Skip to main content

Abstract

T cells are major effector and regulatory lymphocytes of the immune system and are critically important contributors to adaptive immune responses. Antigen-specific T cells develop in the thymus where they undergo an intricate maturation and selection process. This allows their expression of clonally diverse antigen receptors that recognize cognate antigens, which in the majority of cases are peptides derived from foreign or self-proteins that are presented by major histocompatibility complex molecules. T cells express specific cell surface and intracellular proteins that allow them to be identified and distinguished from other types of leukocytes and also to be separated into a growing variety of distinct subsets with different functions. Current knowledge on the diversity of T cell subsets extends far beyond the originally recognized phenotypic and functional dichotomy of CD4+ helper versus CD8+ cytotoxic T cells. In addition, a variety of less numerous nonconventional T cell subtypes have been recognized, including specialized populations such as γδ T cells, NKT cells, and MAIT cells. These share some features with conventional T cells but also differ in important ways with respect to the nature of their cognate antigens and the mechanisms by which these are presented. The current chapter provides a general overview of the principal features of conventional T cells and also briefly covers the properties and proposed functions of the less well-understood nonconventional T cell subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

APC:

Antigen-presenting cell

BCR:

B cell receptor

CD:

Cluster of differentiation

CTL:

Cytotoxic T lymphocyte

CTLA-4:

Cytotoxic lymphocyte-associated molecule-4

DC:

Dendritic cell

DN:

Double negative

GC:

Galactosylceramide

HIV:

Human immunodeficiency virus

ICOS:

Inducible costimulatory signal

IEL:

Intraepithelial lymphocytes

IFNγ:

Interferon gamma

IL:

Interleukin

IPEX:

Immune dysregulation, polyendocrinopathy, enteropathy X-linked

MAIT:

Mucosa-associated invariant T

MHC:

Major histocompatibility complex

NK:

Natural killer

NKT:

Natural killer T

PD:

Programmed death

pMHC:

Peptide-MHC complex

Tc:

T cytotoxic cell

TCR:

T cell receptor

Tfh:

Follicular helper T cell

TGFβ:

Transforming growth factor β

Th:

T helper cell

Treg:

T regulatory cell

References

  1. Seder RA, Darrah PA, Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol. 2008;8(4):247–58.

    Article  CAS  PubMed  Google Scholar 

  2. Shah DK, Zuniga-Pflucker JC. An overview of the intrathymic intricacies of T cell development. J Immunol. 2014;192(9):4017–23.

    Article  CAS  PubMed  Google Scholar 

  3. Broere F, Apasov SG, Sitkovsky MV, Eden WV. In: Nijkamp FP, Parnham MJ, editors. T cell subsets and T cell-mediated immunity. 3rd ed. Basel: Birkhauser; 2011.

    Google Scholar 

  4. Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol. 2014;14(1):24–35.

    Article  CAS  PubMed  Google Scholar 

  5. Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015;15(4):203–16.

    Article  CAS  PubMed  Google Scholar 

  6. van Kasteren SI, Overkleeft H, Ovaa H, Neefjes J. Chemical biology of antigen presentation by MHC molecules. Curr Opin Immunol. 2014;26:21–31.

    Article  CAS  PubMed  Google Scholar 

  7. Bleek GMV, Nathenson SG. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature. 1990;348(6298):213–6.

    Article  PubMed  Google Scholar 

  8. Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11(12):823–36.

    Article  CAS  PubMed  Google Scholar 

  9. Watts C. The exogenous pathway for antigen presentation on major histocompatibility complex class II and CD1 molecules. Nat Immunol. 2004;5(7):685–92.

    Article  CAS  PubMed  Google Scholar 

  10. Garstka MA, Neefjes J. How to target MHC class II into the MIIC compartment. Mol Immunol. 2013;55(2):162–5.

    Article  CAS  PubMed  Google Scholar 

  11. Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol. 2013;31:443–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Segura E, Amigorena S. Cross-presentation by human dendritic cell subsets. Immunol Lett. 2014;158(1–2):73–8.

    Article  CAS  PubMed  Google Scholar 

  13. Basta S, Alatery A. The cross-priming pathway: a portrait of an intricate immune system. Scand J Immunol. 2007;65(4):311–9.

    Article  CAS  PubMed  Google Scholar 

  14. Dieli F, Fadda R, Caccamo N. Butyrophilin 3A1 presents phosphoantigens to human gammadelta T cells: the fourth model of antigen presentation in the immune system. Cell Mol Immunol. 2014;11(2):123–5.

    Article  PubMed  Google Scholar 

  15. Adams EJ. Lipid presentation by human CD1 molecules and the diverse T cell populations that respond to them. Curr Opin Immunol. 2014;26:1–6.

    Article  CAS  PubMed  Google Scholar 

  16. Birkinshaw RW, Kjer-Nielsen L, Eckle SB, McCluskey J, Rossjohn J. MAITs, MR1 and vitamin B metabolites. Curr Opin Immunol. 2014;26:7–13.

    Article  CAS  PubMed  Google Scholar 

  17. Vavassori S, Kumar A, Wan GS, Ramanjaneyulu GS, Cavallari M, El Daker S, et al. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human gammadelta T cells. Nat Immunol. 2013;14(9):908–16.

    Article  CAS  PubMed  Google Scholar 

  18. Kuhns MS, Badgandi HB. Piecing together the family portrait of TCR-CD3 complexes. Immunol Rev. 2012;250(1):120–43.

    Article  CAS  PubMed  Google Scholar 

  19. Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME. Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb Perspect Biol. 2010;2(4):a005140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Yin Y, Mariuzza RA. Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front Immunol. 2013;4:206.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS). Curr Opin Immunol. 2010;22(3):326–32.

    Article  CAS  PubMed  Google Scholar 

  23. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21(6):581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer – preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol. 2010;37(5):430–9.

    Article  CAS  PubMed  Google Scholar 

  25. Engeland CE, Grossardt C, Veinalde R, Bossow S, Lutz D, Kaufmann JK, et al. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol Ther J Am Soc Gene Ther. 2014;22(11):1949–59.

    Article  CAS  Google Scholar 

  26. Ohigashi Y, Sho M, Yamada Y, Tsurui Y, Hamada K, Ikeda N, et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res. 2005;11(8):2947–53.

    Article  CAS  PubMed  Google Scholar 

  27. Byun DJ, Wolchok JD, Rosenberg LM, Girotra M. Cancer immunotherapy [mdash] immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol. 2017;13(4):195–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood. 2008;112(5):1557–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Al-Herz W, Bousfiha A, Casanova JL, Chapel H, Conley ME, Cunningham-Rundles C, et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2011;2:54.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Coquet JM, Rausch L, Borst J. The importance of co-stimulation in the orchestration of T helper cell differentiation. Immunol Cell Biol 2015;93(9):780–8.

    Article  CAS  PubMed  Google Scholar 

  32. Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest. 2007;117(5):1119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moss RB, Moll T, El-Kalay M, Kohne C, Soo Hoo W, Encinas J, et al. Th1/Th2 cells in inflammatory disease states: therapeutic implications. Expert Opin Biol Ther. 2004;4(12):1887–96.

    Article  CAS  PubMed  Google Scholar 

  34. Wilson CB, Rowell E, Sekimata M. Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol. 2009;9(2):91–105.

    Article  CAS  PubMed  Google Scholar 

  35. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33.

    Article  CAS  PubMed  Google Scholar 

  36. Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007;448(7152):484–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fouser LA, Wright JF, Dunussi-Joannopoulos K, Collins M. Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunol Rev. 2008;226:87–102.

    Article  CAS  PubMed  Google Scholar 

  38. Kaplan MH, Hufford MM, Olson MR. The development and in vivo function of T helper 9 cells. Nat Rev Immunol. 2015;15(5):295–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stassen M, Schmitt E, Bopp T. From interleukin-9 to T helper 9 cells. Ann N Y Acad Sci. 2012;1247:56–68.

    Article  CAS  PubMed  Google Scholar 

  40. Kaplan MH. Th9 cells: differentiation and disease. Immunol Rev. 2013;252(1):104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xie J, Lotoski LC, Chooniedass R, Su RC, Simons FE, Liem J, et al. Elevated antigen-driven IL-9 responses are prominent in peanut allergic humans. PLoS One. 2012;7(10):e45377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol. 2008;9(12):1347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014;41(4):529–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tangye SG, Ma CS, Brink R, Deenick EK. The good, the bad and the ugly – TFH cells in human health and disease. Nat Rev Immunol. 2013;13(6):412–26.

    Article  CAS  PubMed  Google Scholar 

  45. Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature. 2005;435(7041):452–8.

    Article  CAS  PubMed  Google Scholar 

  46. Johnson S, Bergthaler A, Graw F, Flatz L, Bonilla WV, Siegrist CA, et al. Protective efficacy of individual CD8+ T cell specificities in chronic viral infection. J Immunol. 2015;194(4):1755–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nizzoli G, Krietsch J, Weick A, Steinfelder S, Facciotti F, Gruarin P, et al. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood. 2013;122(6):932–42.

    Article  CAS  PubMed  Google Scholar 

  48. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87.

    Article  CAS  PubMed  Google Scholar 

  49. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–6.

    Article  CAS  PubMed  Google Scholar 

  50. Belkaid Y. Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol. 2007;7(11):875–88.

    Article  CAS  PubMed  Google Scholar 

  51. Cobbold SP. Regulatory T cells and transplantation tolerance. J Nephrol. 2008;21(4):485–96.

    PubMed  CAS  Google Scholar 

  52. Holaday BJ, Pompeu MM, Jeronimo S, Texeira MJ, Sousa Ade A, Vasconcelos AW, et al. Potential role for interleukin-10 in the immunosuppression associated with kala azar. J Clin Invest. 1993;92(6):2626–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Muthuswamy R, Urban J, Lee JJ, Reinhart TA, Bartlett D, Kalinski P. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res. 2008;68(14):5972–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shafiani S, Dinh C, Ertelt JM, Moguche AO, Siddiqui I, Smigiel KS, et al. Pathogen-specific Treg cells expand early during mycobacterium tuberculosis infection but are later eliminated in response to Interleukin-12. Immunity. 2013;38(6):1261–70.

    Article  CAS  PubMed  Google Scholar 

  55. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature. 2002;420(6915):502–7.

    Article  CAS  PubMed  Google Scholar 

  56. Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Le Bras S, Geha RS. IPEX and the role of Foxp3 in the development and function of human Tregs. J Clin Invest. 2006;116(6):1473–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vincent MS, Gumperz JE, Brenner MB. Understanding the function of CD1-restricted T cells. Nat Immunol. 2003;4(6):517–23.

    Article  CAS  PubMed  Google Scholar 

  59. Barral DC, Brenner MB. CD1 antigen presentation: how it works. Nat Rev Immunol. 2007;7(12):929–41.

    Article  CAS  PubMed  Google Scholar 

  60. Van Rhijn I, Ly D, Moody DB. CD1a, CD1b, and CD1c in immunity against mycobacteria. Adv Exp Med Biol. 2013;783:181–97.

    Article  CAS  PubMed  Google Scholar 

  61. Van Rhijn I, Moody DB. CD1 and mycobacterial lipids activate human T cells. Immunol Rev. 2015;264(1):138–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336.

    Article  CAS  Google Scholar 

  63. Venkataswamy MM, Porcelli SA. Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Semin Immunol. 2010;22(2):68–78.

    Article  CAS  PubMed  Google Scholar 

  64. Carreno LJ, Kharkwal SS, Porcelli SA. Optimizing NKT cell ligands as vaccine adjuvants. Immunotherapy. 2014;6(3):309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fernandez CS, Kelleher AD, Finlayson R, Godfrey DI, Kent SJ. NKT cell depletion in humans during early HIV infection. Immunol Cell Biol. 2014;92(7):578–90.

    Article  CAS  PubMed  Google Scholar 

  66. Brigl M, Brenner MB. CD1: antigen presentation and T cell function. Annu Rev Immunol. 2004;22:817–90.

    Article  CAS  PubMed  Google Scholar 

  67. Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol. 2011;11(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  68. Born WK, Reardon CL, O’Brien RL. The function of gammadelta T cells in innate immunity. Curr Opin Immunol. 2006;18(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  69. Kabelitz D, Marischen L, Oberg HH, Holtmeier W, Wesch D. Epithelial defence by gamma delta T cells. Int Arch Allergy Immunol. 2005;137(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  70. Morita CT, Jin C, Sarikonda G, Wang H. Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev. 2007;215:59–76.

    Article  CAS  PubMed  Google Scholar 

  71. Chien YH, Meyer C, Bonneville M. Gammadelta T cells: first line of defense and beyond. Annu Rev Immunol. 2014;32:121–55.

    Article  CAS  PubMed  Google Scholar 

  72. Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG, Lim RT, et al. CD1d-lipid antigen recognition by the gammadelta TCR. Nat Immunol. 2013;14(11):1137–45.

    Article  CAS  PubMed  Google Scholar 

  73. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. 2012;491(7426):717–23.

    Article  CAS  PubMed  Google Scholar 

  74. Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol. 2009;7(3):e54.

    Article  CAS  PubMed  Google Scholar 

  75. Fernandez CS, Amarasena T, Kelleher AD, Rossjohn J, McCluskey J, Godfrey DI, et al. MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol Cell Biol. 2015;93(2):177–88.

    Article  CAS  PubMed  Google Scholar 

  76. Bird L. Mucosal immunology: bait for MAIT cells identified. Nat Rev Immunol. 2010;10(8):539.

    Article  CAS  PubMed  Google Scholar 

  77. Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, et al. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol. 2015;8(2):429–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from NIH grants AI45889 and AI093649 (both awarded to SAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Porcelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharkwal, S.S., Porcelli, S.A. (2018). T Cell Immunity. In: Segal, B. (eds) Management of Infections in the Immunocompromised Host. Springer, Cham. https://doi.org/10.1007/978-3-319-77674-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77674-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77672-9

  • Online ISBN: 978-3-319-77674-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics