin Invest. 1983;71:236–47.PubMedCentralCrossRefPubMedGoogle Scholar
  195. 195.
    Kimberly RP, Edberg JC, Merriam LT, Clarkson SB, Unkeless JC, Taylor RP. In vivo handling of soluble complement fixing Ab/dsDNA immune complexes in chimpanzees. J Clin Invest. 1989;84:962–70.PubMedCentralCrossRefPubMedGoogle Scholar
  196. 196.
    Schifferli JA, Ng YC, Estreicher J, Walport MJ. The clearance of tetanus toxoid/anti-tetanus toxoid immune complexes from the circulation of humans. Complement- and erythrocyte complement receptor 1-dependent mechanisms. J Immunol. 1988;140:899–904.PubMedGoogle Scholar
  197. 197.
    Siegel I, Liu TL, Gleicher N. Red cell immune adherence. Lancet. 1981;2:878–9.CrossRefPubMedGoogle Scholar
  198. 198.
    Siegel I, Liu TL, Gleicher N. The red-cell immune system. Lancet. 1981;2:556–9.CrossRefPubMedGoogle Scholar
  199. 199.
    Wilson JG, Murphy EE, Wong WW, Klickstein LB, Weis JH, Fearon DT. Identification of a restriction fragment length polymorphism by a CR1 cDNA that correlates with the number of CR1 on erythrocytes. J Exp Med. 1986;164:50–9.CrossRefPubMedGoogle Scholar
  200. 200.
    Krych-Goldberg M, Atkinson JP. Structure-function relationships of complement receptor type 1. Immunol Rev. 2001;180:112–22.CrossRefPubMedGoogle Scholar
  201. 201.
    Dykman TR, Cole JL, Iida K, Atkinson JP. Structural heterogeneity of the C3b/C4b receptor (Cr 1) on human peripheral blood cells. J Exp Med. 1983;157:2160–5.CrossRefPubMedGoogle Scholar
  202. 202.
    Dykman TR, Hatch JA, Aqua MS, Atkinson JP. Polymorphism of the C3b/C4b receptor (CR1): characterization of a fourth allele. J Immunol. 1985;134:1787–9.PubMedGoogle Scholar
  203. 203.
    Dykman TR, Hatch JA, Atkinson JP. Polymorphism of the human C3b/C4b receptor. Identification of a third allele and analysis of receptor phenotypes in families and patients with systemic lupus erythematosus. J Exp Med. 1984;159:691–703.CrossRefPubMedGoogle Scholar
  204. 204.
    Hourcade D, Miesner DR, Atkinson JP, Holers VM. Identification of an alternative polyadenylation site in the human C3b/C4b receptor (complement receptor type 1) transcriptional unit and prediction of a secreted form of complement receptor type 1. J Exp Med. 1988;168:1255–70.CrossRefPubMedGoogle Scholar
  205. 205.
    Wong WW, Wilson JG, Fearon DT. Genetic regulation of a structural polymorphism of human C3b receptor. J Clin Invest. 1983;72:685–93.PubMedCentralCrossRefPubMedGoogle Scholar
  206. 206.
    Park HJ, Guariento M, Maciejewski M, Hauhart R, Tham WH, Cowman AF, Schmidt CQ, Mertens HD, Liszewski MK, Hourcade DE, Barlow PN, Atkinson JP. Using mutagenesis and structural biology to map the binding site for the Plasmodium falciparum merozoite protein PfRh4 on the human immune adherence receptor. J Biol Chem. 2014;289:450–63.CrossRefPubMedGoogle Scholar
  207. 207.
    Rowe JA, Moulds JM, Newbold CI, Miller LH. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature. 1997;388:292–5.CrossRefPubMedGoogle Scholar
  208. 208.
    Stoute JA. Complement receptor 1 and malaria. Cell Microbiol. 2011;13:1441–50.CrossRefPubMedGoogle Scholar
  209. 209.
    Arora V, Grover R, Kumar A, Anand D, Das N. Relationship of leukocyte CR1 transcript and protein with the pathophysiology and prognosis of systemic lupus erythematosus: a follow-up study. Lupus. 2011;20:1010–8.CrossRefPubMedGoogle Scholar
  210. 210.
    Birmingham DJ, Gavit KF, McCarty SM, Yu CY, Rovin BH, Nagaraja HN, Hebert LA. Consumption of erythrocyte CR1 (CD35) is associated with protection against systemic lupus erythematosus renal flare. Clin Exp Immunol. 2006;143:274–80.PubMedCentralCrossRefPubMedGoogle Scholar
  211. 211.
    Marzocchi-Machado CM, Alves CM, Azzolini AE, Polizello AC, Carvalho IF, Lucisano-Valim YM. CR1 on erythrocytes of Brazilian systemic lupus erythematosus patients: the influence of disease activity on expression and ability of this receptor to bind immune complexes opsonized with complement from normal human serum. J Autoimmun. 2005;25:289–97.CrossRefPubMedGoogle Scholar
  212. 212.
    Liszewski MK, Post TW, Atkinson JP. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol. 1991;9:431–55.CrossRefPubMedGoogle Scholar
  213. 213.
    Liszewski MK, Leung MK, Atkinson JP. Membrane cofactor protein: importance of N- and O-glycosylation for complement regulatory function. J Immunol. 1998;161:3711–8.PubMedGoogle Scholar
  214. 214.
    Liszewski MK, Farries TC, Lublin DM, Rooney IA, Atkinson JP. Control of the complement system. Adv Immunol. 1996;61:201–83.CrossRefPubMedGoogle Scholar
  215. 215.
    Medof ME, Walter EI, Rutgers JL, Knowles DM, Nussenzweig V. Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J Exp Med. 1987;165:848–64.CrossRefPubMedGoogle Scholar
  216. 216.
    Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG, Waldmann H, Lachmann PJ. Human protectin (CD59), an 18,000–20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology. 1990;71:1–9.PubMedCentralPubMedGoogle Scholar
  217. 217.
    Rollins SA, Sims PJ. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9. J Immunol. 1990;144:3478–83.PubMedGoogle Scholar
  218. 218.
    Morgan BP, Berg CW, Harris CL. “Homologous restriction” in complement lysis: roles of membrane complement regulators. Xenotransplantation. 2005;12:258–65.CrossRefPubMedGoogle Scholar
  219. 219.
    Powell MB, Marchbank KJ, Rushmere NK, van den Berg CW, Morgan BP. Molecular cloning, chromosomal localization, expression, and functional characterization of the mouse analogue of human CD59. J Immunol. 1997;158:1692–702.PubMedGoogle Scholar
  220. 220.
    van den Berg CW, Morgan BP. Complement-inhibiting activities of human CD59 and analogues from rat, sheep, and pig are not homologously restricted. J Immunol. 1994;152:4095–101.PubMedGoogle Scholar
  221. 221.
    Harris CL, Spiller OB, Morgan BP. Human and rodent decay-accelerating factors (CD55) are not species restricted in their complement-inhibiting activities. Immunology. 2000;100:462–70.PubMedCentralCrossRefPubMedGoogle Scholar
  222. 222.
    Mead R, Hinchliffe SJ, Morgan BP. Molecular cloning, expression and characterization of the rat analogue of human membrane cofactor protein (MCP/CD46). Immunology. 1999;98:137–43.PubMedCentralCrossRefPubMedGoogle Scholar
  223. 223.
    Perez de la Lastra JM, Harris CL, Hinchliffe SJ, Holt DS, Rushmere NK, Morgan BP. Pigs express multiple forms of decay-accelerating factor (CD55), all of which contain only three short consensus repeats. J Immunol. 2000;165:2563–73.CrossRefPubMedGoogle Scholar
  224. 224.
    Tsujimura A, Shida K, Kitamura M, Nomura M, Takeda J, Tanaka H, Matsumoto M, Matsumiya K, Okuyama A, Nishimune Y, Okabe M, Seya T. Molecular cloning of a murine homologue of membrane cofactor protein (CD46): preferential expression in testicular germ cells. Biochem J. 1998;330(Pt 1):163–8.PubMedCentralCrossRefPubMedGoogle Scholar
  225. 225.
    van den Berg CW, Perez de la Lastra JM, Llanes D, Morgan BP. Purification and characterization of the pig analogue of human membrane cofactor protein (CD46/MCP). J Immunol. 1997;158:1703–9.PubMedGoogle Scholar
  226. 226.
    Langnaese K, Colleaux L, Kloos DU, Fontes M, Wieacker P. Cloning of Z39Ig, a novel gene with immunoglobulin-like domains located on human chromosome X. Biochim Biophys Acta. 2000;1492:522–5.CrossRefPubMedGoogle Scholar
  227. 227.
    He JQ, Wiesmann C, van Lookeren Campagne M. A role of macrophage complement receptor CRIg in immune clearance and inflammation. Mol Immunol. 2008;45:4041–7.CrossRefPubMedGoogle Scholar
  228. 228.
    Gorgani NN, He JQ, Katschke KJ Jr, Helmy KY, Xi H, Steffek M, Hass PE, van Lookeren Campagne M. Complement receptor of the Ig superfamily enhances complement-mediated phagocytosis in a subpopulation of tissue resident macrophages. J Immunol. 2008;181:7902–8.CrossRefPubMedGoogle Scholar
  229. 229.
    Helmy KY, Katschke KJ Jr, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren Campagne M. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell. 2006;124:915–27.CrossRefPubMedGoogle Scholar
  230. 230.
    Katschke KJ Jr, Helmy KY, Steffek M, Xi H, Yin J, Lee WP, Gribling P, Barck KH, Carano RA, Taylor RE, Rangell L, Diehl L, Hass PE, Wiesmann C, van Lookeren Campagne M. A novel inhibitor of the alternative pathway of complement reverses inflammation and bone destruction in experimental arthritis. J Exp Med. 2007;204:1319–25.PubMedCentralCrossRefPubMedGoogle Scholar
  231. 231.
    Gerard NP, Gerard C. The chemotactic receptor for human C5a anaphylatoxin. Nature. 1991;349:614–7.CrossRefPubMedGoogle Scholar
  232. 232.
    Gerard NP, Hodges MK, Drazen JM, Weller PF, Gerard C. Characterization of a receptor for C5a anaphylatoxin on human eosinophils. J Biol Chem. 1989;264:1760–6.PubMedGoogle Scholar
  233. 233.
    Zwirner J, Fayyazi A, Gotze O. Expression of the anaphylatoxin C5a receptor in non-myeloid cells. Mol Immunol. 1999;36:877–84.CrossRefPubMedGoogle Scholar
  234. 234.
    Amatruda TT 3rd, Gerard NP, Gerard C, Simon MI. Specific interactions of chemoattractant factor receptors with G-proteins. J Biol Chem. 1993;268:10139–44.PubMedGoogle Scholar
  235. 235.
    Monk PN, Partridge LJ. Characterization of a complement-fragment-C5a-stimulated calcium-influx mechanism in U937 monocytic cells. Biochem J. 1993;295(Pt 3):679–84.PubMedCentralCrossRefPubMedGoogle Scholar
  236. 236.
    Siciliano SJ, Rollins TE, Springer MS. Interaction between the C5a receptor and Gi in both the membrane-bound and detergent-solubilized states. J Biol Chem. 1990;265:19568–74.PubMedGoogle Scholar
  237. 237.
    Skokowa J, Ali SR, Felda O, Kumar V, Konrad S, Shushakova N, Schmidt RE, Piekorz RP, Nurnberg B, Spicher K, Birnbaumer L, Zwirner J, Claassens JW, Verbeek JS, van Rooijen N, Kohl J, Gessner JE. Macrophages induce the inflammatory response in the pulmonary Arthus reaction through G alpha i2 activation that controls C5aR and Fc receptor cooperation. J Immunol. 2005;174:3041–50.CrossRefPubMedGoogle Scholar
  238. 238.
    Braun L, Christophe T, Boulay F. Phosphorylation of key serine residues is required for internalization of the complement 5a (C5a) anaphylatoxin receptor via a beta-arrestin, dynamin, and clathrin-dependent pathway. J Biol Chem. 2003;278:4277–85.CrossRefPubMedGoogle Scholar
  239. 239.
    Buhl AM, Avdi N, Worthen GS, Johnson GL. Mapping of the C5a receptor signal transduction network in human neutrophils. Proc Natl Acad Sci U S A. 1994;91:9190–4.PubMedCentralCrossRefPubMedGoogle Scholar
  240. 240.
    Mullmann TJ, Siegel MI, Egan RW, Billah MM. Complement C5a activation of phospholipase D in human neutrophils. A major route to the production of phosphatidates and diglycerides. J Immunol. 1990;144:1901–8.PubMedGoogle Scholar
  241. 241.
    Perianayagam MC, Balakrishnan VS, King AJ, Pereira BJ, Jaber BL. C5a delays apoptosis of human neutrophils by a phosphatidylinositol 3-kinase-signaling pathway. Kidney Int. 2002;61:456–63.CrossRefPubMedGoogle Scholar
  242. 242.
    Lee H, Whitfeld PL, Mackay CR. Receptors for complement C5a. The importance of C5aR and the enigmatic role of C5L2. Immunol Cell Biol. 2008;86:153–60.CrossRefPubMedGoogle Scholar
  243. 243.
    Kalant D, Cain SA, Maslowska M, Sniderman AD, Cianflone K, Monk PN. The chemoattractant receptor-like protein C5L2 binds the C3a des-Arg77/acylation-stimulating protein. J Biol Chem. 2003;278:11123–9.CrossRefPubMedGoogle Scholar
  244. 244.
    Cain SA, Monk PN. The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). J Biol Chem. 2002;277:7165–9.CrossRefPubMedGoogle Scholar
  245. 245.
    Gao H, Neff TA, Guo RF, Speyer CL, Sarma JV, Tomlins S, Man Y, Riedemann NC, Hoesel LM, Younkin E, Zetoune FS, Ward PA. Evidence for a functional role of the second C5a receptor C5L2. FASEB J. 2005;19:1003–5.CrossRefPubMedGoogle Scholar
  246. 246.
    Gerard NP, Lu B, Liu P, Craig S, Fujiwara Y, Okinaga S, Gerard C. An anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2. J Biol Chem. 2005;280:39677–80.CrossRefPubMedGoogle Scholar
  247. 247.
    Rittirsch D, Flierl MA, Nadeau BA, Day DE, Huber-Lang M, Mackay CR, Zetoune FS, Gerard NP, Cianflone K, Kohl J, Gerard C, Sarma JV, Ward PA. Functional roles for C5a receptors in sepsis. Nat Med. 2008;14:551–7.PubMedCentralCrossRefPubMedGoogle Scholar
  248. 248.
    Chen NJ, Mirtsos C, Suh D, Lu YC, Lin WJ, McKerlie C, Lee T, Baribault H, Tian H, Yeh WC. C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature. 2007;446:203–7.CrossRefPubMedGoogle Scholar
  249. 249.
    Langkabel P, Zwirner J, Oppermann M. Ligand-induced phosphorylation of anaphylatoxin receptors C3aR and C5aR is mediated by “G protein-coupled receptor kinases”. Eur J Immunol. 1999;29:3035–46.CrossRefPubMedGoogle Scholar
  250. 250.
    Sayah S, Jauneau AC, Patte C, Tonon MC, Vaudry H, Fontaine M. Two different transduction pathways are activated by C3a and C5a anaphylatoxins on astrocytes. Brain Res Mol Brain Res. 2003;112:53–60.CrossRefPubMedGoogle Scholar
  251. 251.
    Venkatesha RT, Berla Thangam E, Zaidi AK, Ali H. Distinct regulation of C3a-induced MCP-1/CCL2 and RANTES/CCL5 production in human mast cells by extracellular signal regulated kinase and PI3 kinase. Mol Immunol. 2005;42:581–7.CrossRefPubMedGoogle Scholar
  252. 252.
    Hack CE, Nuijens JH, Felt-Bersma RJ, Schreuder WO, Eerenberg-Belmer AJ, Paardekooper J, Bronsveld W, Thijs LG. Elevated plasma levels of the anaphylatoxins C3a and C4a are associated with a fatal outcome in sepsis. Am J Med. 1989;86:20–6.CrossRefPubMedGoogle Scholar
  253. 253.
    Heideman M, Norder-Hansson B, Bengtson A, Mollnes TE. Terminal complement complexes and anaphylatoxins in septic and ischemic patients. Arch Surg. 1988;123:188–92.CrossRefPubMedGoogle Scholar
  254. 254.
    Selberg O, Hecker H, Martin M, Klos A, Bautsch W, Kohl J. Discrimination of sepsis and systemic inflammatory response syndrome by determination of circulating plasma concentrations of procalcitonin, protein complement 3a, and interleukin-6. Crit Care Med. 2000;28:2793–8.CrossRefPubMedGoogle Scholar
  255. 255.
    Stove S, Welte T, Wagner TO, Kola A, Klos A, Bautsch W, Kohl J. Circulating complement proteins in patients with sepsis or systemic inflammatory response syndrome. Clin Diagn Lab Immunol. 1996;3:175–83.PubMedCentralPubMedGoogle Scholar
  256. 256.
    Weinberg PF, Matthay MA, Webster RO, Roskos KV, Goldstein IM, Murray JF. Biologically active products of complement and acute lung injury in patients with the sepsis syndrome. Am Rev Respir Dis. 1984;130:791–6.PubMedGoogle Scholar
  257. 257.
    Cravedi P, Leventhal J, Lakhani P, Ward SC, Donovan MJ, Heeger PS. Immune cell-derived C3a and C5a costimulate human T cell alloimmunity. Am J Transplant. 2013;13:2530–9.CrossRefPubMedGoogle Scholar
  258. 258.
    Kemper C, Atkinson JP. T-cell regulation: with complements from innate immunity. Nat Rev Immunol. 2007;7:9–18.CrossRefPubMedGoogle Scholar
  259. 259.
    Kwan WH, van der Touw W, Paz-Artal E, Li MO, Heeger PS. Signaling through C5a receptor and C3a receptor diminishes function of murine natural regulatory T cells. J Exp Med. 2013;210:257–68.PubMedCentralCrossRefPubMedGoogle Scholar
  260. 260.
    Lim H, Kim YU, Drouin SM, Mueller-Ortiz S, Yun K, Morschl E, Wetsel RA, Chung Y. Negative regulation of pulmonary Th17 responses by C3a anaphylatoxin during allergic inflammation in mice. PLoS One. 2012;7:e52666.PubMedCentralCrossRefPubMedGoogle Scholar
  261. 261.
    Strainic MG, Liu J, Huang D, An F, Lalli PN, Muqim N, Shapiro VS, Dubyak GR, Heeger PS, Medof ME. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity. 2008;28:425–35.PubMedCentralCrossRefPubMedGoogle Scholar
  262. 262.
    Strainic MG, Shevach EM, An F, Lin F, Medof ME. Absence of signaling into CD4(+) cells via C3aR and C5aR enables autoinductive TGF-beta1 signaling and induction of Foxp3(+) regulatory T cells. Nat Immunol. 2013;14:162–71.CrossRefPubMedGoogle Scholar
  263. 263.
    van der Touw W, Cravedi P, Kwan WH, Paz-Artal E, Merad M, Heeger PS. Cutting edge: receptors for C3a and C5a modulate stability of alloantigen-reactive induced regulatory T cells. J Immunol. 2013;190:5921–5.PubMedCentralCrossRefPubMedGoogle Scholar
  264. 264.
    Karsten CM, Kohl J. The immunoglobulin, IgG Fc receptor and complement triangle in autoimmune diseases. Immunobiology. 2012;217:1067–79.CrossRefPubMedGoogle Scholar
  265. 265.
    Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR, Rosas M, McDonald JU, Orr SJ, Berger M, Petzold D, Blanchard V, Winkler A, Hess C, Reid DM, Majoul IV, Strait RT, Harris NL, Kohl G, Wex E, Ludwig R, Zillikens D, Nimmerjahn F, Finkelman FD, Brown GD, Ehlers M, Kohl J. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat Med. 2012;18:1401–6.PubMedCentralCrossRefPubMedGoogle Scholar
  266. 266.
    Shushakova N, Skokowa J, Schulman J, Baumann U, Zwirner J, Schmidt RE, Gessner JE. C5a anaphylatoxin is a major regulator of activating versus inhibitory Fc gamma Rs in immune complex-induced lung disease. J Clin Invest. 2002;110:1823–30.PubMedCentralCrossRefPubMedGoogle Scholar
  267. 267.
    Nimmerjahn F, Ravetch JV. Fc gamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34–47.CrossRefPubMedGoogle Scholar
  268. 268.
    Malhotra R, Sim RB, Reid KB. Interaction of C1q, and other proteins containing collagen-like domains, with the C1q receptor. Biochem Soc Trans. 1990;18:1145–8.CrossRefPubMedGoogle Scholar
  269. 269.
    Henson PM. A role for calreticulin in the clearance of apoptotic cells and in the innate immune system. In: Eggleton P, Michalek M, editors. Calreticulin. 2nd ed. New York: Kluwer Academic/Plenum Publishers; 2003. p. 151–61.CrossRefGoogle Scholar
  270. 270.
    Lamriben L, Graham JB, Adams BM, Hebert DN. N-glycan based ER molecular chaperone and protein quality control system: the calnexin binding cycle. Traffic. 2016;17:308–26.PubMedCentralCrossRefPubMedGoogle Scholar
  271. 271.
    Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J. 2009;417:651–66.CrossRefPubMedGoogle Scholar
  272. 272.
    Ghebrehiwet B, Lim BL, Peerschke EI, Willis AC, Reid KB. Isolation, cDNA cloning, and overexpression of a 33-kD cell surface glycoprotein that binds to the globular “heads” of C1q. J Exp Med. 1994;179:1809–21.CrossRefPubMedGoogle Scholar
  273. 273.
    Joseph K, Ghebrehiwet B, Peerschke EI, Reid KB, Kaplan AP. Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: identity with the receptor that binds to the globular “heads” of C1q (gC1q-R). Proc Natl Acad Sci U S A. 1996;93:8552–7.PubMedCentralCrossRefPubMedGoogle Scholar
  274. 274.
    Joseph K, Tholanikunnel BG, Ghebrehiwet B, Kaplan AP. Interaction of high molecular weight kininogen binding proteins on endothelial cells. Thromb Haemost. 2004;91:61–70.PubMedGoogle Scholar
  275. 275.
    Braun L, Ghebrehiwet B, Cossart P. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J. 2000;19:1458–66.PubMedCentralCrossRefPubMedGoogle Scholar
  276. 276.
    Kittlesen DJ, Chianese-Bullock KA, Yao ZQ, Braciale TJ, Hahn YS. Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation. J Clin Invest. 2000;106:1239–49.PubMedCentralCrossRefPubMedGoogle Scholar
  277. 277.
    Bossi F, Peerschke EI, Ghebrehiwet B, Tedesco F. Cross-talk between the complement and the kinin system in vascular permeability. Immunol Lett. 2011;140:7–13.PubMedCentralCrossRefPubMedGoogle Scholar
  278. 278.
    Ghebrehiwet B, Ji Y, Valentino A, Pednekar L, Ramadass M, Habiel D, Kew RR, Hosszu KH, Galanakis DK, Kishore U, Peerschke EI. Soluble gC1qR is an autocrine signal that induces B1R expression on endothelial cells. J Immunol. 2014;192:377–84.CrossRefPubMedGoogle Scholar
  279. 279.
    Fausther-Bovendo H, Vieillard V, Sagan S, Bismuth G, Debre P. HIV gp41 engages gC1qR on CD4+ T cells to induce the expression of an NK ligand through the PIP3/H2O2 pathway. PLoS Pathog. 2010;6:e1000975.PubMedCentralCrossRefPubMedGoogle Scholar
  280. 280.
    Peerschke EI, Ghebrehiwet B. cC1qR/CR and gC1qR/p33: observations in cancer. Mol Immunol. 2014;61:100–9.CrossRefPubMedGoogle Scholar
  281. 281.
    Weis JJ, Toothaker LE, Smith JA, Weis JH, Fearon DT. Structure of the human B lymphocyte receptor for C3d and the Epstein-Barr virus and relatedness to other members of the family of C3/C4 binding proteins. J Exp Med. 1988;167:1047–66.CrossRefPubMedGoogle Scholar
  282. 282.
    Tedder TF, Clement LT, Cooper MD. Expression of C3d receptors during human B cell differentiation: immunofluorescence analysis with the HB-5 monoclonal antibody. J Immunol. 1984;133:678–83.PubMedGoogle Scholar
  283. 283.
    Reynes M, Aubert JP, Cohen JH, Audouin J, Tricottet V, Diebold J, Kazatchkine MD. Human follicular dendritic cells express CR1, CR2, and CR3 complement receptor antigens. J Immunol. 1985;135:2687–94.PubMedGoogle Scholar
  284. 284.
    Watry D, Hedrick JA, Siervo S, Rhodes G, Lamberti JJ, Lambris JD, Tsoukas CD. Infection of human thymocytes by Epstein-Barr virus. J Exp Med. 1991;173:971–80.CrossRefPubMedGoogle Scholar
  285. 285.
    Fischer E, Delibrias C, Kazatchkine MD. Expression of CR2 (the C3dg/EBV receptor, CD21) on normal human peripheral blood T lymphocytes. J Immunol. 1991;146:865–9.PubMedGoogle Scholar
  286. 286.
    Bacon K, Gauchat JF, Aubry JP, Pochon S, Graber P, Henchoz S, Bonnefoy JY. CD21 expressed on basophilic cells is involved in histamine release triggered by CD23 and anti-CD21 antibodies. Eur J Immunol. 1993;23:2721–4.CrossRefPubMedGoogle Scholar
  287. 287.
    Hunyadi J, Simon M Jr, Kenderessy AS, Dobozy A. Expression of complement receptor CR2 (CD21) on human subcorneal keratinocytes in normal and diseased skin. Dermatologica. 1991;183:184–6.CrossRefPubMedGoogle Scholar
  288. 288.
    Gasque P, Fontaine M, Morgan BP. Complement expression in human brain. Biosynthesis of terminal pathway components and regulators in human glial cells and cell lines. J Immunol. 1995;154:4726–33.PubMedGoogle Scholar
  289. 289.
    Levine J, Pflugfelder SC, Yen M, Crouse CA, Atherton SS. Detection of the complement (CD21)/Epstein-Barr virus receptor in human lacrimal gland and ocular surface epithelia. Reg Immunol. 1990;3:164–70.PubMedGoogle Scholar
  290. 290.
    Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A. 1984;81:4510–4.PubMedCentralCrossRefPubMedGoogle Scholar
  291. 291.
    Nemerow GR, Mold C, Schwend VK, Tollefson V, Cooper NR. Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J Virol. 1987;61:1416–20.PubMedCentralPubMedGoogle Scholar
  292. 292.
    Nemerow GR, Wolfert R, McNaughton ME, Cooper NR. Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2). J Virol. 1985;55:347–51.PubMedCentralPubMedGoogle Scholar
  293. 293.
    Thornton BP, Vetvicka V, Pitman M, Goldman RC, Ross GD. Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol. 1996;156:1235–46.PubMedGoogle Scholar
  294. 294.
    Vetvicka V, Thornton BP, Ross GD. Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J Clin Invest. 1996;98:50–61.PubMedCentralCrossRefPubMedGoogle Scholar
  295. 295.
    Petty HR, Todd RF 3rd. Integrins as promiscuous signal transduction devices. Immunol Today. 1996;17:209–12.CrossRefPubMedGoogle Scholar
  296. 296.
    Berton G, Fumagalli L, Laudanna C, Sorio C. Beta 2 integrin-dependent protein tyrosine phosphorylation and activation of the FGR protein tyrosine kinase in human neutrophils. J Cell Biol. 1994;126:1111–21.CrossRefPubMedGoogle Scholar
  297. 297.
    Lowell CA, Fumagalli L, Berton G. Deficiency of Src family kinases p59/61hck and p58c-fgr results in defective adhesion-dependent neutrophil functions. J Cell Biol. 1996;133:895–910.CrossRefPubMedGoogle Scholar
  298. 298.
    Zaffran Y, Escallier JC, Ruta S, Capo C, Mege JL. Zymosan-triggered association of tyrosine phosphoproteins and lyn kinase with cytoskeleton in human monocytes. J Immunol. 1995;154:3488–97.PubMedGoogle Scholar
  299. 299.
    Goldman R, Ferber E, Meller R, Zor U. A role for reactive oxygen species in zymosan and beta-glucan induced protein tyrosine phosphorylation and phospholipase A2 activation in murine macrophages. Biochim Biophys Acta. 1994;1222:265–76.CrossRefPubMedGoogle Scholar
  300. 300.
    Hazan I, Dana R, Granot Y, Levy R. Cytosolic phospholipase A2 and its mode of activation in human neutrophils by opsonized zymosan. Correlation between 42/44 kDa mitogen-activated protein kinase, cytosolic phospholipase A2 and NADPH oxidase. Biochem J. 1997;326(Pt 3):867–76.PubMedCentralCrossRefPubMedGoogle Scholar
  301. 301.
    Jones SL, Knaus UG, Bokoch GM, Brown EJ. Two signaling mechanisms for activation of alphaM beta2 avidity in polymorphonuclear neutrophils. J Biol Chem. 1998;273:10556–66.CrossRefPubMedGoogle Scholar
  302. 302.
    Davis GE. The Mac-1 and p150,95 beta 2 integrins bind denatured proteins to mediate leukocyte cell-substrate adhesion. Exp Cell Res. 1992;200:242–52.CrossRefPubMedGoogle Scholar
  303. 303.
    de Fougerolles AR, Diamond MS, Springer TA. Heterogenous glycosylation of ICAM-3 and lack of interaction with Mac-1 and p150,95. Eur J Immunol. 1995;25:1008–12.CrossRefPubMedGoogle Scholar
  304. 304.
    Ingalls RR, Golenbock DT. CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide. J Exp Med. 1995;181:1473–9.CrossRefPubMedGoogle Scholar
  305. 305.
    Loike JD, Sodeik B, Cao L, Leucona S, Weitz JI, Detmers PA, Wright SD, Silverstein SC. CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc Natl Acad Sci U S A. 1991;88:1044–8.PubMedCentralCrossRefPubMedGoogle Scholar
  306. 306.
    Postigo AA, Corbi AL, Sanchez-Madrid F, de Landazuri MO. Regulated expression and function of CD11c/CD18 integrin on human B lymphocytes. Relation between attachment to fibrinogen and triggering of proliferation through CD11c/CD18. J Exp Med. 1991;174:1313–22.CrossRefPubMedGoogle Scholar
  307. 307.
    Freudenthal PS, Steinman RM. The distinct surface of human blood dendritic cells, as observed after an improved isolation method. Proc Natl Acad Sci U S A. 1990;87:7698–702.PubMedCentralCrossRefPubMedGoogle Scholar
  308. 308.
    Hogg N, Takacs L, Palmer DG, Selvendran Y, Allen C. The p150,95 molecule is a marker of human mononuclear phagocytes: comparison with expression of class II molecules. Eur J Immunol. 1986;16:240–8.CrossRefPubMedGoogle Scholar
  309. 309.
    Keizer GD, Borst J, Visser W, Schwarting R, de Vries JE, Figdor CG. Membrane glycoprotein p150,95 of human cytotoxic T cell clone is involved in conjugate formation with target cells. J Immunol. 1987;138:3130–6.PubMedGoogle Scholar
  310. 310.
    Roantree RJ, Rantz LA. A study of the relationship of the normal bactericidal activity of human serum to bacterial infection. J Clin Invest. 1960;39:72–81.PubMedCentralCrossRefPubMedGoogle Scholar
  311. 311.
    Berends ET, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SH. Bacteria under stress by complement and coagulation. FEMS Microbiol Rev. 2014;38:1146–71.CrossRefPubMedGoogle Scholar
  312. 312.
    Blom AM, Hallstrom T, Riesbeck K. Complement evasion strategies of pathogens-acquisition of inhibitors and beyond. Mol Immunol. 2009;46:2808–17.CrossRefPubMedGoogle Scholar
  313. 313.
    Jongerius I, Ram S, Rooijakkers S. Bacterial complement escape. Adv Exp Med Biol. 2009;666:32–48.CrossRefPubMedGoogle Scholar
  314. 314.
    Kraiczy P, Wurzner R. Complement escape of human pathogenic bacteria by acquisition of complement regulators. Mol Immunol. 2006;43:31–44.CrossRefPubMedGoogle Scholar
  315. 315.
    Wurzner R. Evasion of pathogens by avoiding recognition or eradication by complement, in part via molecular mimicry. Mol Immunol. 1999;36:249–60.CrossRefPubMedGoogle Scholar
  316. 316.
    Zipfel PF, Hallstrom T, Riesbeck K. Human complement control and complement evasion by pathogenic microbes – tipping the balance. Mol Immunol. 2013;56:152–60.CrossRefPubMedGoogle Scholar
  317. 317.
    Figueroa J, Andreoni J, Densen P. Complement deficiency states and meningococcal disease. Immunol Res. 1993;12:295–311.CrossRefPubMedGoogle Scholar
  318. 318.
    Figueroa JE, Densen P. Infectious diseases associated with complement deficiencies. Clin Microbiol Rev. 1991;4:359–95.PubMedCentralCrossRefPubMedGoogle Scholar
  319. 319.
    Ram S, Lewis LA, Rice PA. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev. 2010;23:740–80.PubMedCentralCrossRefPubMedGoogle Scholar
  320. 320.
    McNamara LA, Topaz N, Wang X, Hariri S, Fox L, MacNeil JR. High risk for invasive meningococcal disease among patients receiving Eculizumab (Soliris) despite receipt of meningococcal vaccine. MMWR Morb Mortal Wkly Rep. 2017;66:734–7.PubMedCentralCrossRefPubMedGoogle Scholar
  321. 321.
    Fijen CA, Kuijper EJ, Dankert J, Daha MR, Caugant DA. Characterization of Neisseria meningitidis strains causing disease in complement-deficient and complement-sufficient patients. J Clin Microbiol. 1998;36:2342–5.PubMedCentralPubMedGoogle Scholar
  322. 322.
    Fijen CA, Kuijper EJ, Hannema AJ, Sjoholm AG, van Putten JP. Complement deficiencies in patients over ten years old with meningococcal disease due to uncommon serogroups [see comments]. Lancet. 1989;2:585–8.CrossRefPubMedGoogle Scholar
  323. 323.
    Fijen CA, Kuijper EJ, te Bulte MT, Daha MR, Dankert J. Assessment of complement deficiency in patients with meningococcal disease in The Netherlands. Clin Infect Dis. 1999;28:98–105.CrossRefPubMedGoogle Scholar
  324. 324.
    Fijen CA, Kuijper EJ, Tjia HG, Daha MR, Dankert J. Complement deficiency predisposes for meningitis due to nongroupable meningococci and Neisseria-related bacteria. Clin Infect Dis. 1994;18:780–4.CrossRefPubMedGoogle Scholar
  325. 325.
