Phagocytes
Abstract
Phagocytes are a heterogeneous group of white cells or leukocytes—comprised of granulocytes and mononuclear phagocytes—that are important for innate and acquired immunity. Phagocytic leukocytes originate from bone marrow stem cells during hematopoiesis or from fetal precursor cells that seed tissues during embryogenesis. A primary function of mature phagocytes is to ingest and kill microorganisms. These leukocytes use oxygen-dependent and oxygen-independent processes to kill and degrade microbes. Phagocytes also generate extracellular traps, which can ensnare microbes and thereby contribute to host defense. Some phagocytes function as antigen-presenting cells and thus serve as a bridge between innate and acquired immunity. In addition to playing an important role in host defense, phagocytes eliminate dead host cells and debris, a process that maintains steady-state tissue homeostasis.
Keywords
Phagocyte Phagocytosis Macrophage Monocyte Granulocyte Neutrophil Polymorphonuclear leukocyte PMN Innate immunity InflammationAbbreviations
- APC
Antigen-presenting cell
- BMCP
Basophil-MC progenitor cell
- BPI
Bactericidal/permeability-increasing protein
- CCL2
CC-chemokine ligand 2
- cDC
Classical DC
- CDP
Common DC progenitor
- CLP
Common lymphoid progenitor
- CMP
Common myeloid progenitor
- CXCL8
CXC-chemokine ligand 8 (IL-8)
- DAMP
Damage-associated molecular pattern
- DC
Dendritic cell
- EPC
Embryonic progenitor cell
- ESL1
E-selectin ligand 1
- ET
Extracellular trap
- GAG
Glycosaminoglycan
- GMP
Granulocyte-macrophage progenitor
- H2O2
Hydrogen peroxide
- HMGB1
High-mobility group box 1
- HNP
Human neutrophil peptide
- HOCl
Hypochlorous acid
- HSC
Hematopoietic stem cell
- ICAM-1
Intercellular adhesion molecule 1
- iNOS
Inducible nitric oxide synthase
- JAM-A
Junctional adhesion molecule A
- JAM-C
Junctional adhesion molecule C
- LMPP
Lymphoid-myeloid multipotent progenitor
- LPS
Lipopolysaccharide
- MDP
Macrophage-DC progenitor
- MEP
Megakaryocyte-erythrocyte progenitor
- MHC
Major histocompatibility complex
- MPO
Myeloperoxidase
- MPP
Multipotent progenitor
- NET
Neutrophil extracellular trap
- PAMP
Pathogen-associated molecular pattern
- pDC
Plasmacytoid DC
- PECAM-1
Platelet-endothelial cell adhesion molecule-1 (CD31)
- PMN
Polymorphonuclear leukocyte (or neutrophil)
- PRR
Pattern recognition receptor
- PSGL1
P-selectin glycoprotein ligand 1
- RNS
Reactive nitrogen species
- ROS
Reactive oxygen species
- SYK
Spleen tyrosine kinase
- TCR
T cell receptor
- TEM
Transendothelial cell migration
- TNF
Tumor necrosis factor
- VCAM-1
Vasculature intercellular adhesion molecule 1
- VLA-4
Very late antigen 4
Notes
Acknowledgments
The authors thank Ryan Kissinger (National Institute of Allergy and Infectious Diseases) for preparation of illustrations. The authors are supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.
References
- 1.Laiosa CV, Stadtfeld M, Graf T. Determinants of lymphoid-myeloid lineage diversification. Annu Rev Immunol. 2006;24:705–38.PubMedCrossRefGoogle Scholar
- 2.Sieweke MH, Allen JE. Beyond stem cells: self-renewal of differentiated macrophages. Science. 2013;342:1242974.PubMedCrossRefGoogle Scholar
- 3.Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14:392–404.PubMedCrossRefGoogle Scholar
- 4.Laslo P, Pongubala JM, Lancki DW, Singh H. Gene regulatory networks directing myeloid and lymphoid cell fates within the immune system. Semin Immunol. 2008;20:228–35.PubMedCrossRefGoogle Scholar
- 5.Nimmo RA, May GE, Enver T. Primed and ready: understanding lineage commitment through single cell analysis. Trends Cell Biol. 2015;25:459–67.PubMedCrossRefGoogle Scholar
- 6.Davies LC, Taylor PR. Tissue-resident macrophages: then and now. Immunology. 2015;144:541–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 7.van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. J Exp Med. 1968;128:415–35.PubMedPubMedCentralCrossRefGoogle Scholar
- 8.Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14:571–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 9.Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327:656–61.PubMedPubMedCentralCrossRefGoogle Scholar
- 10.Jenkins SJ, Hume DA. Homeostasis in the mononuclear phagocyte system. Trends Immunol. 2014;35:358–67.PubMedCrossRefGoogle Scholar
- 11.Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity. 2014;41:21–35.PubMedPubMedCentralCrossRefGoogle Scholar
- 12.Ackermann M, Liebhaber S, Klusmann JH, Lachmann N. Lost in translation: pluripotent stem cell-derived hematopoiesis. EMBO Mol Med. 2015;7:1388–1402.PubMedPubMedCentralCrossRefGoogle Scholar
- 13.Pittet MJ, Nahrendorf M, Swirski FK. The journey from stem cell to macrophage. Ann N Y Acad Sci. 2014;1319:1–18.PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol. 2014;14:302–14.PubMedCrossRefGoogle Scholar
- 15.Alvarez-Errico D, Vento-Tormo R, Sieweke M, Ballestar E. Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol. 2015;15:7–17.PubMedCrossRefGoogle Scholar
- 16.van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972;46:845–52.PubMedPubMedCentralGoogle Scholar
- 17.Meuret G, Hoffmann G. Monocyte kinetic studies in normal and disease states. Br J Haematol. 1973;24:275–85.PubMedCrossRefGoogle Scholar
- 18.Dutta P, Nahrendorf M. Regulation and consequences of monocytosis. Immunol Rev. 2014;262:167–78.PubMedPubMedCentralCrossRefGoogle Scholar
- 19.Italiani P, Boraschi D. From Monocytes to M1/M2 Macrophages: phenotypical vs. functional differentiation. Front Immunol. 2014;5:514.PubMedPubMedCentralCrossRefGoogle Scholar
- 20.Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38:79–91.PubMedCrossRefGoogle Scholar
- 21.Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR, et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science. 2006;311:83–7.PubMedCrossRefGoogle Scholar
- 22.Mildner A, Yona S, Jung S. A close encounter of the third kind: monocyte-derived cells. Adv Immunol. 2013;120:69–103.PubMedCrossRefGoogle Scholar
- 23.Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989;74:2527–34.PubMedGoogle Scholar
- 24.Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19:71–82.PubMedCrossRefGoogle Scholar
- 25.Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–55.PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.PubMedPubMedCentralCrossRefGoogle Scholar
- 27.Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164:6166–73.PubMedCrossRefGoogle Scholar
- 28.Locati M, Mantovani A, Sica A. Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol. 2013;120:163–84.PubMedCrossRefGoogle Scholar
- 29.Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol. 2011;12:1035–44.PubMedPubMedCentralCrossRefGoogle Scholar
- 30.Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.PubMedPubMedCentralCrossRefGoogle Scholar
- 31.Price JV, Vance RE. The macrophage paradox. Immunity. 2014;41:685–93.PubMedCrossRefGoogle Scholar
- 32.Steinman RM, Witmer MD. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci U S A. 1978;75:5132–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 33.Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, Cohain A, et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol. 2012;13:888–99.PubMedPubMedCentralCrossRefGoogle Scholar
- 34.Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol. 2002;3:1135–41.PubMedPubMedCentralCrossRefGoogle Scholar
- 35.Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563–604.PubMedCrossRefGoogle Scholar
- 36.Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137:1142–62.PubMedPubMedCentralCrossRefGoogle Scholar
- 37.Mildner A, Jung S. Development and function of dendritic cell subsets. Immunity. 2014;40:642–56.PubMedCrossRefGoogle Scholar
- 38.Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 2003;19:59–70.PubMedCrossRefGoogle Scholar
- 39.Schlitzer A, McGovern N, Ginhoux F. Dendritic cells and monocyte-derived cells: two complementary and integrated functional systems. Semin Cell Dev Biol. 2015;41:9–22.PubMedCrossRefGoogle Scholar
- 40.Bainton DF, Ullyot JL, Farquhar MG. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med. 1971;134:907–34.PubMedPubMedCentralCrossRefGoogle Scholar
- 41.Kennedy AD, DeLeo FR. Neutrophil apoptosis and the resolution of infection. Immunol Res. 2009;43:25–61.PubMedCrossRefGoogle Scholar
- 42.Athens JW, Haab OP, Raab SO, Mauer AM, Ashenbrucker H, Cartwright GE, et al. Leukokinetic studies. IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J Clin Invest. 1961;40:989–95.PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Borregaard N, Sorensen OE, Theilgaard-Monch K. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 2007;28:340–5.PubMedCrossRefGoogle Scholar
- 44.Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 2003;5:1317–27.PubMedCrossRefGoogle Scholar
- 45.DeLeo FR, Nauseef WM. Granulocytic phagocytes. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 1. 8th ed. Philadelphia: Elsevier Saunders; 2014. p. 78–92.Google Scholar
- 46.Borregaard N, Heiple JM, Simons ER, Clark RA. Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol. 1983;97:52–61.PubMedCrossRefGoogle Scholar
- 47.Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014;15:602–11.PubMedCrossRefGoogle Scholar
- 48.Karasuyama H, Mukai K, Obata K, Tsujimura Y, Wada T. Nonredundant roles of basophils in immunity. Annu Rev Immunol. 2011;29:45–69.PubMedCrossRefGoogle Scholar
- 49.Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol. 2006;24:147–74.PubMedCrossRefGoogle Scholar
- 50.Taylor ML, Metcalfe DD. Mast cells in allergy and host defense. Allergy Asthma Proc. 2001;22:115–9.PubMedCrossRefGoogle Scholar
- 51.Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008;14:949–53.PubMedCrossRefGoogle Scholar
- 52.Persson T, Andersson P, Bodelsson M, Laurell M, Malm J, Egesten A. Bactericidal activity of human eosinophilic granulocytes against Escherichia coli. Infect Immun. 2001;69:3591–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 53.Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol. 2013;13:9–22.PubMedCrossRefGoogle Scholar
- 54.Ribatti D, Crivellato E. Mast cell ontogeny: an historical overview. Immunol Lett. 2014;159:11–4.PubMedCrossRefGoogle Scholar
- 55.Feger F, Varadaradjalou S, Gao Z, Abraham SN, Arock M. The role of mast cells in host defense and their subversion by bacterial pathogens. Trends Immunol. 2002;23:151–8.PubMedCrossRefGoogle Scholar
- 56.Dahlin JS, Hallgren J. Mast cell progenitors: origin, development and migration to tissues. Mol Immunol. 2015;63:9–17.PubMedCrossRefGoogle Scholar
- 57.Nilsson G, Costa JJ, Metcalfe DD. Mast cells and basophils. In: Gallin JI, Snyderman R, editors. Inflammation: basic principles and clinical correlates. 1. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 1999. p. 97–117.Google Scholar
- 58.Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science. 1996;272:60–6.PubMedCrossRefGoogle Scholar
- 59.Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89.PubMedCrossRefGoogle Scholar
- 60.Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13:159–75.PubMedCrossRefGoogle Scholar
- 61.Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41:694–707.PubMedCrossRefGoogle Scholar
- 62.Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol. 2010;10:427–39.PubMedCrossRefGoogle Scholar
- 63.Petri B, Phillipson M, Kubes P. The physiology of leukocyte recruitment: an in vivo perspective. J Immunol. 2008;180:6439–46.PubMedCrossRefGoogle Scholar
- 64.Kobayashi SD, Voyich JM, Burlak C, DeLeo FR. Neutrophils in the innate immune response. Arch Immunol Ther Exp. 2005;53:505–17.Google Scholar
- 65.McPhail LC, Clayton CC, Snyderman R. The NADPH oxidase of human polymorphonuclear leukocytes. Evidence for regulation by multiple signals. J Biol Chem. 1984;259:5768–75.PubMedGoogle Scholar
- 66.Guthrie LA, McPhail LC, Henson PM, Johnston RB Jr. Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J Exp Med. 1984;160:1656–71.PubMedCrossRefGoogle Scholar
- 67.Rigby KM, DeLeo FR. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol. 2012;34:237–59.PubMedCrossRefGoogle Scholar
- 68.Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.PubMedCrossRefPubMedCentralGoogle Scholar
- 69.Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.PubMedPubMedCentralCrossRefGoogle Scholar
- 70.Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol. 2013;13:621–34.PubMedCrossRefGoogle Scholar
- 71.Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9:679–91.PubMedPubMedCentralCrossRefGoogle Scholar
- 72.Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11:762–74.PubMedPubMedCentralCrossRefGoogle Scholar
- 73.Kinashi T. Intracellular signalling controlling integrin activation in lymphocytes. Nat Rev Immunol. 2005;5:546–59.PubMedCrossRefGoogle Scholar
- 74.Arnaout MA. Biology and structure of leukocyte beta 2 integrins and their role in inflammation. F1000Res. 2016;5:2433.CrossRefGoogle Scholar
- 75.Laudanna C, Kim JY, Constantin G, Butcher E. Rapid leukocyte integrin activation by chemokines. Immunol Rev. 2002;186:37–46.PubMedCrossRefGoogle Scholar
- 76.Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol. 2010;11:288–300.PubMedPubMedCentralCrossRefGoogle Scholar
- 77.Abram CL, Lowell CA. The ins and outs of leukocyte integrin signaling. Annu Rev Immunol. 2009;27:339–62.PubMedPubMedCentralCrossRefGoogle Scholar
- 78.Weninger W, Biro M, Jain R. Leukocyte migration in the interstitial space of non-lymphoid organs. Nat Rev Immunol. 2014;14:232–46.PubMedCrossRefGoogle Scholar
- 79.Muller WA. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 2003;24:327–34.PubMedGoogle Scholar
- 80.Nourshargh S, Hordijk PL, Sixt M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol. 2010;11:366–78.PubMedCrossRefGoogle Scholar
- 81.Heinrich V. Controlled one-on-one encounters between immune cells and microbes reveal mechanisms of phagocytosis. Biophys J. 2015;109:469–76.PubMedPubMedCentralCrossRefGoogle Scholar
- 82.Brown GD, Gordon S. Immune recognition. A new receptor for beta-glucans. Nature. 2001;413:36–7.PubMedCrossRefGoogle Scholar
- 83.Herre J, Marshall AS, Caron E, Edwards AD, Williams DL, Schweighoffer E, et al. Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood. 2004;104:4038–45.PubMedCrossRefGoogle Scholar
- 84.Li X, Utomo A, Cullere X, Choi MM, Milner DA Jr, Venkatesh D, et al. The beta-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell Host Microbe. 2011;10:603–15.PubMedPubMedCentralCrossRefGoogle Scholar
- 85.Anderson CL, Shen L, Eicher DM, Wewers MD, Gill JK. Phagocytosis mediated by three distinct Fc gamma receptor classes on human leukocytes. J Exp Med. 1990;171:1333–45.PubMedCrossRefGoogle Scholar
- 86.Springer TA, Dustin ML. Integrin inside-out signaling and the immunological synapse. Curr Opin Cell Biol. 2012;24:107–15.PubMedCrossRefGoogle Scholar
- 87.Caron E, Self AJ, Hall A. The GTPase Rap1 controls functional activation of macrophage integrin alphaMbeta2 by LPS and other inflammatory mediators. Curr Biol. 2000;10:974–8.PubMedCrossRefGoogle Scholar
- 88.Patel PC, Harrison RE. Membrane ruffles capture C3bi-opsonized particles in activated macrophages. Mol Biol Cell. 2008;19:4628–39.PubMedPubMedCentralCrossRefGoogle Scholar
- 89.Kress H, Stelzer EH, Holzer D, Buss F, Griffiths G, Rohrbach A. Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. Proc Natl Acad Sci U S A. 2007;104:11633–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 90.Flannagan RS, Harrison RE, Yip CM, Jaqaman K, Grinstein S. Dynamic macrophage “probing” is required for the efficient capture of phagocytic targets. J Cell Biol. 2010;191:1205–18.PubMedPubMedCentralCrossRefGoogle Scholar
- 91.Kheir WA, Gevrey JC, Yamaguchi H, Isaac B, Cox D. A WAVE2-Abi1 complex mediates CSF-1-induced F-actin-rich membrane protrusions and migration in macrophages. J Cell Sci. 2005;118:5369–79.PubMedCrossRefGoogle Scholar
- 92.Freeman SA, Grinstein S. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev. 2014;262:193–215.PubMedCrossRefGoogle Scholar
- 93.Levin R, Grinstein S, Schlam D. Phosphoinositides in phagocytosis and macropinocytosis. Biochim Biophys Acta. 1851;2015:805–23.Google Scholar
- 94.Wang AV, Scholl PR, Geha RS. Physical and functional association of the high affinity immunoglobulin G receptor (Fc gamma RI) with the kinases Hck and Lyn. J Exp Med. 1994;180:1165–70.PubMedCrossRefGoogle Scholar
- 95.Jaumouille V, Farkash Y, Jaqaman K, Das R, Lowell CA, Grinstein S. Actin cytoskeleton reorganization by Syk regulates Fcgamma receptor responsiveness by increasing its lateral mobility and clustering. Dev Cell. 2014;29:534–46.PubMedPubMedCentralCrossRefGoogle Scholar
- 96.Swanson JA. Phosphoinositides and engulfment. Cell Microbiol. 2014;16:1473–83.PubMedPubMedCentralCrossRefGoogle Scholar
- 97.Cox D, Berg JS, Cammer M, Chinegwundoh JO, Dale BM, Cheney RE, et al. Myosin X is a downstream effector of PI(3)K during phagocytosis. Nat Cell Biol. 2002;4:469–77.PubMedCrossRefGoogle Scholar
- 98.Lukacs GL, Rotstein OD, Grinstein S. Phagosomal acidification is mediated by a vacuolar-type H(+)-ATPase in murine macrophages. J Biol Chem. 1990;265:21099–107.PubMedGoogle Scholar
- 99.El Chemaly A, Nunes P, Jimaja W, Castelbou C, Demaurex N. Hv1 proton channels differentially regulate the pH of neutrophil and macrophage phagosomes by sustaining the production of phagosomal ROS that inhibit the delivery of vacuolar ATPases. J Leukoc Biol. 2014;95:827–839.Google Scholar
- 100.Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P, Moura IC, et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell. 2006;126:205–18.PubMedCrossRefGoogle Scholar
- 101.Yates RM, Hermetter A, Russell DG. The kinetics of phagosome maturation as a function of phagosome/lysosome fusion and acquisition of hydrolytic activity. Traffic. 2005;6:413–20.PubMedCrossRefGoogle Scholar
- 102.Claus V, Jahraus A, Tjelle T, Berg T, Kirschke H, Faulstich H, et al. Lysosomal enzyme trafficking between phagosomes, endosomes, and lysosomes in J774 macrophages. Enrichment of cathepsin H in early endosomes. J Biol Chem. 1998;273:9842–51.PubMedCrossRefGoogle Scholar
- 103.Rybicka JM, Balce DR, Chaudhuri S, Allan ER, Yates RM. Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner. EMBO J. 2012;31:932–44.PubMedCrossRefGoogle Scholar
- 104.Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science. 2005;307:1630–4.PubMedCrossRefGoogle Scholar
- 105.Delamarre L, Couture R, Mellman I, Trombetta ES. Enhancing immunogenicity by limiting susceptibility to lysosomal proteolysis. J Exp Med. 2006;203:2049–55.PubMedPubMedCentralCrossRefGoogle Scholar
- 106.Mantegazza AR, Zajac AL, Twelvetrees A, Holzbaur EL, Amigorena S, Marks MS. TLR-dependent phagosome tubulation in dendritic cells promotes phagosome cross-talk to optimize MHC-II antigen presentation. Proc Natl Acad Sci U S A. 2014;111:15508–13.PubMedPubMedCentralCrossRefGoogle Scholar
- 107.Lominadze G, Powell DW, Luerman GC, Link AJ, Ward RA, McLeish KR. Proteomic analysis of human neutrophil granules. Mol Cell Proteomics. 2005;4:1503–21.PubMedCrossRefGoogle Scholar
- 108.Jankowski A, Scott CC, Grinstein S. Determinants of the phagosomal pH in neutrophils. J Biol Chem. 2002;277:6059–66.PubMedCrossRefGoogle Scholar
- 109.Morgan D, Capasso M, Musset B, Cherny VV, Rios E, Dyer MJ, et al. Voltage-gated proton channels maintain pH in human neutrophils during phagocytosis. Proc Natl Acad Sci U S A. 2009;106:18022–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 110.Capasso M, DeCoursey TE, Dyer MJ. pH regulation and beyond: unanticipated functions for the voltage-gated proton channel, HVCN1. Trends Cell Biol. 2011;21:20–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 111.Ramsey IS, Ruchti E, Kaczmarek JS, Clapham DE. Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc Natl Acad Sci U S A. 2009;106:7642–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 112.Segal AW, Geisow M, Garcia R, Harper A, Miller R. The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature. 1981;290:406–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 113.Nunes P, Demaurex N, Dinauer MC. Regulation of the NADPH oxidase and associated ion fluxes during phagocytosis. Traffic. 2013;14:1118–31.PubMedPubMedCentralGoogle Scholar
- 114.Babior BM. NADPH oxidase: an update. Blood. 1999;93:1464–76.PubMedPubMedCentralGoogle Scholar
- 115.Wang G, Nauseef WM. Salt, chloride, bleach, and innate host defense. J Leukoc Biol. 2015;98:163–72.PubMedPubMedCentralCrossRefGoogle Scholar
- 116.Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol. 2013;93:185–98.PubMedPubMedCentralCrossRefGoogle Scholar
- 117.Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998;391:393–7.PubMedCrossRefPubMedCentralGoogle Scholar
- 118.Sbarra AJ, Karnovsky ML. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959;234:1355–62.PubMedPubMedCentralGoogle Scholar
- 119.Baehner RL, Karnovsky ML. Deficiency of reduced nicotinamide-adenine dinucleotide oxidase in chronic granulomatous disease. Science. 1968;162:1277–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 120.MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–50.PubMedCrossRefPubMedCentralGoogle Scholar
- 121.Stuehr DJ. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999;1411:217–30.PubMedCrossRefGoogle Scholar
- 122.Schapiro JM, Libby SJ, Fang FC. Inhibition of bacterial DNA replication by zinc mobilization during nitrosative stress. Proc Natl Acad Sci U S A. 2003;100:8496–501.PubMedPubMedCentralCrossRefGoogle Scholar
- 123.Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 2015;36:161–78.PubMedCrossRefPubMedCentralGoogle Scholar
- 124.Henard CA, Vazquez-Torres A. Nitric oxide and salmonella pathogenesis. Front Microbiol. 2011;2:84.PubMedPubMedCentralCrossRefGoogle Scholar
- 125.Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985;76:1427–35.PubMedPubMedCentralCrossRefGoogle Scholar
- 126.Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI. Primary structures of three human neutrophil defensins. J Clin Invest. 1985;76:1436–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 127.Ganz T. Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes. Infect Immun. 1987;55:568–71.PubMedPubMedCentralGoogle Scholar
- 128.Elsbach P, Weiss J, Franson RC, Beckerdite-Quagliata S, Schneider A, Harris L. Separation and purification of a potent bactericidal/permeability-increasing protein and a closely associated phospholipase A2 from rabbit polymorphonuclear leukocytes. Observations on their relationship. J Biol Chem. 1979;254:11000–9.PubMedGoogle Scholar
- 129.Egesten A, Breton-Gorius J, Guichard J, Gullberg U, Olsson I. The heterogeneity of azurophil granules in neutrophil promyelocytes: immunogold localization of myeloperoxidase, cathepsin G, elastase, proteinase 3, and bactericidal/permeability increasing protein. Blood. 1994;83:2985–94.PubMedGoogle Scholar
- 130.Lehrer RI, Ganz T. Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol. 2002;9:18–22.PubMedCrossRefPubMedCentralGoogle Scholar
- 131.Lehrer RI, Lu W. Alpha-Defensins in human innate immunity. Immunol Rev. 2012;245:84–112.PubMedCrossRefPubMedCentralGoogle Scholar
- 132.Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest. 1989;84:553–61.PubMedPubMedCentralCrossRefGoogle Scholar
- 133.Levy O. A neutrophil-derived anti-infective molecule: bactericidal/permeability-increasing protein. Antimicrob Agents Chemother. 2000;44:2925–31.PubMedPubMedCentralCrossRefGoogle Scholar
- 134.Krasity BC, Troll JV, Weiss JP, McFall-Ngai MJ. LBP/BPI proteins and their relatives: conservation over evolution and roles in mutualism. Biochem Soc Trans. 2011;39:1039–44.PubMedPubMedCentralCrossRefGoogle Scholar
- 135.Balakrishnan A, Marathe SA, Joglekar M, Chakravortty D. Bactericidal/permeability increasing protein: a multifaceted protein with functions beyond LPS neutralization. Innate Immun. 2013;19:339–47.PubMedCrossRefGoogle Scholar
- 136.Belaaouaj A, Kim KS, Shapiro SD. Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science. 2000;289:1185–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 137.Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G, et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature. 2002;416:291–7.PubMedCrossRefGoogle Scholar
- 138.Campanelli D, Melchior M, Fu Y, Nakata M, Shuman H, Nathan C, et al. Cloning of cDNA for proteinase 3: a serine protease, antibiotic, and autoantigen from human neutrophils. J Exp Med. 1990;172:1709–15.PubMedCrossRefGoogle Scholar
- 139.Campanelli D, Detmers PA, Nathan CF, Gabay JE. Azurocidin and a homologous serine protease from neutrophils. Differential antimicrobial and proteolytic properties. J Clin Invest. 1990;85:904–15.PubMedPubMedCentralCrossRefGoogle Scholar
- 140.Morgan JG, Sukiennicki T, Pereira HA, Spitznagel JK, Guerra ME, Larrick JW. Cloning of the cDNA for the serine protease homolog CAP37/azurocidin, a microbicidal and chemotactic protein from human granulocytes. J Immunol. 1991;147:3210–4.PubMedGoogle Scholar
- 141.Hahn I, Klaus A, Janze AK, Steinwede K, Ding N, Bohling J, et al. Cathepsin G and neutrophil elastase play critical and nonredundant roles in lung-protective immunity against Streptococcus pneumoniae in mice. Infect Immun. 2011;79:4893–901.PubMedPubMedCentralCrossRefGoogle Scholar
- 142.Tkalcevic J, Novelli M, Phylactides M, Iredale JP, Segal AW, Roes J. Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity. 2000;12:201–10.PubMedCrossRefPubMedCentralGoogle Scholar
- 143.Kolset SO, Tveit H. Serglycin––structure and biology. Cell Mol Life Sci. 2008;65:1073–85.PubMedCrossRefPubMedCentralGoogle Scholar
- 144.Niemann CU, Cowland JB, Klausen P, Askaa J, Calafat J, Borregaard N. Localization of serglycin in human neutrophil granulocytes and their precursors. J Leukoc Biol. 2004;76:406–15.PubMedCrossRefPubMedCentralGoogle Scholar
- 145.Pham CT. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol. 2006;6:541–50.PubMedCrossRefPubMedCentralGoogle Scholar
- 146.Belaaouaj A, McCarthy R, Baumann M, Gao Z, Ley TJ, Abraham SN, et al. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med. 1998;4:615–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 147.Scocchi M, Skerlavaj B, Romeo D, Gennaro R. Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to antibacterial bactenecins. Eur J Biochem. 1992;209:589–95.PubMedCrossRefPubMedCentralGoogle Scholar
- 148.Meyer-Hoffert U. Neutrophil-derived serine proteases modulate innate immune responses. Front Biosci (Landmark Ed). 2009;14:3409–18.CrossRefGoogle Scholar
- 149.Tongaonkar P, Golji AE, Tran P, Ouellette AJ, Selsted ME. High fidelity processing and activation of the human alpha-defensin HNP1 precursor by neutrophil elastase and proteinase 3. PLoS One. 2012;7:e32469.PubMedPubMedCentralCrossRefGoogle Scholar
- 150.Sorensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood. 2001;97:3951–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 151.Meyer-Hoffert U, Wiedow O. Neutrophil serine proteases: mediators of innate immune responses. Curr Opin Hematol. 2011;18:19–24.PubMedCrossRefPubMedCentralGoogle Scholar
- 152.Bangalore N, Travis J, Onunka VC, Pohl J, Shafer WM. Identification of the primary antimicrobial domains in human neutrophil cathepsin G. J Biol Chem. 1990;265:13584–8.PubMedPubMedCentralGoogle Scholar
- 153.Shafer WM, Martin LE, Spitznagel JK. Cationic antimicrobial proteins isolated from human neutrophil granulocytes in the presence of diisopropyl fluorophosphate. Infect Immun. 1984;45:29–35.PubMedPubMedCentralGoogle Scholar
- 154.Shafer WM, Onunka VC, Martin LE. Antigonococcal activity of human neutrophil cathepsin G. Infect Immun. 1986;54:184–8.PubMedPubMedCentralGoogle Scholar
- 155.Zeya HI, Spitznagel JK. Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties, and mechanism of antibacterial action. J Bacteriol. 1966;91:755–62.PubMedPubMedCentralGoogle Scholar
- 156.Kao RC, Wehner NG, Skubitz KM, Gray BH, Hoidal JR. Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J Clin Invest. 1988;82:1963–73.PubMedPubMedCentralCrossRefGoogle Scholar
- 157.Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.PubMedCrossRefPubMedCentralGoogle Scholar
- 158.von Kockritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A, Rohde M, et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood. 2008;111:3070–80.CrossRefGoogle Scholar
- 159.Chow OA, von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL, et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe. 2010;8:445–54.PubMedPubMedCentralCrossRefGoogle Scholar
- 160.Boe DM, Curtis BJ, Chen MM, Ippolito JA, Kovacs EJ. Extracellular traps and macrophages: new roles for the versatile phagocyte. J Leukoc Biol. 2015;97:1023–35.PubMedPubMedCentralCrossRefGoogle Scholar
- 161.Loures FV, Rohm M, Lee CK, Santos E, Wang JP, Specht CA, et al. Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps. PLoS Pathog. 2015;11:e1004643.PubMedPubMedCentralCrossRefGoogle Scholar
- 162.Yousefi S, Morshed M, Amini P, Stojkov D, Simon D, von Gunten S, et al. Basophils exhibit antibacterial activity through extracellular trap formation. Allergy. 2015;70:1184–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 163.Morshed M, Hlushchuk R, Simon D, Walls AF, Obata-Ninomiya K, Karasuyama H, et al. NADPH oxidase-independent formation of extracellular DNA traps by basophils. J Immunol. 2014;192:5314–23.PubMedCrossRefPubMedCentralGoogle Scholar
- 164.Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–9.PubMedCrossRefGoogle Scholar
- 165.Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012;189:2689–95.PubMedPubMedCentralCrossRefGoogle Scholar
- 166.Menegazzi R, Decleva E, Dri P. Killing by neutrophil extracellular traps: fact or folklore? Blood. 2012;119:1214–6.PubMedCrossRefGoogle Scholar
- 167.Parker H, Albrett AM, Kettle AJ, Winterbourn CC. Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide. J Leukoc Biol. 2012;91:369–76.PubMedCrossRefGoogle Scholar
- 168.Scharrig E, Carestia A, Ferrer MF, Cedola M, Pretre G, Drut R, et al. Neutrophil extracellular traps are involved in the innate immune response to infection with Leptospira. PLoS Negl Trop Dis. 2015;9:e0003927.PubMedPubMedCentralCrossRefGoogle Scholar
- 169.de Jong HK, Koh GC, Achouiti A, van der Meer AJ, Bulder I, Stephan F, et al. Neutrophil extracellular traps in the host defense against sepsis induced by Burkholderia pseudomallei (melioidosis). Intensive Care Med Exp. 2014;2:21.PubMedPubMedCentralCrossRefGoogle Scholar
- 170.Mejia SP, Cano LE, Lopez JA, Hernandez O, Gonzalez A. Human neutrophils produce extracellular traps against Paracoccidioides brasiliensis. Microbiology. 2015;161:1008–17.PubMedCrossRefGoogle Scholar
- 171.Gunderson CW, Seifert HS. Neisseria gonorrhoeae elicits extracellular traps in primary neutrophil culture while suppressing the oxidative burst. MBio. 2015;6:e02452–14.PubMedPubMedCentralCrossRefGoogle Scholar
- 172.Juneau RA, Pang B, Armbruster CE, Murrah KA, Perez AC, Swords WE. Peroxiredoxin-glutaredoxin and catalase promote resistance of nontypeable Haemophilus influenzae 86-028NP to oxidants and survival within neutrophil extracellular traps. Infect Immun. 2015;83:239–46.PubMedCrossRefGoogle Scholar
- 173.Shan Q, Dwyer M, Rahman S, Gadjeva M. Distinct susceptibilities of corneal Pseudomonas aeruginosa clinical isolates to neutrophil extracellular trap-mediated immunity. Infect Immun. 2014;82:4135–43.PubMedPubMedCentralCrossRefGoogle Scholar
- 174.Dohrmann S, Anik S, Olson J, Anderson EL, Etesami N, No H, et al. Role for streptococcal collagen-like protein 1 in M1T1 group A Streptococcus resistance to neutrophil extracellular traps. Infect Immun. 2014;82:4011–20.PubMedPubMedCentralCrossRefGoogle Scholar
- 175.Bonne-Annee S, Kerepesi LA, Hess JA, Wesolowski J, Paumet F, Lok JB, et al. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis. Microbes Infect. 2014;16:502–11.PubMedPubMedCentralCrossRefGoogle Scholar
- 176.Liu P, Wu X, Liao C, Liu X, Du J, Shi H, et al. Escherichia coli and Candida albicans induced macrophage extracellular trap-like structures with limited microbicidal activity. PLoS One. 2014;9:e90042.PubMedPubMedCentralCrossRefGoogle Scholar
- 177.Thammavongsa V, Missiakas DM, Schneewind O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science. 2013;342:863–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 178.Short KR, von Kockritz-Blickwede M, Langereis JD, Chew KY, Job ER, Armitage CW, et al. Antibodies mediate formation of neutrophil extracellular traps in the middle ear and facilitate secondary pneumococcal otitis media. Infect Immun. 2014;82:364–70.PubMedPubMedCentralCrossRefGoogle Scholar
- 179.Seper A, Hosseinzadeh A, Gorkiewicz G, Lichtenegger S, Roier S, Leitner DR, et al. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases. PLoS Pathog. 2013;9:e1003614.PubMedPubMedCentralCrossRefGoogle Scholar
- 180.Derre-Bobillot A, Cortes-Perez NG, Yamamoto Y, Kharrat P, Couve E, Da Cunha V, et al. Nuclease A (Gbs0661), an extracellular nuclease of Streptococcus agalactiae, attacks the neutrophil extracellular traps and is needed for full virulence. Mol Microbiol. 2013;89:518–31.PubMedCrossRefGoogle Scholar
- 181.Lappann M, Danhof S, Guenther F, Olivares-Florez S, Mordhorst IL, Vogel U. In vitro resistance mechanisms of Neisseria meningitidis against neutrophil extracellular traps. Mol Microbiol. 2013;89:433–49.PubMedCrossRefGoogle Scholar
- 182.Menten-Dedoyart C, Faccinetto C, Golovchenko M, Dupiereux I, Van Lerberghe PB, Dubois S, et al. Neutrophil extracellular traps entrap and kill Borrelia burgdorferi sensu stricto spirochetes and are not affected by Ixodes ricinus tick saliva. J Immunol. 2012;189:5393–401.PubMedCrossRefGoogle Scholar
- 183.McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12:324–33.PubMedCrossRefGoogle Scholar
- 184.Riyapa D, Buddhisa S, Korbsrisate S, Cuccui J, Wren BW, Stevens MP, et al. Neutrophil extracellular traps exhibit antibacterial activity against burkholderia pseudomallei and are influenced by bacterial and host factors. Infect Immun. 2012;80:3921–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 185.Young RL, Malcolm KC, Kret JE, Caceres SM, Poch KR, Nichols DP, et al. Neutrophil extracellular trap (NET)-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR. PLoS One. 2011;6:e23637.PubMedPubMedCentralCrossRefGoogle Scholar
- 186.Abel J, Goldmann O, Ziegler C, Holtje C, Smeltzer MS, Cheung AL, et al. Staphylococcus aureus evades the extracellular antimicrobial activity of mast cells by promoting its own uptake. J Innate Immun. 2011;3:495–507.PubMedCrossRefGoogle Scholar
- 187.Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Kockritz-Blickwede M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun. 2010;2:576–86.PubMedPubMedCentralCrossRefGoogle Scholar
- 188.Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006;8:668–76.PubMedCrossRefGoogle Scholar
- 189.Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M, et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol. 2006;16:396–400.PubMedCrossRefGoogle Scholar
- 190.Sumby P, Barbian KD, Gardner DJ, Whitney AR, Welty DM, Long RD, et al. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci U S A. 2005;102:1679–84.PubMedPubMedCentralCrossRefGoogle Scholar
- 191.Lee MJ, Liu H, Barker BM, Snarr BD, Gravelat FN, Al Abdallah Q, et al. The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog. 2015;11:e1005187.PubMedPubMedCentralCrossRefGoogle Scholar
- 192.Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014;15:1017–25.PubMedPubMedCentralCrossRefGoogle Scholar
- 193.Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176:231–41.PubMedPubMedCentralCrossRefGoogle Scholar
- 194.Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191:677–91.PubMedPubMedCentralCrossRefGoogle Scholar
- 195.Neumann A, Berends ET, Nerlich A, Molhoek EM, Gallo RL, Meerloo T, et al. The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem J. 2014;464:3–11.PubMedCrossRefGoogle Scholar
- 196.Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184:205–13.PubMedPubMedCentralCrossRefGoogle Scholar
- 197.Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207:1853–62.PubMedPubMedCentralCrossRefGoogle Scholar
- 198.Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16:1438–44.PubMedCrossRefGoogle Scholar
- 199.Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185:7413–25.PubMedCrossRefGoogle Scholar
- 200.Malachowa N, Kobayashi SD, Freedman B, Dorward DW, DeLeo FR. Staphylococcus aureus leukotoxin GH promotes formation of neutrophil extracellular traps. J Immunol. 2013;191:6022–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 201.Behnen M, Leschczyk C, Moller S, Batel T, Klinger M, Solbach W, et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcgammaRIIIB and Mac-1. J Immunol. 2014;193:1954–65.PubMedCrossRefGoogle Scholar
- 202.Lu T, Kobayashi SD, Quinn MT, Deleo FR. A NET Outcome. Front Immunol. 2012;3:365.PubMedPubMedCentralCrossRefGoogle Scholar
- 203.Simon D, Simon HU, Yousefi S. Extracellular DNA traps in allergic, infectious, and autoimmune diseases. Allergy. 2013;68:409–16.PubMedCrossRefGoogle Scholar
- 204.Darrah E, Andrade F. NETs: the missing link between cell death and systemic autoimmune diseases? Front Immunol. 2012;3:428.PubMedGoogle Scholar
- 205.Cortjens B, de Boer OJ, de Jong R, Antonis AF, Sabogal Pineros YS, Lutter R, et al. Neutrophil extracellular traps cause airway obstruction during respiratory syncytial virus disease. J Pathol. 2016;238:401–411.PubMedCrossRefGoogle Scholar
- 206.Grabcanovic-Musija F, Obermayer A, Stoiber W, Krautgar`tner WD, Steinbacher P, Winterberg N, et al. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir Res. 2015;16:59.PubMedPubMedCentralCrossRefGoogle Scholar
- 207.Obermayer A, Stoiber W, Krautgartner WD, Klappacher M, Kofler B, Steinbacher P, et al. New aspects on the structure of neutrophil extracellular traps from chronic obstructive pulmonary disease and in vitro generation. PLoS One. 2014;9:e97784.PubMedPubMedCentralCrossRefGoogle Scholar
- 208.Marcos V, Zhou Z, Yildirim AO, Bohla A, Hector A, Vitkov L, et al. CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation. Nat Med. 2010;16:1018–23.PubMedCrossRefGoogle Scholar
- 209.Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S, et al. Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med. 2015;21:880–6.PubMedCrossRefGoogle Scholar
- 210.Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316–20.PubMedPubMedCentralCrossRefGoogle Scholar
- 211.Spengler J, Lugonja B, Jimmy Ytterberg A, Zubarev RA, Creese AJ, Pearson MJ, et al. Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in rheumatoid arthritis synovial fluid. Arthritis Rheumatol. 2015;67:3135–45.PubMedPubMedCentralCrossRefGoogle Scholar
- 212.Wright HL, Moots RJ, Edwards SW. The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol. 2014;10:593–601.PubMedCrossRefGoogle Scholar
- 213.Cools-Lartigue J, Spicer J, Najmeh S, Ferri L. Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci. 2014;71:4179–94.PubMedCrossRefGoogle Scholar
- 214.Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123:3446–3458PubMedCentralCrossRefPubMedGoogle Scholar
- 215.Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood. 2014;123:3818–27.PubMedPubMedCentralCrossRefGoogle Scholar
- 216.Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood. 2014;123:2768–76.PubMedPubMedCentralCrossRefGoogle Scholar
- 217.Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109:13076–81.PubMedPubMedCentralCrossRefGoogle Scholar
- 218.Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107:15880–5.PubMedPubMedCentralCrossRefGoogle Scholar
- 219.Dorner T. SLE in 2011: deciphering the role of NETs and networks in SLE. Nat Rev Rheumatol. 2012;8:68–70.PubMedCrossRefGoogle Scholar
- 220.Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011;3:73ra19.PubMedPubMedCentralCrossRefGoogle Scholar
- 221.Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011;3:73ra20.PubMedPubMedCentralCrossRefGoogle Scholar
- 222.Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A. 2010;107:9813–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 223.Kambayashi T, Laufer TM. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol. 2014;14:719–30.PubMedCrossRefGoogle Scholar
- 224.Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20:621–67.PubMedCrossRefGoogle Scholar
- 225.Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16:343–53.PubMedPubMedCentralCrossRefGoogle Scholar
- 226.Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol. 2003;3:984–93.PubMedCrossRefGoogle Scholar
- 227.Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol. 2013;31:443–73.PubMedPubMedCentralCrossRefGoogle Scholar
- 228.Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015;15:203–16.PubMedCrossRefGoogle Scholar
- 229.Savina A, Amigorena S. Phagocytosis and antigen presentation in dendritic cells. Immunol Rev. 2007;219:143–56.PubMedCrossRefGoogle Scholar
- 230.Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11:823–36.PubMedCrossRefPubMedCentralGoogle Scholar
- 231.Jensen PE. Recent advances in antigen processing and presentation. Nat Immunol. 2007;8:1041–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 232.Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12:557–69.PubMedCrossRefPubMedCentralGoogle Scholar
- 233.Jutras I, Desjardins M. Phagocytosis: at the crossroads of innate and adaptive immunity. Annu Rev Cell Dev Biol. 2005;21:511–27.PubMedCrossRefPubMedCentralGoogle Scholar
- 234.Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nat Rev Immunol. 2008;8:607–18.PubMedPubMedCentralCrossRefGoogle Scholar
- 235.Lopez-Bravo M, Ardavin C. In vivo induction of immune responses to pathogens by conventional dendritic cells. Immunity. 2008;29:343–51.PubMedCrossRefPubMedCentralGoogle Scholar
- 236.Alvarez D, Vollmann EH, von Andrian UH. Mechanisms and consequences of dendritic cell migration. Immunity. 2008;29:325–42.PubMedPubMedCentralCrossRefGoogle Scholar
- 237.Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol. 2005;5:617–28.PubMedCrossRefPubMedCentralGoogle Scholar
- 238.Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227–42.PubMedPubMedCentralCrossRefGoogle Scholar
- 239.Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet. 2017;49:1373–84.PubMedPubMedCentralCrossRefGoogle Scholar
- 240.Neu KE, Tang Q, Wilson PC, Khan AA. Single-cell genomics: approaches and utility in immunology. Trends Immunol. 2017;38:140–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 241.Zhou F, Li X, Wang W, Zhu P, Zhou J, He W, et al. Tracing haematopoietic stem cell formation at single-cell resolution. Nature. 2016;533:487–92.PubMedCrossRefPubMedCentralGoogle Scholar
- 242.Gierahn TM, Wadsworth MH 2nd, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 2017;14:395–8.PubMedPubMedCentralCrossRefGoogle Scholar