Advertisement

Immune Mechanisms in Atherosclerosis and Potential for Immunomodulatory Therapies

  • Gianluca Grassia
  • Neil MacRitchie
  • Pasquale Maffia
Chapter

Abstract

A considerable body of pre-clinical and clinical research data support a pivotal role played by immune-inflammatory responses in atherosclerosis formation and development. Recent clinical trial results confirm the feasibility of targeting immune pathways for the therapeutic control of the pathology. In this chapter, we discuss the key immune-inflammatory mechanisms involved in atherosclerosis development and progression and plaque destabilization. We discuss the anti-inflammatory pleiotropic effects of lipid-lowering drugs and potential therapeutic strategies for the direct control of vascular inflammation. Finally, we discuss vaccination approaches in atherosclerosis and critical questions that should be addressed in future investigations.

Keywords

Atherosclerosis Canakinumab Inflammation Interleukin-1 Methotrexate Statins PCSK9 inhibitors Vaccination 

Notes

Acknowledgements

Our work was funded by the British Heart Foundation grants PG/12/81/29897 and RE/13/5/30177; the European Commission Marie Skłodowska-Curie Individual Fellowships 661,369; the Engineering and Physical Sciences Research Council (EPSRC) grant EP/L014165/1; and the Tenovus Scotland PROJECT S15/24.

References

  1. 1.
    Welsh P, Grassia G, Botha S, Sattar N, Maffia P (2017) Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect? Br J Pharmacol 174(22):3898–3913CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Packard RR, Libby P (2008) Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54(1):24–38CrossRefPubMedGoogle Scholar
  3. 3.
    Nicholls SJ, Ballantyne CM, Barter PJ, Chapman MJ, Erbel RM, Libby P, Raichlen JS, Uno K, Borgman M, Wolski K, Nissen SE (2011) Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med 365(22):2078–2087CrossRefPubMedGoogle Scholar
  4. 4.
    Linden F, Domschke G, Erbel C, Akhavanpoor M, Katus HA, Gleissner CA (2014) Inflammatory therapeutic targets in coronary atherosclerosis-from molecular biology to clinical application. Front Physiol 5:455CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cuzzocrea S, Riley DP, Caputi AP, Salvemini D (2001) Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 53(1):135–159PubMedGoogle Scholar
  6. 6.
    Touyz RM (2005) Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II. Curr Opin Nephrol Hypertens 14(2):125–131CrossRefPubMedGoogle Scholar
  7. 7.
    Han J, Hajjar DP, Febbraio M, Nicholson AC (1997) Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36. J Biol Chem 272(34):21654–21659CrossRefPubMedGoogle Scholar
  8. 8.
    Keidar S, Brook GJ, Rosenblat M, Fuhrman B, Dankner G, Aviram M (1992) Involvement of the macrophage low density lipoprotein receptor-binding domains in the uptake of oxidized low-density lipoprotein. Arterioscler Thromb 12(4):484–493CrossRefPubMedGoogle Scholar
  9. 9.
    Kleinman Y, Krul ES, Burnes M, Aronson W, Pfleger B, Schonfeld G (1988) Lipolysis of LDL with phospholipase A2 alters the expression of selected apoB-100 epitopes and the interaction of LDL with cells. J Lipid Res 29(6):729–743PubMedGoogle Scholar
  10. 10.
    Ley K, Miller YI, Hedrick CC (2011) Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol 31(7):1506–1516CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ylitalo R, Oksala O, Yla-Herttuala S, Ylitalo P (1994) Effects of clodronate (dichloromethylene bisphosphonate) on the development of experimental atherosclerosis in rabbits. J Lab Clin Med 123:769–776PubMedGoogle Scholar
  12. 12.
    Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6(2):131–138CrossRefPubMedGoogle Scholar
  13. 13.
    Hansson GK, Jonasson L, Holm J, Claesson-Welsh L (1986) Class II MHC antigen expression in the atherosclerotic plaque: smooth muscle cells express HLA-DR, HLA-DQ and the invariant gamma chain. Clin Exp Immunol 64(2):261–268PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lahoute C, Herbin O, Mallat Z, Tedgui A (2011) Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat Rev Cardiol 8:348–358CrossRefPubMedGoogle Scholar
  15. 15.
    Erbel C, Sato K, Meyer FB, Kopecky SL, Frye RL, Goronzy JJ, Weyand CM (2007) Functional profile of activated dendritic cells in unstable atherosclerotic plaque. Basic Res Cardiol 102:123–132CrossRefPubMedGoogle Scholar
  16. 16.
    Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol 27:165–197CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Robertson AK, Hansson GK (2006) T cells in atherogenesis: for better or for worse? Arterioscler Thromb Vasc Biol 26(11):2421–2432CrossRefPubMedGoogle Scholar
  18. 18.
    Hu D, Mohanta SK, Yin C, Peng L, Ma Z, Srikakulapu P, Grassia G, MacRitchie N, Dever G, Gordon P, Burton FL, Ialenti A, Sabir SR, McInnes IB, Brewer JM, Garside P, Weber C, Lehmann T, Teupser D, Habenicht L, Beer M, Grabner R, Maffia P, Weih F, Habenicht AJ (2015) Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors. Immunity 42(6):1100–1115CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Grassia G, MacRitchie N, Platt AM, Brewer JM, Garside P, Maffia P (2013) Plasmacytoid dendritic cells: biomarkers or potential therapeutic targets in atherosclerosis? Pharmacol Ther 137(2):172–182CrossRefPubMedGoogle Scholar
  20. 20.
    Grassia G, Maddaluno M, Guglielmotti A, Mangano G, Biondi G, Maffia P, Ialenti A (2009) The anti-inflammatory agent bindarit inhibits neointima formation in both rats and hyperlipidaemic mice. Cardiovasc Res 84(3):485–493CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Grassia G, Maddaluno M, Musilli C, De Stefano D, Carnuccio R, Di Lauro MV, Parratt CA, Kennedy S, Di Meglio P, Ianaro A, Maffia P, Parenti A, Ialenti A (2010) The I{kappa}B kinase inhibitor nuclear factor-{kappa}B essential modulator-binding domain peptide for inhibition of injury-induced neointimal formation. Arterioscler Thromb Vasc Biol 30(12):2458–2466CrossRefPubMedGoogle Scholar
  22. 22.
    Maddaluno M, Grassia G, Di Lauro MV, Parisi A, Maione F, Cicala C, De Filippis D, Iuvone T, Guglielmotti A, Maffia P, Mascolo N, Ialenti A (2012) Bindarit inhibits human coronary artery smooth muscle cell proliferation, migration and phenotypic switching. PLoS One 7(10):e47464CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Khokha R, Murthy A, Weiss A (2013) Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol 13(9):649–665CrossRefPubMedGoogle Scholar
  24. 24.
    Maiuri MC, Grassia G, Platt AM, Carnuccio R, Ialenti A, Maffia P (2013) Macrophage autophagy in atherosclerosis. Mediat Inflamm 2013:584715CrossRefGoogle Scholar
  25. 25.
    Sato K, Niessner A, Kopecky SL, Frye RL, Goronzy JJ, Weyand CM (2006) TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque. J Exp Med 203(1):239–250CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Klingenberg R, Gerdes N, Badeau RM, Gisterå A, Strodthoff D, Ketelhuth DF, Lundberg AM, Rudling M, Nilsson SK, Olivecrona G, Zoller S, Lohmann C, Lüscher TF, Jauhiainen M, Sparwasser T, Hansson GK (2013) Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J Clin Invest 123(3):1323–1334CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sparrow CP, Burton CA, Hernandez M, Mundt S, Hassing H, Patel S, Rosa R, Hermanowski-Vosatka A, Wang PR, Zhang D, Peterson L, Detmers PA, Chao YS, Wright SD (2001) Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering. Arterioscler Thromb Vasc Biol 21(1):115–121CrossRefPubMedGoogle Scholar
  29. 29.
    Duivenvoorden R, Tang J, Cormode DP, Mieszawska AJ, Izquierdo-Garcia D, Ozcan C, Otten MJ, Zaidi N, Lobatto ME, van Rijs SM, Priem B, Kuan EL, Martel C, Hewing B, Sager H, Nahrendorf M, Randolph GJ, Stroes ES, Fuster V, Fisher EA, Fayad ZA, Mulder WJ (2014) A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun 5:3065CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cai A, Zhou Y, Li L (2015) Rho-GTPase and Atherosclerosis: Pleiotropic Effects of Statins. J Am Heart Assoc 4(7):pii: e002113CrossRefGoogle Scholar
  31. 31.
    Chen J, Kuhlencordt PJ, Astern J, Gyurko R, Huang PL (2001) Hypertension does not account for the accelerated atherosclerosis and development of aneurysms in male apolipoprotein e/endothelial nitric oxide synthase double knockout mice. Circulation 104(20):2391–2394CrossRefPubMedGoogle Scholar
  32. 32.
    Kaesemeyer WH, Caldwell RB, Huang J, Caldwell RW (1999) Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions. J Am Coll Cardiol 33(1):234–241CrossRefPubMedGoogle Scholar
  33. 33.
    Laufs U, La Fata V, Plutzky J, Liao JK (1998) Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97(12):1129–1135CrossRefPubMedGoogle Scholar
  34. 34.
    Scalia R, Gooszen ME, Jones SP, Hoffmeyer M, Rimmer DM 3rd, Trocha SD, Huang PL, Smith MB, Lefer AM, Lefer DJ (2001) Simvastatin exerts both anti-inflammatory and cardioprotective effects in apolipoprotein E-deficient mice. Circulation 103(21):2598–2603CrossRefPubMedGoogle Scholar
  35. 35.
    Rezaie-Majd A, Prager GW, Bucek RA, Schernthaner GH, Maca T, Kress HG, Valent P, Binder BR, Minar E, Baghestanian M (2003) Simvastatin reduces the expression of adhesion molecules in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 23(3):397–403CrossRefPubMedGoogle Scholar
  36. 36.
    Romano M, Diomede L, Sironi M, Massimiliano L, Sottocorno M, Polentarutti N, Guglielmotti A, Albani D, Bruno A, Fruscella P, Salmona M, Vecchi A, Pinza M, Mantovani A (2000) Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab Investig 80(7):1095–1100CrossRefPubMedGoogle Scholar
  37. 37.
    Wong B, Lumma WC, Smith AM, Sisko JT, Wright SD, Cai TQ (2001) Statins suppress THP-1 cell migration and secretion of matrix metalloproteinase 9 by inhibiting geranylgeranylation. J Leukoc Biol 69(6):959–962PubMedGoogle Scholar
  38. 38.
    Kwak B, Mulhaupt F, Myit S, Mach F (2000) Statins as a newly recognized type of immunomodulator. Nat Med 6(12):1399–1402CrossRefPubMedGoogle Scholar
  39. 39.
    Mulhaupt F, Matter CM, Kwak BR, Pelli G, Veillard NR, Burger F, Graber P, Lüscher TF, Mach F (2003) Statins (HMG-CoA reductase inhibitors) reduce CD40 expression in human vascular cells. Cardiovasc Res 59(3):755–766CrossRefPubMedGoogle Scholar
  40. 40.
    Yilmaz A, Reiss C, Weng A, Cicha I, Stumpf C, Steinkasserer A, Daniel WG, Garlichs CD (2006) Differential effects of statins on relevant functions of human monocyte-derived dendritic cells. J Leukoc Biol 79(3):529–538CrossRefPubMedGoogle Scholar
  41. 41.
    Ghittoni R, Patrussi L, Pirozzi K, Pellegrini M, Lazzerini PE, Capecchi PL, Pasini FL, Baldari CT (2005) Simvastatin inhibits T-cell activation by selectively impairing the function of Ras superfamily GTPases. FASEB J 19(6):605–607CrossRefPubMedGoogle Scholar
  42. 42.
    Youssef S, Stüve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, Bravo M, Mitchell DJ, Sobel RA, Steinman L, Zamvil SS (2002) The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420(6911):78–84CrossRefPubMedGoogle Scholar
  43. 43.
    Mira E, León B, Barber DF, Jiménez-Baranda S, Goya I, Almonacid L, Márquez G, Zaballos A, Martínez-A C, Stein JV, Ardavín C, Mañes S (2008) Statins induce regulatory T cell recruitment via a CCL1 dependent pathway. J Immunol 181(5):3524–3534CrossRefPubMedGoogle Scholar
  44. 44.
    Nie P, Li D, Hu L, Jin S, Yu Y, Cai Z, Shao Q, Shen J, Yi J, Xiao H, Shen L, He B (2014) Atorvastatin improves plaque stability in ApoE-knockout mice by regulating chemokines and chemokine receptors. PLoS One 9(5):e97009CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wang XL, Zhou YL, Sun W, Li L (2016) Rosuvastatin attenuates CD40L-induced downregulation of extracellular matrix production in human aortic smooth muscle cells via TRAF6-JNK-NF-κB pathway. PLoS One 11(4):e0153919CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gough PJ, Gomez IG, Wille PT, Raines EW (2006) Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 116(1):59–69CrossRefPubMedGoogle Scholar
  47. 47.
    He NY, Li Q, Wu CY, Ren Z, Gao Y, Pan LH, Wang MM, Wen HY, Jiang ZS, Tang ZH, Liu LS (2017) Lowering serum lipids via PCSK9-targeting drugs: current advances and future perspectives. Acta Pharmacol Sin 38(3):301–311CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chan JC, Piper DE, Cao Q, Liu D, King C, Wang W, Tang J, Liu Q, Higbee J, Xia Z, Di Y, Shetterly S, Arimura Z, Salomonis H, Romanow WG, Thibault ST, Zhang R, Cao P, Yang XP, Yu T, Lu M, Retter MW, Kwon G, Henne K, Pan O, Tsai MM, Fuchslocher B, Yang E, Zhou L, Lee KJ, Daris M, Sheng J, Wang Y, Shen WD, Yeh WC, Emery M, Walker NP, Shan B, Schwarz M, Jackson SM (2009) A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U S A 106(24):9820–9825CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR, FOURIER Steering Committee and Investigators (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376(18):1713–1722CrossRefPubMedGoogle Scholar
  50. 50.
    Ferri N, Tibolla G, Pirillo A, Cipollone F, Mezzetti A, Pacia S, Corsini A, Catapano AL (2012) Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis 220(2):381–386CrossRefPubMedGoogle Scholar
  51. 51.
    Lan H, Pang L, Smith MM, Levitan D, Ding W, Liu L, Shan L, Shah VV, Laverty M, Arreaza G, Zhang Q, Murgolo NJ, Hernandez M, Greene JR, Gustafson EL, Bayne ML, Davis HR, Hedrick JA (2010) Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects gene expression pathways beyond cholesterol metabolism in liver cells. J Cell Physiol 224(1):273–281PubMedGoogle Scholar
  52. 52.
    Cheng JM, Oemrawsingh RM, Garcia-Garcia HM, Boersma E, van Geuns RJ, Serruys PW, Kardys I, Akkerhuis KM (2016) PCSK9 in relation to coronary plaque inflammation: results of the ATHEROREMO-IVUS study. Atherosclerosis 248:117–122CrossRefPubMedGoogle Scholar
  53. 53.
    Tang ZH, Peng J, Ren Z, Yang J, Li TT, Li TH, Wang Z, Wei DH, Liu LS, Zheng XL, Jiang ZS (2017) New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway. Atherosclerosis 262:113–122CrossRefPubMedGoogle Scholar
  54. 54.
    Kühnast S, van der Hoorn JW, Pieterman EJ, van den Hoek AM, Sasiela WJ, Gusarova V, Peyman A, Schäfer HL, Schwahn U, Jukema JW, Princen HM (2014) Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res 55(10):2103–2112CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Frostegard J, Liu A (2017) PCSK9 plays a novel immunological role in Oxidized LDL-induced dendritic cell maturation and T cell activation from human blood and atherosclerotic plaque. European Heart Journal 38(suppl 1):ehx504.3856Google Scholar
  56. 56.
    Cronstein BN (2005) Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev 57(2):163–172CrossRefPubMedGoogle Scholar
  57. 57.
    Bulgarelli A, Martins Dias AA, Caramelli B, Maranhão RC (2012) Treatment with methotrexate inhibits atherogenesis in cholesterol-fed rabbits. J Cardiovasc Pharmacol 59(4):308–314CrossRefPubMedGoogle Scholar
  58. 58.
    Reiss AB, Carsons SE, Anwar K, Rao S, Edelman SD, Zhang H, Fernandez P, Cronstein BN, Chan ES (2008) Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP-1 monocyte/macrophages. Arthritis Rheum 58(12):3675–3683CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Montesinos MC, Desai A, Cronstein BN (2006) Suppression of inflammation by low-dose methotrexate is mediated by adenosine A2A receptor but not A3 receptor activation in thioglycollate-induced peritonitis. Arthritis Res Ther 8(2):R53CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    DeOliveira CC, Acedo SC, Gotardo EM, Carvalho Pde O, Rocha T, Pedrazzoli J Jr, Gambero A (2012) Effects of methotrexate on inflammatory alterations induced by obesity: an in vivo and in vitro study. Mol Cell Endocrinol 361(1–2):92–98CrossRefPubMedGoogle Scholar
  61. 61.
    Elango T, Dayalan H, Subramanian S, Gnanaraj P, Malligarjunan H (2012) Serum interleukin-6 levels in response to methotrexate treatment in psoriatic patients. Clin Chim Acta 413(19–20):1652–1656CrossRefPubMedGoogle Scholar
  62. 62.
    Dahlman-Ghozlan K, Ortonne JP, Heilborn JD, Stephansson E (2004) Altered tissue expression pattern of cell adhesion molecules, ICAM-1, E-selectin and VCAM-1, in bullous pemphigoid during methotrexate therapy. Exp Dermatol 13(2):65–69CrossRefPubMedGoogle Scholar
  63. 63.
    Yamaki K, Uchida H, Harada Y, Li X, Yanagisawa R, Takano H, Hayashi H, Taneda S, Mori Y, Yoshino S (2003) Effect of methotrexate on Th1 and Th2 immune responses in mice. J Pharm Pharmacol 55(12):1661–1666CrossRefPubMedGoogle Scholar
  64. 64.
    Bulgarelli A, Leite AC Jr, Dias AA, Maranhão RC (2013) Anti-atherogenic effects of methotrexate carried by a lipid nanoemulsion that binds to LDL receptors in cholesterol-fed rabbits. Cardiovasc Drugs Ther 27(6):531–539CrossRefPubMedGoogle Scholar
  65. 65.
    Leite AC Jr, Solano TV, Tavares ER, Maranhão RC (2015) Use of combined chemotherapy with etoposide and methotrexate, both associated to lipid nanoemulsions for atherosclerosis treatment in cholesterol-fed rabbits. Cardiovasc Drugs Ther 29(1):15–22CrossRefPubMedGoogle Scholar
  66. 66.
    Garlanda C, Dinarello CA, Mantovani A (2013) The interleukin-1 family: back to the future. Immunity 39(6):1003–1018CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Dinarello CA (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117(14):3720–3732CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29(3):301–305CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Aziz KE, Wakefield D (1996) Modulation of endothelial cell expression of ICAM-1, E-selectin, and VCAM-1 by beta-estradiol, progesterone, and dexamethasone. Cell Immunol 167(1):79–85CrossRefPubMedGoogle Scholar
  70. 70.
    Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS (1985) Gimbrone MA Jr. Interleukin-1 activation of vascular endothelium. Effects on procoagulant activity and leukocyte adhesion. Am J Pathol 121(3):394–403PubMedPubMedCentralGoogle Scholar
  71. 71.
    Devlin CM, Kuriakose G, Hirsch E, Tabas I (2002) Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size. Proc Natl Acad Sci U S A 99(9):6280–6285CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Elhage R, Maret A, Pieraggi MT, Thiers JC, Arnal JF, Bayard F (1998) Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation 97(3):242–244CrossRefPubMedGoogle Scholar
  73. 73.
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357–1361CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Rajamäki K, Lappalainen J, Oörni K, Välimäki E, Matikainen S, Kovanen PT, Eklund KK (2010) Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One 5(7):e11765CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Freigang S, Ampenberger F, Weiss A, Kanneganti TD, Iwakura Y, Hersberger M, Kopf M (2013) Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1α and sterile vascular inflammation in atherosclerosis. Nat Immunol 14(10):1045–1053CrossRefPubMedGoogle Scholar
  76. 76.
    Schett G, Dayer JM, Manger B (2016) Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol 12(1):14–24CrossRefPubMedGoogle Scholar
  77. 77.
    Kirii H, Niwa T, Yamada Y, Wada H, Saito K, Iwakura Y, Asano M, Moriwaki H, Seishima M (2003) Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 23(4):656–660CrossRefPubMedGoogle Scholar
  78. 78.
    Bhaskar V, Yin J, Mirza AM, Phan D, Vanegas S, Issafras H, Michelson K, Hunter JJ, Kantak SS (2011) Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vitro and inhibit atherosclerotic plaque formation in apolipoprotein E-deficient mice. Atherosclerosis 216(2):313–320CrossRefPubMedGoogle Scholar
  79. 79.
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, CANTOS Trial Group (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131CrossRefPubMedGoogle Scholar
  80. 80.
    Hansson GK (2017) Inflammation and atherosclerosis: the end of a controversy. Circulation 136(20):1875–1877CrossRefPubMedGoogle Scholar
  81. 81.
    Ameli S, Hultgårdh-Nilsson A, Regnström J, Calara F, Yano J, Cercek B, Shah PK, Nilsson J (1996) Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 16(8):1074–1079CrossRefPubMedGoogle Scholar
  82. 82.
    Palinski W, Miller E, Witztum JL (1995) Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc Natl Acad Sci U S A 92(3):821–825CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Fredrikson GN, Söderberg I, Lindholm M, Dimayuga P, Chyu KY, Shah PK, Nilsson J (2003) Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler Thromb Vasc Biol 23(5):879–884CrossRefPubMedGoogle Scholar
  84. 84.
    Tse K, Gonen A, Sidney J, Ouyang H, Witztum JL, Sette A, Tse H, Ley K (2013) Atheroprotective vaccination with MHC-II restricted peptides from ApoB-100. Front Immunol 4:493CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hermansson A, Ketelhuth DF, Strodthoff D, Wurm M, Hansson EM, Nicoletti A, Paulsson-Berne G, Hansson GK (2010) Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 207(5):1081–1093CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Chyu K-Y, Dimayuga PC, Shah PK (2017) Vaccine against arteriosclerosis: an update. Therapeutic Advances in Vaccines 5(2):39–47CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Klingenberg R, Lebens M, Hermansson A, Fredrikson GN, Strodthoff D, Rudling M, Ketelhuth DF, Gerdes N, Holmgren J, Nilsson J, Hansson GK (2010) Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 30(5):946–952CrossRefPubMedGoogle Scholar
  88. 88.
    Wigren M, Kolbus D, Dunér P, Ljungcrantz I, Söderberg I, Björkbacka H, Fredrikson GN, Nilsson J (2011) Evidence for a role of regulatory T cells in mediating the atheroprotective effect of apolipoprotein B peptide vaccine. J Intern Med 269(5):546–556CrossRefPubMedGoogle Scholar
  89. 89.
    Landlinger C, Pouwer MG, Juno C, van der Hoorn JWA, Pieterman EJ, Jukema JW, Staffler G, Princen HMG, Galabova G (2017) The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Heart J 38(32):2499–2507CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
  2. 2.Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
  3. 3.Department of PharmacyUniversity of Naples Federico IINaplesItaly

Personalised recommendations