Antibacterial and Antifungal Agents: The Challenges of Antimicrobial-Resistant Infections in Immunocompromised Hosts

  • Matthew W. McCarthyEmail author
  • Thomas Baker
  • Michael J. Satlin
  • Thomas J. Walsh


Antimicrobial resistance may be intrinsic or acquired and is associated with poor clinical outcomes and breakthrough infections during treatment and prophylaxis. Given their frequent healthcare exposure, the immunocompromised are at higher risk for infection attributed to multidrug-resistant organisms. This increased risk, combined with identification through culturing techniques that can take several days, may lead to immunocompromised patients being placed empirically on antibiotics and antifungal agents that are not active against resistant organisms. Thus, patients with resistant infections may experience significant delays in receiving appropriate antimicrobial therapy. Understanding the underlying mechanisms of antibiotic resistance is critical to both choosing appropriate active therapy and developing new antimicrobial agents. Resistance mechanisms, which will be reviewed below, are extensive and vary across species. The most common mechanisms include alteration of drug target site, enzymatic drug inactivation, decreased bacterial membrane permeability, and drug efflux.


Carbapenem Beta-lactam Beta-lactamase Neutropenia Triazole Echinocandin Polyene 


  1. 1.
    Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature. 1940;1446:837.CrossRefGoogle Scholar
  2. 2.
    Ardia N, Sareyyupoglu B, Ozyurt M, et al. Investigation of aminoglycoside modifying enzyme genes in methicillin-resistant staphylococci. Microbiol Res. 2006;161:49–56.CrossRefGoogle Scholar
  3. 3.
    Avery R, Kalaycio M, Pohlman B, Sobecks R, Kuczkowski E, Andresen S, Mossad S, Shamp J, Curtis J, Kosar J, Sands K, Serafin M, Bolwell B. Early vancomycin resistant enterococcus (VRE) bacteraemia after allogenic bone marrow transplantation is associated with a rapidly deteriorating clinical course. Bone Marrow Transplant. 2005;35:497–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Balkan II, Aygun G, Aydın S, et al. Blood stream infections due to OXA-48-like carbapenemase-producing Enterobacteriaceae: treatment and survival. Int J Infect Dis. 2014;26:51–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Barber M, Rozwadowska-Dowzenko M. Infection by penicillin-resistant staphylococci. Lancet. 1948;2:641–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Becker PT, de Bel A, Martiny D, Ranque S, Piarroux R, Cassagne C, et al. Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library. Med Mycol. 2014;52(8):826–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Blum G, Perkofer S, Haas H, et al. Potential basis for amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother. 2008;52(4):1553–5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bodey GP, Jadeja L, Elting L. Pseudomonas bacteremia. Retrospective analysis of 410 episodes. Arch Intern Med. 1985;145:1621–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Bow, Bow EJ. Fluoroquinolones, antimicrobial resistance and neutropenic cancer patients. Curr Opin Infect Dis. 2011;24(6):–545.PubMedCrossRefGoogle Scholar
  10. 10.
    Broughton MC, Bard M, Lees ND. Polyene resistance in ergosterol producing strains of Candida albicans. Mycoses. 1991;34:75–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Brown DF, Hope R, Livermore DM, Brick G, Broughton K, George RC, et al. Non-susceptibility trends among enterococci and non-pneumococcal streptococci from bacteraemias in the UK and Ireland, 2001–06. J Antimicrob Chemother. 2008;62(Suppl 2):ii75–85.PubMedGoogle Scholar
  12. 12.
    Canton. CTX-M enzymes: origin and diffusion. Front Microbiol. 2012;3:110.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Canton R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol. 2006;9:466–75.PubMedCrossRefGoogle Scholar
  14. 14.
    Castanheira M, Mills JC, Costello SE, et al. Ceftazidime-avibactam activity tested against Enterobacteriaceae isolates from U.S. hospitals (2011–2013) and characterization of b-lactamase-producing strains. Antimicrob Agents Chemother. 2015;59:3509–17.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Chen DK, McGeer A, de Azavedo JC, Low DE. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. Canadian Bacterial Surveillance Network. N Engl J Med. 1999;341:233–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Choi S-H, Lee JE, Park SJ, et al. Emergence of antibiotic resistance during therapy for infections caused by Enterobacteriaceae producing AmpC beta-lactamase: implications for antibiotic use. Antimicrob Agents Chemother. 2008;52:995–1000.PubMedCrossRefGoogle Scholar
  17. 17.
    Chong GM, van der Beek MT, von dem Borne PA, Boelens J, Steel E, Kampinga GA, et al. PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: a multicentre validation of the AsperGenius assay® in 201 patients with haematological disease suspected for invasive aspergillosis. J Antimicrob Chemother. 2016;71:3528–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Chow JW, Fine MJ, Shlaes DM, et al. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med. 1991;115:585–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Clancy CJ, Nguyen MH. Emergence of Candida auris: an international call to arms. Clin Infect Dis. 2017;64(2):141–3.PubMedCrossRefGoogle Scholar
  20. 20.
    Cornejo-Juarez P, Perez-Jimenez C, Silva-Sanchez J, et al. Molecular analysis and risk factors for Escherichia coli producing extended-spectrum b-lactamase bloodstream infection in hematological malignancies. PLoS One. 2012;7:e35780.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Daikos GL, Tsaousi S, Tzouvelekis LS, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014;58:2322–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature. 1965;208:239–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Nidehhausern D, de Niederhäusern S, Bondi M, Messi P, Iseppi R, Sabia C, Manicardi G, Anacarso I. Vancomycin-resistance transferability from VanA enterococci to Staphylococcus aureus. Curr Microbiol. 2011;62(5):1363–7. Epub 2011 Jan 15.CrossRefGoogle Scholar
  24. 24.
    Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis. 2007;45:88–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Donovick R, Gold W, Pagano JF, Stout HA. Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antibiot Annu. 1955;3:579–86.PubMedGoogle Scholar
  26. 26.
    Doumith M, Ellington MJ, Livermore DM, Woodford N. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother. 2009;63:659–67.PubMedCrossRefGoogle Scholar
  27. 27.
    El-Khoury J, Fishman JA. Linezolid in the treatment of vancomycin-resistant Enterococcus faecium in solid organ transplant recipients: report of a multicenter compassionate-use trial. Transpl Infect Dis. 2003;5:121.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Emanaini. Prevalence of vancomycin-resistant Enterococcus in Iran: a systematic review and meta-analysis.Google Scholar
  29. 29.
    Feizabadi MM, Shokrzadeh L, Sayady S, Asadi S. Transposon Tn5281 is the main distributor of the aminoglycoside modifying enzyme gene among isolates of Enterococcus faecalis in Tehran hospitals. Can J Microbiol. 2008;54:887–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Fontana R, Ligozzi M, Mazzariol A, Veneri G, Cornaglia G. Resistance of enterococci to ampicillin and glycopeptide antibiotics in Italy. The Italian Surveillance Group for Antimicrobial Resistance. Clin Infect Dis. 1998;27(Suppl 1):S84–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Fowler VG Jr, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, Levine DP, Chambers HF, Tally FP, Vigliani GA, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355:653–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Freifeld, Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, Raad II, Rolston KV, Young JA, Wingard JR. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of America. Infectious Diseases Society of America. Clin Infect Dis. 2011;52(4):e56–93. Scholar
  33. 33.
    Freire MP, Pierrotti LC, Filho HHC, et al. Infection with Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae in cancer patients. Eur J Clin Microbiol Infect Dis. 2015;34:277–86.PubMedCrossRefGoogle Scholar
  34. 34.
    Fridkin, Fridkin SK. Vancomycin-intermediate and -resistant Staphylococcus aureus: what the infectious disease specialist needs to know. Clin Infect Dis. 2001;32(1):108.PubMedCrossRefGoogle Scholar
  35. 35.
    Friedman L, Alder JD, Silverman JA. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother. 2006;50:2137–45.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Fritsche TR, Castanheira M, Miller GH, et al. Detection of methyltransferases conferring high-level resistance to aminoglycosides in Enterobacteriaceae from Europe, North America and Latin America. Antimicrob Agents Chemother. 2008;52:1843–5.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gafter-Gvili A, Fraser A, Paul M, et al. Meta-analysis: antibiotic prophylaxis reduces mortality in neutropenic patients. Ann Intern Med. 2005;142:979–95.PubMedCrossRefGoogle Scholar
  38. 38.
    Galimand M, Courvalin P, Lambert T. Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother. 2003;47:2565–71.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Girmenia C, Rossolini GM, Piciocchi A, et al. Infections by carbapenem-resistant Klebsiella pneumoniae in SCT recipients: a nationwide retrospective survey from Italy. Bone Marrow Transplant. 2015;50:282–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Gudiol C, Bodro M, Simonetti A, et al. Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clin Microbiol Infect. 2013;19:474–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Gudiol C, Calatayud L, Garcia-Vidal C, et al. Bacteraemia due to extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) in cancer patients: clinical features, risk factors, molecular epidemiology and outcome. J Antimicrob Chemother. 2010;65:333–41.CrossRefPubMedGoogle Scholar
  42. 42.
    Gutmann, Michel M, Gutmann L. Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci: therapeutic realities and possibilities. Lancet. 1997;349(9069):1901.PubMedCrossRefGoogle Scholar
  43. 43.
    Ha YE, Kang C-I, Cha MK, et al. Epidemiology and clinical outcomes of bloodstream infections caused by extended-spectrum b-lactamase-producing Escherichia coli in patients with cancer. Int J Antimicrob Agents. 2013;42:403–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Haidar G, Haidar G, Alkroud A, Cheng S, Churilla TM, Churilla BM, Shields RK, Doi Y, Clancy CJ, Nguyen. Association between presence of aminoglycoside modifying enzymes and in vitro activity of gentamicin, tobramycin, amikacin and plazomicin against KPC and ESBL-producing Enterobacter spp. Antimicrob Agents Chemother. 2016;60:5208–14.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hanberger. Increased mortality associated with meticillin-resistant Staphylococcus aureus (MRSA) infection in the Intensive Care Unit: results from the EPIC II study.Google Scholar
  46. 46.
    Harris PNA, Wei JY, Shen AW, et al. Carbapenems versus alternative antibiotics for the treatment of bloodstream infections caused by Enterobacter, Citrobacter or Serratia species: a systematic review with metaanalysis. J Antimicrob Chemother. 2016;71:296–306.PubMedCrossRefGoogle Scholar
  47. 47.
    Hawkey PM. Molecular epidemiology of clinically significant antibiotic resistance genes. Br J Pharmacol. 2008;153:S406–13.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hayden MK, Rezai K, Hayes RA, Lolans K, Quinn JP, Weinstein RA. Development of Daptomycin resistance in vivo in methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2005;43:5285–7. PMID:16207998.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hidron AI, Schuetz AN, Nolte FS, Gould CV, Osborn MK. Daptomycin resistance in Enterococcus faecalis prosthetic valve endocarditis. J Antimicrob Chemother. 2008;61:1394–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Hindron, Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK, National Healthcare Safety Network Team, Participating National Healthcare Safety Network Facilities. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol. 2008;29(11):996.CrossRefGoogle Scholar
  51. 51.
    Hiramatsu K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect Dis. 2001;1:147–55.PubMedCrossRefGoogle Scholar
  52. 52.
    Hooper DC. Fluoroquinolone resistance among Gram-positive cocci.Google Scholar
  53. 53.
    Houghton JL, Green KD, Chen W, et al. The future of aminoglycosides: the end or the renaissance? ChemBioChem. 2010;11(7):880–902.PubMedCrossRefGoogle Scholar
  54. 54.
    Howden. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR.Google Scholar
  55. 55.
    Hyle EP, Lipworth AD, Zaoutis TE, et al. Impact of inadequate initial antimicrobial therapy on mortality in infections due to extended-spectrum beta-lactamase-producing enterobacteriaceae: variability by site of infection. Arch Intern Med. 2005;165:1375–80.PubMedCrossRefGoogle Scholar
  56. 56.
    Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22:161–82.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kamboj M, Chung D, Seo SK, Pamer EG, Sepkowitz KA, Jakubowski AA, Papanicolaou G. The changing epidemiology of vancomycin-resistant Enterococcus (VRE) bacteraemia in allogenic hematopoietic stem cell transplant (HSCT) recipients. Biol Blood Marrow Transplant. 2010;16:1576–81.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kanafani ZA, Federspiel JJ, Fowler VG Jr. Infective endocarditis caused by daptomycin-resistant Enterococcus faecalis: a case report. Scand J Infect Dis. 2007;39:75–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Kang C-I, Chung DR, Ko KS, et al. Risk factors for infection and treatment outcome of extended-spectrum b-lactamase-producing Escherichia coli and Klebsiella pneumoniae bacteremia in patients with hematologic malignancy. Ann Hematol. 2012;91:115–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Kang C-I, Pai H, Kim S-H, et al. Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediated AmpC-type beta-lactamase. J Antimicrob Chemother. 2004;54:1130–3.PubMedCrossRefGoogle Scholar
  61. 61.
    Kara Ö, Zarakolu P, Aşçioğlu S, Etgül S, Uz B, Büyükaşik Y, Akova M. Epidemiology and emerging resistance in bacterial bloodstream infections in patients with hematologic malignancies. Infect Dis (Lond). 2015;47:686–93.CrossRefGoogle Scholar
  62. 62.
    Kern WV, Klose K, Jellen-Ritter AS, et al. Fluoroquinolone resistance of Escherichia coli at a cancer center: epidemiologic evolution effects of discontinuing prophylactic fluoroquinolone use in neutropenic patients with leukemia. Eur J Clin Microbiol Infect Dis. 2005;24:111–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Kim S-H, Kwon J-C, Choi S-M, et al. Escherichia coli and Klebsiella pneumoniae bacteremia in patients with neutropenic fever: factors associated with extended-spectrum b-lactamase production and its impact on outcome. Ann Hematol. 2013;92:533–41.PubMedCrossRefGoogle Scholar
  64. 64.
    Kitzis MD, Billot-Klein D, Goldstein FW, Williamson R, Tran VN, Carlet J, et al. Dissemination of the novel plasmid-mediated beta-lactamase CTX-1, which confers resistance to broad-spectrum cephalosporins, and its inhibition by beta-lactamase inhibitors. Antimicrob Agents Chemother. 1988;32:9–14.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lautenbach E, Fishman NO, Bilker WB, Castiglioni A, Metlay JP, Edelstein PH, Strom BL. Risk factors for fluoroquinolone resistance in nosocomial Escherichia coli and Klebsiella pneumoniae infections. Arch Intern Med. 2002;162:2469–77.PubMedCrossRefGoogle Scholar
  66. 66.
    Leclercq R. Enterococci aquire new kinds of resistance. Clin Infect Dis. 1997;24(suppl 1):880–4.Google Scholar
  67. 67.
    Lee N-Y, Lee C-C, Huang W-H, et al. Cefepime therapy for monomicrobial bacteremia caused by cefepime susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin Infect Dis. 2013;56:488–95.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee N-Y, Lee C-C, Li C-W, et al. Cefepime therapy for monomicrobial enterobacter cloacae bacteremia: unfavorable outcomes in patients infected by cefepime-susceptible dose-dependent isolates. Antimicrob Agents Chemother. 2015;59:7558–63.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Leibovici L, Paul M, Cullen M, et al. Antibiotic prophylaxis in neutropenic patients: new evidence, practical decisions. Cancer. 2006;107:1743–51.PubMedCrossRefGoogle Scholar
  70. 70.
    Leuthner KD, Cheung CM, Rybak MJ. Comparative activity of the new lipoglycopeptide telavancin in the presence and absence of serum against 50 glycopeptide non-susceptible staphylococci and three vancomycin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2006;58:338–43.PubMedCrossRefGoogle Scholar
  71. 71.
    Birmingham MC, Rayner CR, Meagher AK, Flavin SM, Batts DH, Schentag JJ. Linezolid for the treatment of multidrug-resistant, gram-positive infections: experience from a compassionate-use program. Clin Infect Dis. 2003;36(2):159–68.PubMedCrossRefGoogle Scholar
  72. 72.
    Liscio JL, Mahoney MV, Hirsch EB. Ceftolozane/tazobactam and ceftazidime/avibactam: two novel b-lactam/b-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int J Antimicrob Agents. 2015;46:266–71.PubMedCrossRefGoogle Scholar
  73. 73.
    Liu, Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, Rybak M J, Talan DA, Chambers HF, Infectious Diseases Society of America. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55.PubMedCrossRefGoogle Scholar
  74. 74.
    Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64(2):134–40.PubMedCrossRefGoogle Scholar
  75. 75.
    Long JK, Choueiri TK, Hall GS, Avery RK, Sekeres MA. Daptomycin-resistant Enterococcus faecium in a patient with acute myeloid leukemia. Mayo Clin Proc. 2005;80:1215–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Mahajan, Mahajan SN, Shah JN, Hachem R, Tverdek F, Adachi JA, Mulanovich V, Rolston KV, Raad II, Chemaly RF. Characteristics and outcomes of methicillin-resistant staphylococcus aureus bloodstream infections in patients with cancer treated with vancomycin: 9-year experience at a comprehensive cancer center. Oncologist. 2012;17(10):1329–36.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Marcos M, Inurrieta A, Soriano A, et al. Effect of anti- ~ microbial therapy on mortality in 377 episodes of Enterobacter spp. bacteraemia. J Antimicrob Chemother. 2008;62:397–403.PubMedCrossRefGoogle Scholar
  78. 78.
    Marquez P, Terashita D, Dassey D, et al. Population based incidence of carbapenem-resistant Klebsiella pneumoniae along the continuum of care, Los Angeles County. Infect Control Hosp Epidemiol. 2013;34:144–50. [49]PubMedCrossRefGoogle Scholar
  79. 79.
    Martino R, Subira M, Altes A, et al. Effect of discontinuing prophylaxis with norfloxacin in patients with hematologic malignancies and severe neutropenia. A matched case-control study of the effect on infectious morbidity. Acta Haematol. 1998;99:206–11.PubMedCrossRefGoogle Scholar
  80. 80.
    Marty FM, Yeh WW, Wennersten CB, Venkataraman L, Albano E, Alyea EP, Gold HS, Baden LR, Pillai SK. Emergence of a clinical daptomycin-resistant Staphylococcus aureus isolate during treatment of methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis. J Clin Microbiol. 2006;44:595–7.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    McCarthy M, Rosengart A, Schuetz AN, Kontoyiannis DP, Walsh TJ. Mold infections of the central nervous system. N Engl J Med. 2014;371(2):150–60.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Metan G, Demiraslan H, Kaynar LG, et al. Factors influencing the early mortality in haematological malignancy patients with nosocomial Gram negative bacilli bacteraemia: a retrospective analysis of 154 cases. Braz J Infect Dis. 2013;17:143–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Mihu CN, Rhomberg PR, Jones RN, et al. Escherichia coli resistance to quinolones at a comprehensive cancer center. Diagn Microbiol Infect Dis. 2010;67:266–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Miles-Jay. Evaluation of routine pre-transplant screening for methicillin-resistant Staphylococcus aureus in hematopoietic cell transplant recipients.Google Scholar
  85. 85.
    Montassier E, Batard E, Gastinne T, et al. Recent changes in bacteremia in patients with cancer: a systematic review of epidemiology and antibiotic resistance. Eur J Clin Microbiol Infect Dis. 2013;32:841–50.PubMedCrossRefGoogle Scholar
  86. 86.
    Muto CA, Pokrywka M, Shutt K, et al. A large outbreak of Clostridium difficile-associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use. Infect Control Hosp Epidemiol. 2005;26:273–80. 187. Pepin JPubMedCrossRefGoogle Scholar
  87. 87.
    Neuhauser MM, Weinstein RA, Rydman R, et al. Antibiotic resistance among gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA. 2003;289:885.PubMedCrossRefGoogle Scholar
  88. 88.
    Niu, Niu H, Yu H, Hu T, Tian G, Zhang L, Guo X, Hu H, Wang Z. The prevalence of aminoglycoside-modifying enzyme and virulence genes among enterococci with high-level aminoglycoside resistance in Inner Mongolia, China. Braz J Microbiol. 2016;47(3):691–6.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Oliveira AL, de Souza M, Carvalho-Dias VMH, et al. Epidemiology of bacteremia and factors associated with multi-drug-resistant Gram-negative bacteremia in hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2007;39:775–81.PubMedCrossRefGoogle Scholar
  90. 90.
    Pagano L, Caira M, Trecarichi EM, et al. Carbapenemase-producing Klebsiella pneumoniae and hematologic malignancies. Emerg Infect Dis. 2014;20:1235–6.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Peel T, Cheng AC, Spelman T, Huysmans M, Spelman D. Differing risk factors for vancomycin-resistant and vancomcyin-sensitive enterococcal bacteraemia. Clin Microbiol Infect. 2012;18:388–94.PubMedCrossRefGoogle Scholar
  92. 92.
    Perlin DS. Echinocandin resistance in Candida. Clin Infect Dis. 2015;61(Suppl 6):S612–7.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Pfaller MA, et al. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat. 2011;14:164–76.PubMedCrossRefGoogle Scholar
  94. 94.
    Pham CD, Iqbal N, Bolden CB, Kuykendall RJ, Harrison LH, Farley MM, et al. Role of FKS mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob Agents Chemother. 2014;58(8):4690–6.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Polk RE, Johnson CK, McClish D, et al. Predicting hospital rates of fluoroquinolone-resistant Pseudomonas aeruginosa from fluoroquinolone use in US hospitals and their surrounding communities. Clin Infect Dis. 2004;39:497.PubMedCrossRefGoogle Scholar
  96. 96.
    Qureshi ZA, Paterson DL, Potoski BA, et al. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother. 2012;56:2108–13.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Rangaraj G, Granwehr BP, Jiang Y, et al. Perils of quinolone exposure in cancer patients: breakthrough bacteremia with multidrug-resistant organisms. Cancer. 2010;116:967–73.CrossRefPubMedGoogle Scholar
  98. 98.
    Reuter S, Kern WV, Sigge A, et al. Impact of fluoroquinolone prophylaxis on reduced infection-related mortality among patients with neutropenia and hematologic malignancies. Clin Infect Dis. 2005;40:1087–93.PubMedCrossRefGoogle Scholar
  99. 99.
    Reynolds, Reynolds PE. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis. 1989;8(11):943.PubMedCrossRefGoogle Scholar
  100. 100.
    Saheb N, Coulombe MA, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficileassociated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis. 2005;41:1254–60.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Sakoulas, Sakoulas G, Rose W, Nonejuie P, Olson J, Pogliano J, Humphries R, Nizet V. Ceftaroline restores daptomycin activity against daptomycin-nonsusceptible vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2014;58(3):1494–500. Epub 2013 Dec 23.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sanchez GV, Master RN, Clark RB, et al. Klebsiella pneumoniae antimicrobial drug resistance, United States, 1998–2010. Emerg Infect Dis. 2013;19:133–6.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Satlin MJ, Jenkins SG, Walsh TJ. The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014;58:1274–83.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sievert DM, Rudrik JT, Patel JB, et al. Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clin Infect Dis. 2008;46(5):668–74.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Skov, Skov R, et al. Staphylococcus aureus bacteremia: a 14-year nationwide study in hematological patients withmalignant disease or agranulocytosis. Scand J Infect Dis. 1995;27:563–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Smith CA, Baker EN. Aminoglycoside antibiotic resistance by enzymatic deactivation. Curr Drug Targets Infect Disord. 2002;2(2):143–60.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Snelders E, Huis In ‘t Veld RA, Rijs AJ, Kema GH, Melchers WJ, Verweij PE. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol. 2009;75(12):4053–7.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK. Overcoming antifungal resistance. Drug Discov Today Technol. 2014;11:65–71.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Tamma PD, Girdwood SCT, Gopaul R, et al. The use of cefepime for treating AmpC b-lactamase-producing Enterobacteriaceae. Clin Infect Dis. 2013;57:781–8.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Tamma PD, Han JH, Rock C, et al. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum b-lactamase bacteremia. Clin Infect Dis. 2015;60:1319–25.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Tenover, Tenover FC, Moellering RC Jr. The rationale for revising the clinical and laboratory standards institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clin Infect Dis. 2007;44(9):1208.PubMedCrossRefGoogle Scholar
  112. 112.
    Thomson KS, Moland ES. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2001;45:3548–54.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Tillotson GS, Draghi DC, Sahm DF, et al. Susceptibility of Staphylococcus aureus isolated from skin and wound infections in the United States 2005–07: laboratory-based surveillance study. J Antimicrob Chemother. 2008;62:109–15.PubMedCrossRefGoogle Scholar
  114. 114.
    Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A. 2002;99:5638–42.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Trecarichi EM, Pagano L, Candoni A, et al. Current epidemiology and antimicrobial resistance data for bacterial bloodstream infections in patients with hematologic malignancies: an Italian multicentre prospective survey. Clin Microbiol Infect. 2015;21:337–43.PubMedCrossRefGoogle Scholar
  116. 116.
    Trecarichi EM, Tumbarello M. Antimicrobial-resistant Gram-negative bacteria in febrile neutropenic patients with cancer: current epidemiology and clinical impact. Curr Opin Infect Dis. 2014;27:200–10.CrossRefPubMedGoogle Scholar
  117. 117.
    Trias J, Nikaido H. Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1990;34:52–7.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Paul M, Bishara J, Yahav D, Goldberg E, Neuberger A, Ghanem-Zoubi N, Dickstein Y, Nseir W, Dan M, Leibovici L. Trimethoprim-sulfamethoxazole versus vancomycin for severe infections caused by meticillin resistant Staphylococcus aureus: randomised controlled trial. BMJ. 2015;350:h2219.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Tumbarello M, Viale P, Bassetti M, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study–authors’ response. J Antimicrob Chemother. 2015;70:2922.PubMedCrossRefGoogle Scholar
  120. 120.
    Tumbarello M, Viale P, Viscoli C, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012;55:943–50.PubMedCrossRefGoogle Scholar
  121. 121.
    Vydra J, Shanley RM, Geroge I, Ustun C, Smith AR, Weisdorf DJ, Young JAH. Enterococcal bacteraemia is associated with increased risk of mortality in recipients of allogenic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55:764–70.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Warrilow AG, Parker JE, Kelly DE, Kelly SL. Azole affinity of sterol 14α-demethylase (CYP51) enzymes from Candida albicans and Homo sapiens. Antimicrob Agents Chemother. 2013;57(3):1352–60.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Weinstock DM, Conlon M, Iovino C, Aubrey T, Gudiol C, Riedel E, Young JW, Kiehn TE, Zuccotti G. Colonization, bloodstream infection and mortality caused by vancomycin resistant enterococcus early after allogenic hematopoietic stem cell transplant. Biol Blood Marrow Transplant. 2007;13:615–62.PubMedCrossRefGoogle Scholar
  124. 124.
    Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A, et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill. 2008;13(47):1–11.Google Scholar
  125. 125.
    White PL, Posso RB, Barnes RA. Analytical and clinical evaluation of the PathoNostics AsperGenius assay for detection of invasive aspergillosis and resistance to azole antifungal drugs during testing of serum samples. J Clin Microbiol. 2015;53(7):2115–21.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Wingard, Wingard JR, Eldjerou L, Leather H. Use of antibacterial prophylaxis in patients with chemotherapy-induced neutropenia. Curr Opin Hematol. 2012;19(1):21.PubMedCrossRefGoogle Scholar
  127. 127.
    Wolfson JS, Hooper DC. The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob Agents Chemother. 1985;28:581–5861985.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Yamane K, Wachino J, Doi Y, et al. Global spread of aminoglycoside resistance genes. Emerg Infect Dis. 2005;11:951–3.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Yemisen M, Balkan İİ, Salihoglu A, et al. The changing epidemiology of blood stream infections and resistance in haematopoietic stem cell transplantation recipients. Turk J Haematol. 2015. [Epub ahead of print].
  130. 130.
    Yokoyama K, Doi Y, Yamane K, et al. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet. 2003;362:1888–93.PubMedCrossRefGoogle Scholar
  131. 131.
    Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev. 2008;32:361–85.PubMedCrossRefGoogle Scholar
  132. 132.
    Zhao Y, Nagasaki Y, Kordalewska M, Press EG, Shields RK, Nguyen MH, et al. Rapid detection of FKS-associated echinocandin resistance in Candida glabrata. Antimicrob Agents Chemother. 2016;60:6573–7.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Zhou Y, Yu H, Guo Q, et al. Distribution of 16S rRNA methylases among different species of gram-negative bacilli with high-level resistance to aminoglycosides. Eur J Clin Microbiol Infect Dis. 2010;29:1349–53.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Matthew W. McCarthy
    • 1
    Email author
  • Thomas Baker
    • 1
  • Michael J. Satlin
    • 1
  • Thomas J. Walsh
    • 1
  1. 1.Department of Infectious DiseasesWeill Cornell MedicineNew YorkUSA

Personalised recommendations