    Orren A, Caugant DA, Fijen CA, Dankert J, van Schalkwyk EJ, Poolman JT, Coetzee GJ. Characterization of strains of Neisseria meningitidis recovered from complement-sufficient and complement-deficient patients in the Western Cape Province, South Africa. J Clin Microbiol. 1994;32:2185–91.PubMedCentralPubMedGoogle Scholar
  326. 326.
    Brandtzaeg P, Hogasen K, Kierulf P, Mollnes TE. The excessive complement activation in fulminant meningococcal septicemia is predominantly caused by alternative pathway activation. J Infect Dis. 1996;173:647–55.CrossRefPubMedGoogle Scholar
  327. 327.
    Brandtzaeg P, Mollnes TE, Kierulf P. Complement activation and endotoxin levels in systemic meningococcal disease. J Infect Dis. 1989;160:58–65.CrossRefPubMedGoogle Scholar
  328. 328.
    O’Hara AM, Moran AP, Wurzner R, Orren A. Complement-mediated lipopolysaccharide release and outer membrane damage in Escherichia coli J5: requirement for C9. Immunology. 2001;102:365–72.PubMedCentralCrossRefPubMedGoogle Scholar
  329. 329.
    Tesh VL, Duncan RL Jr, Morrison DC. The interaction of Escherichia coli with normal human serum: the kinetics of serum-mediated lipopolysaccharide release and its dissociation from bacterial killing. J Immunol. 1986;137:1329–35.PubMedGoogle Scholar
  330. 330.
    Lehner PJ, Davies KA, Walport MJ, Cope AP, Wurzner R, Orren A, Morgan BP, Cohen J. Meningococcal septicaemia in a C6-deficient patient and effects of plasma transfusion on lipopolysaccharide release. Lancet. 1992;340:1379–81.CrossRefPubMedGoogle Scholar
  331. 331.
    Carroll MC. Complement and humoral immunity. Vaccine. 2008;26(Suppl 8):I28–33.PubMedCentralCrossRefPubMedGoogle Scholar
  332. 332.
    Carroll MC, Isenman DE. Regulation of humoral immunity by complement. Immunity. 2012;37:199–207.PubMedCentralCrossRefPubMedGoogle Scholar
  333. 333.
    Eden A, Miller GW, Nussenzweig V. Human lymphocytes bear membrane receptors for C3b and C3d. J Clin Invest. 1973;52:3239–42.PubMedCentralCrossRefPubMedGoogle Scholar
  334. 334.
    Papamichail M, Gutierrez C, Embling P, Johnson P, Holborow EJ, Pepys MB. Complement dependence of localisation of aggregated IgG in germinal centres. Scand J Immunol. 1975;4:343–7.CrossRefPubMedGoogle Scholar
  335. 335.
    Kurtz CB, O’Toole E, Christensen SM, Weis JH. The murine complement receptor gene family. IV. Alternative splicing of Cr2 gene transcripts predicts two distinct gene products that share homologous domains with both human CR2 and CR1. J Immunol. 1990;144:3581–91.PubMedGoogle Scholar
  336. 336.
    Molina H, Kinoshita T, Inoue K, Carel JC, Holers VM. A molecular and immunochemical characterization of mouse CR2. Evidence for a single gene model of mouse complement receptors 1 and 2. J Immunol. 1990;145:2974–83.PubMedGoogle Scholar
  337. 337.
    Cherukuri A, Cheng PC, Sohn HW, Pierce SK. The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts. Immunity. 2001;14:169–79.CrossRefPubMedGoogle Scholar
  338. 338.
    Fearon DT, Carroll MC. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol. 2000;18:393–422.CrossRefPubMedGoogle Scholar
  339. 339.
    Tedder TF, Inaoki M, Sato S. The CD19-CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity. 1997;6:107–18.CrossRefPubMedGoogle Scholar
  340. 340.
    Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science. 1996;271:348–50.CrossRefGoogle Scholar
  341. 341.
    Gunn MD, Ngo VN, Ansel KM, Ekland EH, Cyster JG, Williams LT. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. Nature. 1998;391:799–803.CrossRefGoogle Scholar
  342. 342.
    Liu YJ, Grouard G, de Bouteiller O, Banchereau J. Follicular dendritic cells and germinal centers. Int Rev Cytol. 1996;166:139–79.CrossRefPubMedGoogle Scholar
  343. 343.
    Barrington RA, Pozdnyakova O, Zafari MR, Benjamin CD, Carroll MC. B lymphocyte memory: role of stromal cell complement and FcgammaRIIB receptors. J Exp Med. 2002;196:1189–99.PubMedCentralCrossRefPubMedGoogle Scholar
  344. 344.
    Ahearn JM, Fischer MB, Croix D, Goerg S, Ma M, Xia J, Zhou X, Howard RG, Rothstein TL, Carroll MC. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity. 1996;4:251–62.CrossRefPubMedGoogle Scholar
  345. 345.
    Cutler AJ, Botto M, van Essen D, Rivi R, Davies KA, Gray D, Walport MJ. T cell-dependent immune response in C1q-deficient mice: defective interferon gamma production by antigen-specific T cells. J Exp Med. 1998;187:1789–97.PubMedCentralCrossRefPubMedGoogle Scholar
  346. 346.
    Fischer MB, Ma M, Goerg S, Zhou X, Xia J, Finco O, Han S, Kelsoe G, Howard RG, Rothstein TL, Kremmer E, Rosen FS, Carroll MC. Regulation of the B cell response to T-dependent antigens by classical pathway complement. J Immunol. 1996;157:549–56.PubMedGoogle Scholar
  347. 347.
    Molina H, Holers VM, Li B, Fung Y, Mariathasan S, Goellner J, Strauss-Schoenberger J, Karr RW, Chaplin DD. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc Natl Acad Sci U S A. 1996;93:3357–61.PubMedCentralCrossRefPubMedGoogle Scholar
  348. 348.
    Carsetti R, Kohler G, Lamers MC. Transitional B cells are the target of negative selection in the B cell compartment. J Exp Med. 1995;181:2129–40.CrossRefPubMedGoogle Scholar
  349. 349.
    Fleming SD, Shea-Donohue T, Guthridge JM, Kulik L, Waldschmidt TJ, Gipson MG, Tsokos GC, Holers VM. Mice deficient in complement receptors 1 and 2 lack a tissue injury-inducing subset of the natural antibody repertoire. J Immunol. 2002;169:2126–33.CrossRefPubMedGoogle Scholar
  350. 350.
    Reid RR, Woodcock S, Shimabukuro-Vornhagen A, Austen WG Jr, Kobzik L, Zhang M, Hechtman HB, Moore FD Jr, Carroll MC. Functional activity of natural antibody is altered in Cr2-deficient mice. J Immunol. 2002;169:5433–40.CrossRefPubMedGoogle Scholar
  351. 351.
    Kopf M, Abel B, Gallimore A, Carroll M, Bachmann MF. Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nat Med. 2002;8:373–8.CrossRefPubMedGoogle Scholar
  352. 352.
    Karp CL, Wysocka M, Wahl LM, Ahearn JM, Cuomo PJ, Sherry B, Trinchieri G, Griffin DE. Mechanism of suppression of cell-mediated immunity by measles virus. Science. 1996;273:228–31.CrossRefPubMedGoogle Scholar
  353. 353.
    Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature. 2003;421:388–92.CrossRefPubMedGoogle Scholar
  354. 354.
    Le Friec G, Sheppard D, Whiteman P, Karsten CM, Shamoun SA, Laing A, Bugeon L, Dallman MJ, Melchionna T, Chillakuri C, Smith RA, Drouet C, Couzi L, Fremeaux-Bacchi V, Kohl J, Waddington SN, McDonnell JM, Baker A, Handford PA, Lea SM, Kemper C. The CD46-Jagged1 interaction is critical for human T(H)1 immunity. Nat Immunol. 2012;13:1213–21.PubMedCentralCrossRefPubMedGoogle Scholar
  355. 355.
    Schifferli JA, Ng YC, Peters DK. The role of complement and its receptor in the elimination of immune complexes. N Engl J Med. 1986;315:488–95.CrossRefPubMedGoogle Scholar
  356. 356.
    Miller GW, Nussenzweig V. A new complement function: solubilization of antigen-antibody aggregates. Proc Natl Acad Sci U S A. 1975;72:418–22.PubMedCentralCrossRefPubMedGoogle Scholar
  357. 357.
    Atkinson JP. Complement deficiency. Predisposing factor to autoimmune syndromes. Am J Med. 1988;85:45–7.CrossRefPubMedGoogle Scholar
  358. 358.
    Atkinson JP. Complement deficiency: predisposing factor to autoimmune syndromes. Clin Exp Rheumatol. 1989;7(Suppl 3):S95–101.PubMedGoogle Scholar
  359. 359.
    Ehrenfeld M, Urowitz MB, Platts ME. Selective C4 deficiency, systemic lupus erythematosus, and Whipple’s disease. Ann Rheum Dis. 1984;43:91–4.PubMedCentralCrossRefPubMedGoogle Scholar
  360. 360.
    Gewurz A, Lint TF, Roberts JL, Zeitz H, Gewurz H. Homozygous C2 deficiency with fulminant lupus erythematosus: severe nephritis via the alternative complement pathway. Arthritis Rheum. 1978;21:28–36.CrossRefPubMedGoogle Scholar
  361. 361.
    Hannema AJ, Kluin-Nelemans JC, Hack CE, Eerenberg-Belmer AJ, Mallee C, van Helden HP. SLE like syndrome and functional deficiency of C1q in members of a large family. Clin Exp Immunol. 1984;55:106–14.PubMedCentralPubMedGoogle Scholar
  362. 362.
    Meyer O, Hauptmann G, Tappeiner G, Ochs HD, Mascart-Lemone F. Genetic deficiency of C4, C2 or C1q and lupus syndromes. Association with anti-Ro (SS-A) antibodies. Clin Exp Immunol. 1985;62:678–84.PubMedCentralPubMedGoogle Scholar
  363. 363.
    Pickering MC, Walport MJ. Links between complement abnormalities and systemic lupus erythematosus. Rheumatology (Oxford). 2000;39:133–41.CrossRefGoogle Scholar
  364. 364.
    Truedsson L, Bengtsson AA, Sturfelt G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity. 2007;40:560–6.CrossRefPubMedGoogle Scholar
  365. 365.
    Walport MJ. Complement and systemic lupus erythematosus. Arthritis Res. 2002;4(Suppl 3):S279–93.PubMedCentralCrossRefPubMedGoogle Scholar
  366. 366.
    Walport MJ, Davies KA, Botto M. C1q and systemic lupus erythematosus. Immunobiology. 1998;199:265–85.CrossRefPubMedGoogle Scholar
  367. 367.
    Melhorn MI, Brodsky AS, Estanislau J, Khoory JA, Illigens B, Hamachi I, Kurishita Y, Fraser AD, Nicholson-Weller A, Dolmatova E, Duffy HS, Ghiran IC. CR1-mediated ATP release by human red blood cells promotes CR1 clustering and modulates the immune transfer process. J Biol Chem. 2013;288:31139–53.PubMedCentralCrossRefPubMedGoogle Scholar
  368. 368.
    Paidassi H, Tacnet-Delorme P, Verneret M, Gaboriaud C, Houen G, Duus K, Ling WL, Arlaud GJ, Frachet P. Investigations on the C1q-calreticulin-phosphatidylserine interactions yield new insights into apoptotic cell recognition. J Mol Biol. 2011;408:277–90.CrossRefPubMedGoogle Scholar
  369. 369.
    Martin M, Leffler J, Blom AM. Annexin A2 and A5 serve as new ligands for C1q on apoptotic cells. J Biol Chem. 2012;287:33733–44.PubMedCentralCrossRefPubMedGoogle Scholar
  370. 370.
    Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, Tsao BP, Vyse TJ, Langefeld CD, Nath SK, Guthridge JM, Cobb BL, Mirel DB, Marion MC, Williams AH, Divers J, Wang W, Frank SG, Namjou B, Gabriel SB, Lee AT, Gregersen PK, Behrens TW, Taylor KE, Fernando M, Zidovetzki R, Gaffney PM, Edberg JC, Rioux JD, Ojwang JO, James JA, Merrill JT, Gilkeson GS, Seldin MF, Yin H, Baechler EC, Li QZ, Wakeland EK, Bruner GR, Kaufman KM, Kelly JA. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet. 2008;40:204–10.PubMedCentralCrossRefPubMedGoogle Scholar
  371. 371.
    Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, Lee AT, Chung SA, Ferreira RC, Pant PV, Ballinger DG, Kosoy R, Demirci FY, Kamboh MI, Kao AH, Tian C, Gunnarsson I, Bengtsson AA, Rantapaa-Dahlqvist S, Petri M, Manzi S, Seldin MF, Ronnblom L, Syvanen AC, Criswell LA, Gregersen PK, Behrens TW. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358:900–9.CrossRefGoogle Scholar
  372. 372.
    Nath SK, Han S, Kim-Howard X, Kelly JA, Viswanathan P, Gilkeson GS, Chen W, Zhu C, McEver RP, Kimberly RP, Alarcon-Riquelme ME, Vyse TJ, Li QZ, Wakeland EK, Merrill JT, James JA, Kaufman KM, Guthridge JM, Harley JB. A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet. 2008;40:152–4.CrossRefPubMedGoogle Scholar
  373. 373.
    Rhodes B, Furnrohr BG, Roberts AL, Tzircotis G, Schett G, Spector TD, Vyse TJ. The rs1143679 (R77H) lupus associated variant of ITGAM (CD11b) impairs complement receptor 3 mediated functions in human monocytes. Ann Rheum Dis. 2012;71:2028–34.PubMedCentralCrossRefPubMedGoogle Scholar
  374. 374.
    Leffler J, Herbert AP, Norstrom E, Schmidt CQ, Barlow PN, Blom AM, Martin M. Annexin-II, DNA, and histones serve as factor H ligands on the surface of apoptotic cells. J Biol Chem. 2010;285:3766–76.CrossRefPubMedGoogle Scholar
  375. 375.
    Trouw LA, Bengtsson AA, Gelderman KA, Dahlback B, Sturfelt G, Blom AM. C4b-binding protein and factor H compensate for the loss of membrane-bound complement inhibitors to protect apoptotic cells against excessive complement attack. J Biol Chem. 2007;282:28540–8.CrossRefPubMedGoogle Scholar
  376. 376.
    Mevorach D, Mascarenhas JO, Gershov D, Elkon KB. Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med. 1998;188:2313–20.PubMedCentralCrossRefPubMedGoogle Scholar
  377. 377.
    Taylor PR, Carugati A, Fadok VA, Cook HT, Andrews M, Carroll MC, Savill JS, Henson PM, Botto M, Walport MJ. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med. 2000;192:359–66.PubMedCentralCrossRefPubMedGoogle Scholar
  378. 378.
    Verbovetski I, Bychkov H, Trahtemberg U, Shapira I, Hareuveni M, Ben-Tal O, Kutikov I, Gill O, Mevorach D. Opsonization of apoptotic cells by autologous iC3b facilitates clearance by immature dendritic cells, down-regulates DR and CD86, and up-regulates CC chemokine receptor 7. J Exp Med. 2002;196:1553–61.PubMedCentralCrossRefPubMedGoogle Scholar
  379. 379.
    Onat A, Can G, Rezvani R, Cianflone K. Complement C3 and cleavage products in cardiometabolic risk. Clin Chim Acta. 2011;412:1171–9.CrossRefPubMedGoogle Scholar
  380. 380.
    Barbu A, Hamad OA, Lind L, Ekdahl KN, Nilsson B. The role of complement factor C3 in lipid metabolism. Mol Immunol. 2015;67:101–7.CrossRefPubMedGoogle Scholar
  381. 381.
    Cianflone K, Xia Z, Chen LY. Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim Biophys Acta. 2003;1609:127–43.CrossRefPubMedGoogle Scholar
  382. 382.
    Markiewski MM, Lambris JD. Is complement good or bad for cancer patients? A new perspective on an old dilemma. Trends Immunol. 2009;30:286–92.PubMedCentralCrossRefPubMedGoogle Scholar
  383. 383.
    Rutkowski MJ, Sughrue ME, Kane AJ, Mills SA, Parsa AT. Cancer and the complement cascade. Mol Cancer Res. 2010;8:1453–65.CrossRefPubMedGoogle Scholar
  384. 384.
    Lalli PN, Strainic MG, Yang M, Lin F, Medof ME, Heeger PS. Locally produced C5a binds to T cell-expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis. Blood. 2008;112:1759–66.PubMedCentralCrossRefPubMedGoogle Scholar
  385. 385.
    Cao Q, McIsaac SM, Stadnyk AW. Human colonic epithelial cells detect and respond to C5a via apically expressed C5aR through the ERK pathway. Am J Phys Cell Phys. 2012;302:C1731–40.CrossRefGoogle Scholar
  386. 386.
    Kurihara R, Yamaoka K, Sawamukai N, Shimajiri S, Oshita K, Yukawa S, Tokunaga M, Iwata S, Saito K, Chiba K, Tanaka Y. C5a promotes migration, proliferation, and vessel formation in endothelial cells. Inflamm Res. 2010;59:659–66.PubMedCentralCrossRefPubMedGoogle Scholar
  387. 387.
    Carmona-Fontaine C, Theveneau E, Tzekou A, Tada M, Woods M, Page KM, Parsons M, Lambris JD, Mayor R. Complement fragment C3a controls mutual cell attraction during collective cell migration. Dev Cell. 2011;21:1026–37.PubMedCentralCrossRefPubMedGoogle Scholar
  388. 388.
    Kraus S, Seger R, Fishelson Z. Involvement of the ERK mitogen-activated protein kinase in cell resistance to complement-mediated lysis. Clin Exp Immunol. 2001;123:366–74.PubMedCentralCrossRefPubMedGoogle Scholar
  389. 389.
    Niculescu F, Badea T, Rus H. Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis. 1999;142:47–56.CrossRefPubMedGoogle Scholar
  390. 390.
    Soane L, Cho HJ, Niculescu F, Rus H, Shin ML. C5b-9 terminal complement complex protects oligodendrocytes from death by regulating bad through phosphatidylinositol 3-kinase/Akt pathway. J Immunol. 2001;167:2305–11.CrossRefPubMedGoogle Scholar
  391. 391.
    Tegla CA, Cudrici C, Patel S, Trippe R 3rd, Rus V, Niculescu F, Rus H. Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res. 2011;51:45–60.PubMedCentralCrossRefPubMedGoogle Scholar
  392. 392.
    Afshar-Kharghan V. The role of the complement system in cancer. J Clin Invest. 2017;127:780–9.PubMedCentralCrossRefPubMedGoogle Scholar
  393. 393.
    Rutkowski MJ, Sughrue ME, Kane AJ, Ahn BJ, Fang S, Parsa AT. The complement cascade as a mediator of tissue growth and regeneration. Inflamm Res. 2010;59:897–905.PubMedCentralCrossRefPubMedGoogle Scholar
  394. 394.
    Kimura Y, Madhavan M, Call MK, Santiago W, Tsonis PA, Lambris JD, Del Rio-Tsonis K. Expression of complement 3 and complement 5 in newt limb and lens regeneration. J Immunol. 2003;170:2331–9.CrossRefPubMedGoogle Scholar
  395. 395.
    Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131:1164–78.CrossRefPubMedGoogle Scholar
  396. 396.
    Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K, Presumey J, Baum M, Van Doren V, Genovese G, Rose SA, Handsaker RE, Daly MJ, Carroll MC, Stevens B, McCarroll SA. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.PubMedCentralCrossRefPubMedGoogle Scholar
  397. 397.
    McLin VA, Hu CH, Shah R, Jamrich M. Expression of complement components coincides with early patterning and organogenesis in Xenopus laevis. Int J Dev Biol. 2008;52:1123–33.CrossRefPubMedGoogle Scholar
  398. 398.
    Rooryck C, Diaz-Font A, Osborn DP, Chabchoub E, Hernandez-Hernandez V, Shamseldin H, Kenny J, Waters A, Jenkins D, Kaissi AA, Leal GF, Dallapiccola B, Carnevale F, Bitner-Glindzicz M, Lees M, Hennekam R, Stanier P, Burns AJ, Peeters H, Alkuraya FS, Beales PL. Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat Genet. 2011;43:197–203.PubMedCentralCrossRefPubMedGoogle Scholar
  399. 399.
    Titomanlio L, Bennaceur S, Bremond-Gignac D, Baumann C, Dupuy O, Verloes A. Michels syndrome, Carnevale syndrome, OSA syndrome, and Malpuech syndrome: variable expression of a single disorder (3MC syndrome)? Am J Med Genet A. 2005;137A:332–5.CrossRefPubMedGoogle Scholar
  400. 400.
    Harris CL, Heurich M, Rodriguez de Cordoba S, Morgan BP. The complotype: dictating risk for inflammation and infection. Trends Immunol. 2012;33:513–21.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Infectious Diseases and Immunology, Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations