Advertisement

T Cell Immunity

  • Shalu Sharma Kharkwal
  • Steven A. Porcelli
Chapter

Abstract

T cells are major effector and regulatory lymphocytes of the immune system and are critically important contributors to adaptive immune responses. Antigen-specific T cells develop in the thymus where they undergo an intricate maturation and selection process. This allows their expression of clonally diverse antigen receptors that recognize cognate antigens, which in the majority of cases are peptides derived from foreign or self-proteins that are presented by major histocompatibility complex molecules. T cells express specific cell surface and intracellular proteins that allow them to be identified and distinguished from other types of leukocytes and also to be separated into a growing variety of distinct subsets with different functions. Current knowledge on the diversity of T cell subsets extends far beyond the originally recognized phenotypic and functional dichotomy of CD4+ helper versus CD8+ cytotoxic T cells. In addition, a variety of less numerous nonconventional T cell subtypes have been recognized, including specialized populations such as γδ T cells, NKT cells, and MAIT cells. These share some features with conventional T cells but also differ in important ways with respect to the nature of their cognate antigens and the mechanisms by which these are presented. The current chapter provides a general overview of the principal features of conventional T cells and also briefly covers the properties and proposed functions of the less well-understood nonconventional T cell subsets.

Keywords

T cell Major histocompatibility complex Antigen receptor Cytokine Costimulation Co-receptor 

Abbreviations

AIDS

Acquired immunodeficiency syndrome

APC

Antigen-presenting cell

BCR

B cell receptor

CD

Cluster of differentiation

CTL

Cytotoxic T lymphocyte

CTLA-4

Cytotoxic lymphocyte-associated molecule-4

DC

Dendritic cell

DN

Double negative

GC

Galactosylceramide

HIV

Human immunodeficiency virus

ICOS

Inducible costimulatory signal

IEL

Intraepithelial lymphocytes

IFNγ

Interferon gamma

IL

Interleukin

IPEX

Immune dysregulation, polyendocrinopathy, enteropathy X-linked

MAIT

Mucosa-associated invariant T

MHC

Major histocompatibility complex

NK

Natural killer

NKT

Natural killer T

PD

Programmed death

pMHC

Peptide-MHC complex

Tc

T cytotoxic cell

TCR

T cell receptor

Tfh

Follicular helper T cell

TGFβ

Transforming growth factor β

Th

T helper cell

Treg

T regulatory cell

Notes

Acknowledgments

The authors acknowledge support from NIH grants AI45889 and AI093649 (both awarded to SAP).

References

  1. 1.
    Seder RA, Darrah PA, Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol. 2008;8(4):247–58.CrossRefPubMedGoogle Scholar
  2. 2.
    Shah DK, Zuniga-Pflucker JC. An overview of the intrathymic intricacies of T cell development. J Immunol. 2014;192(9):4017–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Broere F, Apasov SG, Sitkovsky MV, Eden WV. In: Nijkamp FP, Parnham MJ, editors. T cell subsets and T cell-mediated immunity. 3rd ed. Basel: Birkhauser; 2011.Google Scholar
  4. 4.
    Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol. 2014;14(1):24–35.CrossRefPubMedGoogle Scholar
  5. 5.
    Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015;15(4):203–16.CrossRefPubMedGoogle Scholar
  6. 6.
    van Kasteren SI, Overkleeft H, Ovaa H, Neefjes J. Chemical biology of antigen presentation by MHC molecules. Curr Opin Immunol. 2014;26:21–31.CrossRefPubMedGoogle Scholar
  7. 7.
    Bleek GMV, Nathenson SG. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature. 1990;348(6298):213–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11(12):823–36.CrossRefPubMedGoogle Scholar
  9. 9.
    Watts C. The exogenous pathway for antigen presentation on major histocompatibility complex class II and CD1 molecules. Nat Immunol. 2004;5(7):685–92.CrossRefPubMedGoogle Scholar
  10. 10.
    Garstka MA, Neefjes J. How to target MHC class II into the MIIC compartment. Mol Immunol. 2013;55(2):162–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol. 2013;31:443–73.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Segura E, Amigorena S. Cross-presentation by human dendritic cell subsets. Immunol Lett. 2014;158(1–2):73–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Basta S, Alatery A. The cross-priming pathway: a portrait of an intricate immune system. Scand J Immunol. 2007;65(4):311–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Dieli F, Fadda R, Caccamo N. Butyrophilin 3A1 presents phosphoantigens to human gammadelta T cells: the fourth model of antigen presentation in the immune system. Cell Mol Immunol. 2014;11(2):123–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Adams EJ. Lipid presentation by human CD1 molecules and the diverse T cell populations that respond to them. Curr Opin Immunol. 2014;26:1–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Birkinshaw RW, Kjer-Nielsen L, Eckle SB, McCluskey J, Rossjohn J. MAITs, MR1 and vitamin B metabolites. Curr Opin Immunol. 2014;26:7–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Vavassori S, Kumar A, Wan GS, Ramanjaneyulu GS, Cavallari M, El Daker S, et al. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human gammadelta T cells. Nat Immunol. 2013;14(9):908–16.CrossRefPubMedGoogle Scholar
  18. 18.
    Kuhns MS, Badgandi HB. Piecing together the family portrait of TCR-CD3 complexes. Immunol Rev. 2012;250(1):120–43.CrossRefPubMedGoogle Scholar
  19. 19.
    Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME. Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb Perspect Biol. 2010;2(4):a005140.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Li Y, Yin Y, Mariuzza RA. Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front Immunol. 2013;4:206.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS). Curr Opin Immunol. 2010;22(3):326–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21(6):581–90.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer – preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol. 2010;37(5):430–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Engeland CE, Grossardt C, Veinalde R, Bossow S, Lutz D, Kaufmann JK, et al. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol Ther J Am Soc Gene Ther. 2014;22(11):1949–59.CrossRefGoogle Scholar
  26. 26.
    Ohigashi Y, Sho M, Yamada Y, Tsurui Y, Hamada K, Ikeda N, et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res. 2005;11(8):2947–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Byun DJ, Wolchok JD, Rosenberg LM, Girotra M. Cancer immunotherapy [mdash] immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol. 2017;13(4):195–207.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood. 2008;112(5):1557–69.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Al-Herz W, Bousfiha A, Casanova JL, Chapel H, Conley ME, Cunningham-Rundles C, et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2011;2:54.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Coquet JM, Rausch L, Borst J. The importance of co-stimulation in the orchestration of T helper cell differentiation. Immunol Cell Biol 2015;93(9):780–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest. 2007;117(5):1119–27.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Moss RB, Moll T, El-Kalay M, Kohne C, Soo Hoo W, Encinas J, et al. Th1/Th2 cells in inflammatory disease states: therapeutic implications. Expert Opin Biol Ther. 2004;4(12):1887–96.CrossRefPubMedGoogle Scholar
  34. 34.
    Wilson CB, Rowell E, Sekimata M. Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol. 2009;9(2):91–105.CrossRefPubMedGoogle Scholar
  35. 35.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33.CrossRefPubMedGoogle Scholar
  36. 36.
    Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007;448(7152):484–7.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Fouser LA, Wright JF, Dunussi-Joannopoulos K, Collins M. Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunol Rev. 2008;226:87–102.CrossRefPubMedGoogle Scholar
  38. 38.
    Kaplan MH, Hufford MM, Olson MR. The development and in vivo function of T helper 9 cells. Nat Rev Immunol. 2015;15(5):295–307.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stassen M, Schmitt E, Bopp T. From interleukin-9 to T helper 9 cells. Ann N Y Acad Sci. 2012;1247:56–68.CrossRefPubMedGoogle Scholar
  40. 40.
    Kaplan MH. Th9 cells: differentiation and disease. Immunol Rev. 2013;252(1):104–15.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Xie J, Lotoski LC, Chooniedass R, Su RC, Simons FE, Liem J, et al. Elevated antigen-driven IL-9 responses are prominent in peanut allergic humans. PLoS One. 2012;7(10):e45377.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol. 2008;9(12):1347–55.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014;41(4):529–42.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tangye SG, Ma CS, Brink R, Deenick EK. The good, the bad and the ugly – TFH cells in human health and disease. Nat Rev Immunol. 2013;13(6):412–26.CrossRefPubMedGoogle Scholar
  45. 45.
    Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature. 2005;435(7041):452–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Johnson S, Bergthaler A, Graw F, Flatz L, Bonilla WV, Siegrist CA, et al. Protective efficacy of individual CD8+ T cell specificities in chronic viral infection. J Immunol. 2015;194(4):1755–62.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nizzoli G, Krietsch J, Weick A, Steinfelder S, Facciotti F, Gruarin P, et al. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood. 2013;122(6):932–42.CrossRefPubMedGoogle Scholar
  48. 48.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87.CrossRefPubMedGoogle Scholar
  49. 49.
    Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Belkaid Y. Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol. 2007;7(11):875–88.CrossRefPubMedGoogle Scholar
  51. 51.
    Cobbold SP. Regulatory T cells and transplantation tolerance. J Nephrol. 2008;21(4):485–96.PubMedGoogle Scholar
  52. 52.
    Holaday BJ, Pompeu MM, Jeronimo S, Texeira MJ, Sousa Ade A, Vasconcelos AW, et al. Potential role for interleukin-10 in the immunosuppression associated with kala azar. J Clin Invest. 1993;92(6):2626–32.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Muthuswamy R, Urban J, Lee JJ, Reinhart TA, Bartlett D, Kalinski P. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res. 2008;68(14):5972–8.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Shafiani S, Dinh C, Ertelt JM, Moguche AO, Siddiqui I, Smigiel KS, et al. Pathogen-specific Treg cells expand early during mycobacterium tuberculosis infection but are later eliminated in response to Interleukin-12. Immunity. 2013;38(6):1261–70.CrossRefPubMedGoogle Scholar
  55. 55.
    Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature. 2002;420(6915):502–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Le Bras S, Geha RS. IPEX and the role of Foxp3 in the development and function of human Tregs. J Clin Invest. 2006;116(6):1473–5.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Vincent MS, Gumperz JE, Brenner MB. Understanding the function of CD1-restricted T cells. Nat Immunol. 2003;4(6):517–23.CrossRefPubMedGoogle Scholar
  59. 59.
    Barral DC, Brenner MB. CD1 antigen presentation: how it works. Nat Rev Immunol. 2007;7(12):929–41.CrossRefPubMedGoogle Scholar
  60. 60.
    Van Rhijn I, Ly D, Moody DB. CD1a, CD1b, and CD1c in immunity against mycobacteria. Adv Exp Med Biol. 2013;783:181–97.CrossRefPubMedGoogle Scholar
  61. 61.
    Van Rhijn I, Moody DB. CD1 and mycobacterial lipids activate human T cells. Immunol Rev. 2015;264(1):138–53.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336.CrossRefGoogle Scholar
  63. 63.
    Venkataswamy MM, Porcelli SA. Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Semin Immunol. 2010;22(2):68–78.CrossRefPubMedGoogle Scholar
  64. 64.
    Carreno LJ, Kharkwal SS, Porcelli SA. Optimizing NKT cell ligands as vaccine adjuvants. Immunotherapy. 2014;6(3):309–20.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Fernandez CS, Kelleher AD, Finlayson R, Godfrey DI, Kent SJ. NKT cell depletion in humans during early HIV infection. Immunol Cell Biol. 2014;92(7):578–90.CrossRefPubMedGoogle Scholar
  66. 66.
    Brigl M, Brenner MB. CD1: antigen presentation and T cell function. Annu Rev Immunol. 2004;22:817–90.CrossRefPubMedGoogle Scholar
  67. 67.
    Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol. 2011;11(2):131–42.CrossRefPubMedGoogle Scholar
  68. 68.
    Born WK, Reardon CL, O’Brien RL. The function of gammadelta T cells in innate immunity. Curr Opin Immunol. 2006;18(1):31–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Kabelitz D, Marischen L, Oberg HH, Holtmeier W, Wesch D. Epithelial defence by gamma delta T cells. Int Arch Allergy Immunol. 2005;137(1):73–81.CrossRefPubMedGoogle Scholar
  70. 70.
    Morita CT, Jin C, Sarikonda G, Wang H. Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev. 2007;215:59–76.CrossRefPubMedGoogle Scholar
  71. 71.
    Chien YH, Meyer C, Bonneville M. Gammadelta T cells: first line of defense and beyond. Annu Rev Immunol. 2014;32:121–55.CrossRefPubMedGoogle Scholar
  72. 72.
    Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG, Lim RT, et al. CD1d-lipid antigen recognition by the gammadelta TCR. Nat Immunol. 2013;14(11):1137–45.CrossRefPubMedGoogle Scholar
  73. 73.
    Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. 2012;491(7426):717–23.CrossRefPubMedGoogle Scholar
  74. 74.
    Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol. 2009;7(3):e54.CrossRefPubMedGoogle Scholar
  75. 75.
    Fernandez CS, Amarasena T, Kelleher AD, Rossjohn J, McCluskey J, Godfrey DI, et al. MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol Cell Biol. 2015;93(2):177–88.CrossRefPubMedGoogle Scholar
  76. 76.
    Bird L. Mucosal immunology: bait for MAIT cells identified. Nat Rev Immunol. 2010;10(8):539.CrossRefPubMedGoogle Scholar
  77. 77.
    Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, et al. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol. 2015;8(2):429–40.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations