Advertisement

Adaptive Immunity of Airway Inflammation in Asthma

  • Cameron H. Flayer
  • Sarah S. Killingbeck
  • Erik Larson
  • Zoulfia Allakhverdi
  • Angela Haczku
Chapter

Abstract

Respiratory immunity is responsible for pathogen elimination and prevention of chronic inflammation through both innate and adaptive mechanisms. Inappropriate activation of these immune systems in the respiratory mucosa results in chronic inflammatory airways disease such as asthma. Adaptive immunity is stimulated for example by allergen exposure that activates T and B lymphocytes leading to IgE production and influx of eosinophilic granulocytes into the airways. Presence of IgE and eosinophilia are diagnostic hallmarks as well as key pathogenic components that have been utilized in the search for improved therapies of allergic asthma for the past several decades. The recent breakthroughs in successful clinical application of biologicals in asthma were driven by improved genetic, biochemical, and immunological screening methods, novel imaging and bioinformatics technology, biomarker discovery and a better understanding of immune regulation of allergic airway inflammation. In this chapter we discuss our current understanding of immune regulation of airway inflammation in asthma, with a special focus on the interactions between the adaptive and innate immune systems and the epithelial mucosal tissue.

Keywords

Asthma Epithelial cells Immune homeostasis Pattern recognition Host defense 

References

  1. 1.
    Bostock J (1819) Case of a periodical affection of the eyes and chest. Med Chir Trans 10:161–165CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Shulman ST (2016) Clemens von Pirquet: a remarkable life and career. J Pediatric Infect Dis Soc. https://doi.org/10.1093/jpids/piw063
  3. 3.
    Silverstein A, Clemens M (2000) Freiherr von Pirquet: explaining immune complex disease in 1906. Nat Immunol 1:453–455. https://doi.org/10.1038/82691 CrossRefPubMedGoogle Scholar
  4. 4.
    Ring J, Gutermuth J (2011) 100 years of hyposensitization: history of allergen-specific immunotherapy (ASIT). Allergy 66:713–724. https://doi.org/10.1111/j.1398-9995.2010.02541.x CrossRefPubMedGoogle Scholar
  5. 5.
    Johansson SGO (2016) The discovery of IgE. J Allergy Clin Immunol 137:1671–1673. https://doi.org/10.1016/j.jaci.2016.04.004 CrossRefPubMedGoogle Scholar
  6. 6.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMedGoogle Scholar
  7. 7.
    Robinson DS et al (1992) Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 326:298–304. https://doi.org/10.1056/NEJM199201303260504 CrossRefPubMedGoogle Scholar
  8. 8.
    Cousins DJ, McDonald J, Lee TH (2008) Therapeutic approaches for control of transcription factors in allergic disease. J Allergy Clin Immunol 121:803–809; quiz 810–801. doi:https://doi.org/10.1016/j.jaci.2008.02.008 CrossRefPubMedGoogle Scholar
  9. 9.
    Corrigan CJ et al (1996) Glucocorticoid resistant asthma: T-lymphocyte steroid metabolism and sensitivity to glucocorticoids and immunosuppressive agents. Eur Respir J 9:2077–2086CrossRefPubMedGoogle Scholar
  10. 10.
    Corrigan CJ (1996) Glucocorticoid-resistant asthma. T-lymphocyte defects. Am J Respir Crit Care Med 154:S53–S55; discussion S55–S57. doi:https://doi.org/10.1164/ajrccm/154.2_Pt_2.S53 CrossRefPubMedGoogle Scholar
  11. 11.
    Haczku A et al (1994) The effect of dexamethasone, cyclosporine, and rapamycin on T-lymphocyte proliferation in vitro: comparison of cells from patients with glucocorticoid-sensitive and glucocorticoid-resistant chronic asthma. J Allergy Clin Immunol 93:510–519CrossRefPubMedGoogle Scholar
  12. 12.
    Corrigan CJ et al (1991) Glucocorticoid resistance in chronic asthma. Peripheral blood T lymphocyte activation and comparison of the T lymphocyte inhibitory effects of glucocorticoids and cyclosporin A. Am Rev Respir Dis 144:1026–1032. https://doi.org/10.1164/ajrccm/144.5.page CrossRefPubMedGoogle Scholar
  13. 13.
    Corrigan CJ et al (1991) Glucocorticoid resistance in chronic asthma. Glucocorticoid pharmacokinetics, glucocorticoid receptor characteristics, and inhibition of peripheral blood T cell proliferation by glucocorticoids in vitro. Am Rev Respir Dis 144:1016–1025. https://doi.org/10.1164/ajrccm/144.5.1016 CrossRefPubMedGoogle Scholar
  14. 14.
    Radauer C et al (2014) Update of the WHO/IUIS Allergen Nomenclature Database based on analysis of allergen sequences. Allergy 69:413–419CrossRefPubMedGoogle Scholar
  15. 15.
    Mueller GA (2017) Contributions and future directions for structural biology in the study of allergens. Int Arch Allergy Immunol 174:57–66. https://doi.org/10.1159/000481078 CrossRefPubMedGoogle Scholar
  16. 16.
    Breiteneder H, Radauer C (2004) A classification of plant food allergens. J Allergy Clin Immunol 113:821–830; quiz 831, doi:https://doi.org/10.1016/j.jaci.2004.01.779 CrossRefPubMedGoogle Scholar
  17. 17.
    Radauer C (2017) Navigating through the jungle of allergens: features and applications of allergen databases. Int Arch Allergy Immunol 173:1–11. https://doi.org/10.1159/000471806 CrossRefPubMedGoogle Scholar
  18. 18.
    Nadel JA (1988) Role of airway epithelial cells in the defense of airways. Prog Clin Biol Res 263:331–339PubMedGoogle Scholar
  19. 19.
    Holgate ST (2007) Epithelium dysfunction in asthma. J Allergy Clin Immunol 120:1233–1244; quiz 1245–1236. doi:https://doi.org/10.1016/j.jaci.2007.10.025 CrossRefPubMedGoogle Scholar
  20. 20.
    Hammad H, Lambrecht BN (2015) Barrier epithelial cells and the control of type 2 immunity. Immunity 43:29–40. https://doi.org/10.1016/j.immuni.2015.07.007 CrossRefPubMedGoogle Scholar
  21. 21.
    Golebski K et al (2013) The multi-faceted role of allergen exposure to the local airway mucosa. Allergy 68:152–160. https://doi.org/10.1111/all.12080 CrossRefPubMedGoogle Scholar
  22. 22.
    Muller L, Jaspers I (2012) Epithelial cells, the “switchboard” of respiratory immune defense responses: effects of air pollutants. Swiss Med Wkly 142:w13653. https://doi.org/10.4414/smw.2012.13653 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Waters CM, Roan E, Navajas D (2012) Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr Physiol 2:1–20. https://doi.org/10.1002/cphy.c100090 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hammad H, Lambrecht BN (2011) Dendritic cells and airway epithelial cells at the interface between innate and adaptive immune responses. Allergy 66:579–587. https://doi.org/10.1111/j.1398-9995.2010.02528.x CrossRefPubMedGoogle Scholar
  25. 25.
    Lambrecht BN, Hammad H (2010) The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. Lancet 376:835–843. https://doi.org/10.1016/S0140-6736(10)61226-3 CrossRefPubMedGoogle Scholar
  26. 26.
    Rock JR, Randell SH, Hogan BL (2010) Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 3:545–556. https://doi.org/10.1242/dmm.006031 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bourdin A, Gras D, Vachier I, Chanez P (2009) Upper airway x 1: allergic rhinitis and asthma: united disease through epithelial cells. Thorax 64:999–1004. https://doi.org/10.1136/thx.2008.112862 CrossRefPubMedGoogle Scholar
  28. 28.
    Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME (2008) Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc 5:772–777. https://doi.org/10.1513/pats.200805-041HR CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang Y, Bai C, Li K, Adler KB, Wang X (2008) Role of airway epithelial cells in development of asthma and allergic rhinitis. Respir Med 102:949–955. https://doi.org/10.1016/j.rmed.2008.01.017 CrossRefPubMedGoogle Scholar
  30. 30.
    Prefontaine D, Hamid Q (2007) Airway epithelial cells in asthma. J Allergy Clin Immunol 120:1475–1478. https://doi.org/10.1016/j.jaci.2007.09.041 CrossRefPubMedGoogle Scholar
  31. 31.
    Chiba T et al (2007) Possible novel receptor for PGD2 on human bronchial epithelial cells. Int Arch Allergy Immunol 143(Suppl 1):23–27. https://doi.org/10.1159/000101400 CrossRefPubMedGoogle Scholar
  32. 32.
    Upham JW, Stick SM (2006) Interactions between airway epithelial cells and dendritic cells: implications for the regulation of airway inflammation. Curr Drug Targets 7:541–545CrossRefPubMedGoogle Scholar
  33. 33.
    Campbell AM (1997) Bronchial epithelial cells in asthma. Allergy 52:483–489CrossRefPubMedGoogle Scholar
  34. 34.
    Maazi H, Akbari O (2017) Type two innate lymphoid cells: the Janus cells in health and disease. Immunol Rev 278:192–206. https://doi.org/10.1111/imr.12554 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kubo M (2017) Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol Rev 278:162–172. https://doi.org/10.1111/imr.12557 CrossRefPubMedGoogle Scholar
  36. 36.
    Hoffmann F et al (2016) Origin, localization, and immunoregulatory properties of pulmonary phagocytes in allergic asthma. Front Immunol 7:107. https://doi.org/10.3389/fimmu.2016.00107 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cook PC, MacDonald AS (2016) Dendritic cells in lung immunopathology. Semin Immunopathol 38:449–460. https://doi.org/10.1007/s00281-016-0571-3 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hirota JA, Knight DA (2012) Human airway epithelial cell innate immunity: relevance to asthma. Curr Opin Immunol 24:740–746CrossRefPubMedGoogle Scholar
  39. 39.
    Deban L, Jaillon S, Garlanda C, Bottazzi B, Mantovani A (2011) Pentraxins in innate immunity: lessons from PTX3. Cell Tissue Res 343:237–249. https://doi.org/10.1007/s00441-010-1018-0 CrossRefPubMedGoogle Scholar
  40. 40.
    Garred P, Honore C, Ma YJ, Munthe-Fog L, Hummelshoj T (2009) MBL2, FCN1, FCN2 and FCN3-The genes behind the initiation of the lectin pathway of complement. Mol Immunol 46:2737–2744. https://doi.org/10.1016/j.molimm.2009.05.005 CrossRefPubMedGoogle Scholar
  41. 41.
    Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295. https://doi.org/10.1126/science.1183021 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schleimer RP, Kato A, Kern R, Kuperman D, Avila PC (2007) Epithelium: at the interface of innate and adaptive immune responses. J Allergy Clin Immunol 120:1279–1284. https://doi.org/10.1016/j.jaci.2007.08.046 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Walport M, Complement J (2001) First of two parts. N Engl J Med 344:1058–1066. https://doi.org/10.1056/NEJM200104053441406 CrossRefPubMedGoogle Scholar
  44. 44.
    Manfredi AA, Rovere-Querini P, Bottazzi B, Garlanda C, Mantovani A (2008) Pentraxins, humoral innate immunity and tissue injury. Curr Opin Immunol 20:538–544. https://doi.org/10.1016/j.coi.2008.05.004 CrossRefPubMedGoogle Scholar
  45. 45.
    Gakhar L et al (2010) PLUNC is a novel airway surfactant protein with anti-biofilm activity. PLoS One 5:e9098. https://doi.org/10.1371/journal.pone.0009098 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kool M et al (2011) An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 34:527–540. doi:S1074-7613(11)00122-1 [pii] https://doi.org/10.1016/j.immuni.2011.03.015
  47. 47.
    Kouzaki H, Iijima K, Kobayashi T, O’Grady SM, Kita H (2011) The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J Immunol 186:4375–4387. doi:jimmunol.1003020 [pii] https://doi.org/10.4049/jimmunol.1003020
  48. 48.
    Shaw MH, Reimer T, Kim YG, Nunez G (2008) NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr Opin Immunol 20:377–382. https://doi.org/10.1016/j.coi.2008.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Modlin RL (2012) Innate immunity: ignored for decades, but not forgotten. J Invest Dermatol 132:882–886. https://doi.org/10.1038/jid.2011.373 CrossRefPubMedGoogle Scholar
  50. 50.
    Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19:24–32. https://doi.org/10.1016/j.smim.2006.12.004 CrossRefPubMedGoogle Scholar
  51. 51.
    Lee MS, Kim YJ (2007) Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem 76:447–480. https://doi.org/10.1146/annurev.biochem.76.060605.122847 CrossRefPubMedGoogle Scholar
  52. 52.
    Cambi A, Figdor CG (2005) Levels of complexity in pathogen recognition by C-type lectins. Curr Opin Immunol 17:345–351. https://doi.org/10.1016/j.coi.2005.05.011 CrossRefPubMedGoogle Scholar
  53. 53.
    Lan RS, Stewart GA, Henry PJ (2002) Role of protease-activated receptors in airway function: a target for therapeutic intervention? Pharmacol Ther 95:239–257CrossRefPubMedGoogle Scholar
  54. 54.
    Vinhas R et al (2011) Pollen proteases compromise the airway epithelial barrier through degradation of transmembrane adhesion proteins and lung bioactive peptides. Allergy 66:1088–1098. https://doi.org/10.1111/j.1398-9995.2011.02598.x CrossRefPubMedGoogle Scholar
  55. 55.
    Page K, Hughes VS, Bennett GW, Wong HR (2006) German cockroach proteases regulate matrix metalloproteinase-9 in human bronchial epithelial cells. Allergy 61:988–995. https://doi.org/10.1111/j.1398-9995.2006.01103.x CrossRefPubMedGoogle Scholar
  56. 56.
    Tai HY et al (2006) Pen ch 13 allergen induces secretion of mediators and degradation of occludin protein of human lung epithelial cells. Allergy 61:382–388. https://doi.org/10.1111/j.1398-9995.2005.00958.x CrossRefPubMedGoogle Scholar
  57. 57.
    Yike I (2011) Fungal proteases and their pathophysiological effects. Mycopathologia 171:299–323. https://doi.org/10.1007/s11046-010-9386-2 CrossRefPubMedGoogle Scholar
  58. 58.
    Mathews JA et al (2011) A potential new target for asthma therapy: a disintegrin and metalloprotease 10 (ADAM10) involvement in murine experimental asthma. Allergy 66:1193–1200. https://doi.org/10.1111/j.1398-9995.2011.02614.x CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wan H et al (1999) Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 104:123–133. https://doi.org/10.1172/JCI5844 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Carr MJ, Schechter NM, Undem BJ (2000) Trypsin-induced, neurokinin-mediated contraction of guinea pig bronchus. Am J Respir Crit Care Med 162:1662–1667. https://doi.org/10.1164/ajrccm.162.5.9912099 CrossRefPubMedGoogle Scholar
  61. 61.
    de Boer JD, Majoor CJ, van ‘t Veer C, Bel EH, van der Poll T (2012) Asthma and coagulation. Blood 119:3236–3244. https://doi.org/10.1182/blood-2011-11-391532 CrossRefPubMedGoogle Scholar
  62. 62.
    Endo, Y., Matsushita, M. & Fujita, T. Role of ficolin in innate immunity and its molecular basis. Immunobiology 212, 371-379, doi:https://doi.org/10.1016/j.imbio.2006.11.014 (2007)
  63. 63.
    Holmskov U, Thiel S, Jensenius JC (2003) Collections and ficolins: humoral lectins of the innate immune defense. Annu Rev Immunol 21:547–578. https://doi.org/10.1146/annurev.immunol.21.120601.140954 CrossRefPubMedGoogle Scholar
  64. 64.
    Holmskov UL (2000) Collectins and collectin receptors in innate immunity. APMIS Suppl 100:1–59PubMedGoogle Scholar
  65. 65.
    Shpacovitch V, Feld M, Hollenberg MD, Luger TA, Steinhoff M (2008) Role of protease-activated receptors in inflammatory responses, innate and adaptive immunity. J Leukoc Biol 83:1309–1322. https://doi.org/10.1189/jlb.0108001 CrossRefPubMedGoogle Scholar
  66. 66.
    Sudha VT, Arora N, Gaur SN, Pasha S, Singh BP (2008) Identification of a serine protease as a major allergen (Per a 10) of Periplaneta americana. Allergy 63:768–776. https://doi.org/10.1111/j.1398-9995.2007.01602.x CrossRefPubMedGoogle Scholar
  67. 67.
    Togbe D et al (2013) Thymic stromal lymphopoietin enhances Th2/Th22 and reduces IL-17A in protease-allergen-induced airways inflammation. ISRN Allergy 2013:971036. https://doi.org/10.1155/2013/971036 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Page K (2012) Role of cockroach proteases in allergic disease. Curr Allergy Asthma Rep 12:448–455. https://doi.org/10.1007/s11882-012-0276-1 CrossRefPubMedGoogle Scholar
  69. 69.
    Matsuwaki Y, Wada K, Moriyama H, Kita H (2011) Human eosinophil innate response to Alternaria fungus through protease-activated receptor-2. Int Arch Allergy Immunol 155(Suppl 1):123–128. https://doi.org/10.1159/000327498 CrossRefPubMedGoogle Scholar
  70. 70.
    Ebeling C et al (2005) Proteinase-activated receptor 2 activation in the airways enhances antigen-mediated airway inflammation and airway hyperresponsiveness through different pathways. J Allergy Clin Immunol 115:623–630. doi:S0091674904031203 [pii] https://doi.org/10.1016/j.jaci.2004.11.042
  71. 71.
    Reed CE, Kita H (2004) The role of protease activation of inflammation in allergic respiratory diseases. J Allergy Clin Immunol 114:997–1008.; quiz 1009. https://doi.org/10.1016/j.jaci.2004.07.060 CrossRefPubMedGoogle Scholar
  72. 72.
    D’Agostino B et al (2007) Activation of protease-activated receptor-2 reduces airways inflammation in experimental allergic asthma. Clin Exp Allergy 37:1436–1443. https://doi.org/10.1111/j.1365-2222.2007.02793.x CrossRefPubMedGoogle Scholar
  73. 73.
    Hammad H et al (2010) Inflammatory dendritic cells--not basophils--are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med 207:2097–2111. doi:jem.20101563 [pii] https://doi.org/10.1084/jem.20101563
  74. 74.
    Wang Q et al (2009) Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. J Immunol 183:6989–6997. doi:jimmunol.0901386 [pii] https://doi.org/10.4049/jimmunol.0901386
  75. 75.
    Trompette A et al (2009) Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457:585–588. doi:nature07548 [pii] https://doi.org/10.1038/nature07548
  76. 76.
    Rigaux P et al (2009) Immunomodulatory properties of Lactobacillus plantarum and its use as a recombinant vaccine against mite allergy. Allergy 64:406–414. https://doi.org/10.1111/j.1398-9995.2008.01825.x CrossRefPubMedGoogle Scholar
  77. 77.
    Hammad H et al (2009) House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15:410–416, doi:nm.1946 [pii] https://doi.org/10.1038/nm.1946
  78. 78.
    Lam D, Ng N, Lee S, Batzer G, Horner AA (2008) Airway house dust extract exposures modify allergen-induced airway hypersensitivity responses by TLR4-dependent and independent pathways. J Immunol 181:2925–2932. doi:181/4/2925 [pii]Google Scholar
  79. 79.
    Kato A, Favoreto S Jr, Avila PC, Schleimer RP (2007) TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J Immunol 179:1080–1087CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP (2004) Activation of airway epithelial cells by toll-like receptor agonists. Am J Respir Cell Mol Biol 31:358–364. https://doi.org/10.1165/rcmb.2003-0388OC CrossRefPubMedGoogle Scholar
  81. 81.
    Liu, AH (2002) Endotoxin exposure in allergy and asthma: reconciling a paradox. J Allergy Clin Immunol 109:379–392. doi:S0091674902085688 [pii]Google Scholar
  82. 82.
    Lambrecht BN, Hammad H (2012) The airway epithelium in asthma. Nat Med 18:684–692. doi:nm.2737 [pii] https://doi.org/10.1038/nm.2737
  83. 83.
    Ryu JH et al (2013) Distinct TLR-mediated pathways regulate house dust mite-induced allergic disease in the upper and lower airways. J Allergy Clin Immunol 131:549–561. https://doi.org/10.1016/j.jaci.2012.07.050 CrossRefPubMedGoogle Scholar
  84. 84.
    Holtzman MJ et al (2009) Immune pathways for translating viral infection into chronic airway disease. Adv Immunol 102:245–276. doi:S0065-2776(09)01205-X [pii] https://doi.org/10.1016/S0065-2776(09)01205-X
  85. 85.
    Gavala ML, Bertics PJ, Gern JE (2011) Rhinoviruses, allergic inflammation, and asthma. Immunol Rev 242:69–90. https://doi.org/10.1111/j.1600-065X.2011.01031.x CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    See H, Wark P (2008) Innate immune response to viral infection of the lungs. Paediatr Respir Rev 9:243–250CrossRefPubMedGoogle Scholar
  87. 87.
    Hsu AC, See HV, Hansbro PM, Wark PA (2012) Innate immunity to influenza in chronic airways diseases. Respirology 17:1166–1175. https://doi.org/10.1111/j.1440-1843.2012.02200.x CrossRefPubMedGoogle Scholar
  88. 88.
    Chang YJ et al (2011) Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol 12:631–638, doi:ni.2045 [pii] https://doi.org/10.1038/ni.2045
  89. 89.
    Mastrangelo P, Hegele RG (2013) RSV fusion: time for a new model. Virus 5:873–885. https://doi.org/10.3390/v5030873 CrossRefGoogle Scholar
  90. 90.
    Terajima M et al (1997) Rhinovirus infection of primary cultures of human tracheal epithelium: role of ICAM-1 and IL-1beta. Am J Phys 273:L749–L759Google Scholar
  91. 91.
    Bianco A, Spiteri MA (1998) A biological model to explain the association between human rhinovirus respiratory infections and bronchial asthma. Monaldi Arch Chest Dis 53:83–87PubMedGoogle Scholar
  92. 92.
    Papi A et al (2013) Rhinovirus infection causes steroid resistance in airway epithelium through nuclear factor kappaB and c-Jun N-terminal kinase activation. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2013.05.028
  93. 93.
    Sykes A et al (2013) TLR3, TLR4 and TLRs7-9 induced interferons are not impaired in airway and blood cells in well controlled asthma. PLoS One 8:e65921. https://doi.org/10.1371/journal.pone.0065921 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Slater L et al (2010) Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog 6:e1001178. https://doi.org/10.1371/journal.ppat.1001178 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Contoli M et al (2006) Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med 12:1023–1026. https://doi.org/10.1038/nm1462 CrossRefPubMedGoogle Scholar
  96. 96.
    Monticelli LA et al (2011) Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 12:1045–1054. https://doi.org/10.1031/ni.2131 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Bartemes KR, Kita H (2012) Dynamic role of epithelium-derived cytokines in asthma. Clin Immunol 143:222–235. doi:S1521-6616(12)00085-X [pii] https://doi.org/10.1016/j.clim.2012.03.001
  98. 98.
    Fort MM et al (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15:985–995. doi:S1074–7613(01)00243–6 [pii]Google Scholar
  99. 99.
    Schmitz J et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490. doi:S1074-7613(05)00311-0 [pii] https://doi.org/10.1016/j.immuni.2005.09.015
  100. 100.
    Zhou B et al (2005) Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 6:1047–1053. doi:ni1247 [pii] https://doi.org/10.1038/ni1247
  101. 101.
    Oboki K et al (2010) IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci U S A 107:18581–18586. https://doi.org/10.1073/pnas.1003059107 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Perros F, Hoogsteden HC, Coyle AJ, Lambrecht BN, Hammad H (2009) Blockade of CCR4 in a humanized model of asthma reveals a critical role for DC-derived CCL17 and CCL22 in attracting Th2 cells and inducing airway inflammation. Allergy 64:995–1002. doi:ALL2095 [pii] https://doi.org/10.1111/j.1398-9995.2009.02095.x
  103. 103.
    Schutyser E, Struyf S, Van Damme J (2003) The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 14:409–426CrossRefPubMedGoogle Scholar
  104. 104.
    Onishi RM, Gaffen SL (2010) Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 129:311–321. https://doi.org/10.1111/j.1365-2567.2009.03240.x CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Park H et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141. doi:ni1261 [pii] https://doi.org/10.1038/ni1261
  106. 106.
    Alcorn JF, Crowe CR, Kolls JK (2010) TH17 cells in asthma and COPD. Annu Rev Physiol 72:495–516. https://doi.org/10.1146/annurev-physiol-021909-135926 CrossRefPubMedGoogle Scholar
  107. 107.
    Lajoie S et al (2010) Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat Immunol 11:928–935. doi:ni.1926 [pii] https://doi.org/10.1038/ni.1926
  108. 108.
    Schnyder-Candrian S et al (2006) Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 203:2715–2725. doi:jem.20061401 [pii] https://doi.org/10.1084/jem.20061401
  109. 109.
    Gudbjartsson DF et al (2009) Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet 41:342–347. https://doi.org/10.1038/ng.323 CrossRefPubMedGoogle Scholar
  110. 110.
    Moffatt MF et al (2010) A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 363:1211–1221. https://doi.org/10.1056/NEJMoa0906312 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Hunninghake GM et al (2010) TSLP polymorphisms are associated with asthma in a sex-specific fashion. Allergy 65:1566–1575. https://doi.org/10.1111/j.1398-9995.2010.02415.x CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Ober C, Yao TC (2011) The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev 242:10–30. https://doi.org/10.1111/j.1600-065X.2011.01029.x CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Karmaus W, Ziyab AH, Everson T, Holloway JW (2013) Epigenetic mechanisms and models in the origins of asthma. Curr Opin Allergy Clin Immunol 13:63–69. https://doi.org/10.1097/ACI.0b013e32835ad0e7 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Sofer T et al (2013) Exposure to airborne particulate matter is associated with methylation pattern in the asthma pathway. Epigenomics 5:147–154. https://doi.org/10.2217/epi.13.16 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Chen W et al (2013) ADCYAP1R1 and asthma in Puerto Rican children. Am J Respir Crit Care Med 187:584–588. https://doi.org/10.1164/rccm.201210-1789OC CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Reinius LE et al (2013) DNA methylation in the Neuropeptide S Receptor 1 (NPSR1) promoter in relation to asthma and environmental factors. PLoS One 8:e53877. https://doi.org/10.1371/journal.pone.0053877 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Hammad H, Lambrecht BN (2008) Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8:193–204. https://doi.org/10.1038/nri2275 CrossRefPubMedGoogle Scholar
  118. 118.
    Reibman J, Hsu Y, Chen LC, Bleck B, Gordon T (2003) Airway epithelial cells release MIP-3alpha/CCL20 in response to cytokines and ambient particulate matter. Am J Respir Cell Mol Biol 28:648–654. https://doi.org/10.1165/rcmb.2002-0095OC CrossRefPubMedGoogle Scholar
  119. 119.
    Haczku A (2012) The dendritic cell niche in chronic obstructive pulmonary disease. Respir Res 13:80. https://doi.org/10.1186/1465-9921-13-80 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Lukacs NW, Prosser DM, Wiekowski M, Lira SA, Cook DN (2001) Requirement for the chemokine receptor CCR6 in allergic pulmonary inflammation. J Exp Med 194:551–555CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Phadke AP, Akangire G, Park SJ, Lira SA, Mehrad B (2007) The role of CC chemokine receptor 6 in host defense in a model of invasive pulmonary aspergillosis. Am J Respir Crit Care Med 175:1165–1172. https://doi.org/10.1164/rccm.200602-256OC CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Soumelis V et al (2002) Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 3:673–680. https://doi.org/10.1038/ni805 CrossRefPubMedGoogle Scholar
  123. 123.
    Ito T et al (2005) TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med 202:1213–1223. https://doi.org/10.1084/jem.20051135 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Wang YH et al (2006) Maintenance and polarization of human TH2 central memory T cells by thymic stromal lymphopoietin-activated dendritic cells. Immunity 24:827–838. https://doi.org/10.1016/j.immuni.2006.03.019 CrossRefPubMedGoogle Scholar
  125. 125.
    Omori M, Ziegler S (2007) Induction of IL-4 expression in CD4(+) T cells by thymic stromal lymphopoietin. J Immunol 178:1396–1404CrossRefPubMedGoogle Scholar
  126. 126.
    Wang YH et al (2007) IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 204:1837–1847. https://doi.org/10.1084/jem.20070406 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Moreira AP, Hogaboam CM (2011) Macrophages in allergic asthma: fine-tuning their pro- and anti-inflammatory actions for disease resolution. J Interf Cytokine Res 31:485–491. https://doi.org/10.1089/jir.2011.0027 CrossRefGoogle Scholar
  128. 128.
    Boorsma CE, Draijer C, Melgert BN (2013) Macrophage heterogeneity in respiratory diseases. Mediat Inflamm 2013:769214. https://doi.org/10.1155/2013/769214 CrossRefGoogle Scholar
  129. 129.
    Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461CrossRefPubMedGoogle Scholar
  130. 130.
    Chistiakov DA et al (2015) Macrophage phenotypic plasticity in atherosclerosis: the associated features and the peculiarities of the expression of inflammatory genes. Int J Cardiol 184:436–445. https://doi.org/10.1016/j.ijcard.2015.03.055 CrossRefPubMedGoogle Scholar
  131. 131.
    Jiang Z, Zhu L (2016) Update on the role of alternatively activated macrophages in asthma. J Asthma Allergy 9:101–107. https://doi.org/10.2147/JAA.S104508 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Muraille E, Leo O, Moser M (2014) Th1/Th2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front Immunol 5:603. https://doi.org/10.3389/fimmu.2014.00603 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Draijer C, Robbe P, Boorsma CE, Hylkema MN, Melgert BN (2013) Characterization of macrophage phenotypes in three murine models of house-dust-mite-induced asthma. Mediat Inflamm 2013:10. https://doi.org/10.1155/2013/632049 CrossRefGoogle Scholar
  134. 134.
    Joshi AD et al (2010) Interleukin-33 contributes to both M1 and M2 chemokine marker expression in human macrophages. BMC Immunol 11:52. https://doi.org/10.1186/1471-2172-11-52 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Kurowska-Stolarska M et al (2009) IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol 183:6469–6477. https://doi.org/10.4049/jimmunol.0901575 CrossRefPubMedGoogle Scholar
  136. 136.
    Martinez FO et al (2013) Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 121:e57–e69. https://doi.org/10.1182/blood-2012-06-436212 CrossRefPubMedGoogle Scholar
  137. 137.
    Kim EY et al (2008) Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat Med 14:633–640. https://doi.org/10.1038/nm1770 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Girodet PO et al (2016) Alternative macrophage activation is increased in asthma. Am J Respir Cell Mol Biol 55:467–475. https://doi.org/10.1165/rcmb.2015-0295OC CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517:293–301. https://doi.org/10.1038/nature14189 CrossRefPubMedGoogle Scholar
  140. 140.
    Saenz SA, Noti M, Artis D (2010) Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol 31:407–413. doi:S1471-4906(10)00125-0 [pii] https://doi.org/10.1016/j.it.2010.09.001
  141. 141.
    Neill DR et al (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–1370. doi:nature08900 [pii] https://doi.org/10.1038/nature08900
  142. 142.
    Moro K et al (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463:540–544. doi:nature08636 [pii] https://doi.org/10.1038/nature08636
  143. 143.
    Barlow JL et al (2012) Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol 129:191–198 e191–e194. doi:S0091-6749(11)01565-X [pii] https://doi.org/10.1016/j.jaci.2011.09.041
  144. 144.
    Yasuda K et al (2012) Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc Natl Acad Sci U S A 109:3451–3456. doi:1201042109 [pii] https://doi.org/10.1073/pnas.1201042109
  145. 145.
    Klein Wolterink RG et al (2012) Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol 42:1106–1116. https://doi.org/10.1002/eji.201142018 CrossRefPubMedGoogle Scholar
  146. 146.
    Yang Q et al (2013) T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38:694–704. https://doi.org/10.1016/j.immuni.2012.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Mjosberg JM et al (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12:1055–1062. https://doi.org/10.1038/ni.2104 CrossRefPubMedGoogle Scholar
  148. 148.
    Smith SG et al (2016) Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J Allergy Clin Immunol 137:75–86.e78. https://doi.org/10.1016/j.jaci.2015.05.037 CrossRefPubMedGoogle Scholar
  149. 149.
    Yang Q et al (2016) Group 2 innate lymphoid cells mediate ozone-induced airway inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol 137:571–578. https://doi.org/10.1016/j.jaci.2015.06.037 CrossRefPubMedGoogle Scholar
  150. 150.
    Monticelli LA et al (2016) Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nat Immunol 17:656. https://doi.org/10.1038/ni.3421. https://www.nature.com/articles/ni.3421 – supplementary-informationCrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Halim TY, Krauss RH, Sun AC, Takei F (2012) Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36:451–463. https://doi.org/10.1016/j.immuni.2011.12.020 CrossRefPubMedGoogle Scholar
  152. 152.
    Shen X et al (2018) Group-2 innate lymphoid cells promote airway hyperresponsiveness through production of VEGFA. J Allergy Clin Immunol https://doi.org/10.1016/j.jaci.2018.01.005
  153. 153.
    Possa SS, Leick EA, Prado CM, Martins MA, Tibério IFLC (2013) Eosinophilic inflammation in allergic asthma. Front Pharmacol 4:46. https://doi.org/10.3389/fphar.2013.00046 CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Saito T et al (1997) Respiratory syncytial virus induces selective production of the chemokine RANTES by upper airway epithelial cells. J Infect Dis 175:497–504CrossRefPubMedGoogle Scholar
  155. 155.
    Cherry WB, Yoon J, Bartemes KR, Iijima K, Kita H (2008) A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J Allergy Clin Immunol 121:1484–1490. doi:S0091-6749(08)00719-7 [pii] https://doi.org/10.1016/j.jaci.2008.04.005
  156. 156.
    Wong CK, Cheung PF, Ip WK, Lam CW (2005) Interleukin-25-induced chemokines and interleukin-6 release from eosinophils is mediated by p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and nuclear factor-kappaB. Am J Respir Cell Mol Biol 33:186–194. doi:2005-0034OC [pii] https://doi.org/10.1165/rcmb.2005-0034OC
  157. 157.
    Pegorier S, Wagner LA, Gleich GJ, Pretolani M (2006) Eosinophil-derived cationic proteins activate the synthesis of remodeling factors by airway epithelial cells. J Immunol 177:4861–4869. doi:177/7/4861 [pii]Google Scholar
  158. 158.
    Laan M et al (1999) Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J Immunol 162:2347–2352PubMedGoogle Scholar
  159. 159.
    Cromwell O et al (1992) Expression and generation of interleukin-8, IL-6 and granulocyte-macrophage colony-stimulating factor by bronchial epithelial cells and enhancement by IL-1 beta and tumour necrosis factor-alpha. Immunology 77:330–337PubMedPubMedCentralGoogle Scholar
  160. 160.
    Osterlund C, Gronlund H, Gafvelin G, Bucht A (2010) Non-proteolytic aeroallergens from mites, cat and dog exert adjuvant-like activation of bronchial epithelial cells. Int Arch Allergy Immunol 155:111–118. doi:000318743 [pii] https://doi.org/10.1159/000318743
  161. 161.
    McAllister F et al (2005) Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J Immunol 175:404–412CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Churchill L, Friedman B, Schleimer RP, Proud D (1992) Production of granulocyte-macrophage colony-stimulating factor by cultured human tracheal epithelial cells. Immunology 75:189–195PubMedPubMedCentralGoogle Scholar
  163. 163.
    Kim KC et al (1987) Human neutrophil elastase releases cell surface mucins from primary cultures of hamster tracheal epithelial cells. Proc Natl Acad Sci U S A 84:9304–9308CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    van Wetering S et al (2000) Regulation of secretory leukocyte proteinase inhibitor (SLPI) production by human bronchial epithelial cells: increase of cell-associated SLPI by neutrophil elastase. J Investig Med 48:359–366PubMedGoogle Scholar
  165. 165.
    Lefrancais E et al (2012) IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci U S A 109:1673–1678. https://doi.org/10.1073/pnas.1115884109 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Alves-Filho JC et al (2010) Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med 16:708–712. https://doi.org/10.1038/nm.2156 CrossRefPubMedGoogle Scholar
  167. 167.
    Hueber AJ et al (2011) IL-33 induces skin inflammation with mast cell and neutrophil activation. Eur J Immunol 41:2229–2237. https://doi.org/10.1002/eji.201041360 CrossRefPubMedGoogle Scholar
  168. 168.
    Wenzel SE et al (1997) Bronchoscopic evaluation of severe asthma. Am J Respir Crit Care Med 156:737–743. https://doi.org/10.1164/ajrccm.156.3.9610046 CrossRefPubMedGoogle Scholar
  169. 169.
    Fahy JV, Kim KW, Liu J, Boushey HA (1995) Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J Allergy Clin Immunol 95:843–852CrossRefPubMedGoogle Scholar
  170. 170.
    Holgate ST (2011) The sentinel role of the airway epithelium in asthma pathogenesis. Immunol Rev 242:205–219. https://doi.org/10.1111/j.1600-065X.2011.01030.x CrossRefPubMedGoogle Scholar
  171. 171.
    Allakhverdi Z et al (2007) Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 204:253–258. https://doi.org/10.1084/jem.20062211 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Allakhverdi, Z., Smith, D. E., Comeau, M. R. & Delespesse, G. (2007) Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J Immunol 179, 2051–2054, doi:179/4/2051 [pii]Google Scholar
  173. 173.
    Iikura M et al (2007) IL-33 can promote survival, adhesion and cytokine production in human mast cells. Lab Investig 87:971–978. doi:3700663 [pii] https://doi.org/10.1038/labinvest.3700663
  174. 174.
    Kohda F, Koga T, Uchi H, Urabe K, Furue M (2002) Histamine-induced IL-6 and IL-8 production are differentially modulated by IFN-gamma and IL-4 in human keratinocytes. J Dermatol Sci 28:34–41CrossRefPubMedGoogle Scholar
  175. 175.
    Siracusa MC, Kim BS, Spergel JM, Artis D (2013) Basophils and allergic inflammation. J Allergy Clin Immunol 132:789–788. https://doi.org/10.1016/j.jaci.2013.07.046 CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Pecaric-Petkovic T, Didichenko SA, Kaempfer S, Spiegl N, Dahinden CA (2009) Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33. Blood 113:1526–1534. doi:blood-2008-05-157818 [pii] https://doi.org/10.1182/blood-2008-05-157818
  177. 177.
    Schneider E et al (2009) IL-33 activates unprimed murine basophils directly in vitro and induces their in vivo expansion indirectly by promoting hematopoietic growth factor production. J Immunol 183:3591–3597. doi:jimmunol.0900328 [pii] https://doi.org/10.4049/jimmunol.0900328
  178. 178.
    Siracusa MC et al (2011) TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477:229–233. doi:nature10329 [pii] https://doi.org/10.1038/nature10329
  179. 179.
    Noti M et al (2013) Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic esophagitis. Nat Med 19:1005–1013. https://doi.org/10.1038/nm.3281 CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Kepley CL, McFeeley PJ, Oliver JM, Lipscomb MF (2001) Immunohistochemical detection of human basophils in postmortem cases of fatal asthma. Am J Respir Crit Care Med 164:1053–1058. https://doi.org/10.1164/ajrccm.164.6.2102025 CrossRefPubMedGoogle Scholar
  181. 181.
    Terashima A et al (2008) A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J Exp Med 205:2727–2733. doi:jem.20080698 [pii] https://doi.org/10.1084/jem.20080698
  182. 182.
    Tupin E, Kinjo Y, Kronenberg M (2007) The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5:405–417. doi:nrmicro1657 [pii] https://doi.org/10.1038/nrmicro1657
  183. 183.
    Wingender G et al (2011) Invariant NKT cells are required for airway inflammation induced by environmental antigens. J Exp Med 208:1151–1162. https://doi.org/10.1084/jem.20102229 CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Nie H et al (2015) Invariant NKT cells act as an adjuvant to enhance Th2 inflammatory response in an OVA-induced mouse model of asthma. PLoS One 10:e0119901. https://doi.org/10.1371/journal.pone.0119901 CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Matangkasombut P et al (2008) Direct activation of natural killer T cells induces airway hyperreactivity in nonhuman primates. J Allergy Clin Immunol 121:1287–1289. https://doi.org/10.1016/j.jaci.2008.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Akbari O et al (2006) CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N Engl J Med 354:1117–1129. https://doi.org/10.1056/NEJMoa053614 CrossRefPubMedGoogle Scholar
  187. 187.
    Vijayanand P et al (2007) Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N Engl J Med 356:1410–1422. https://doi.org/10.1056/NEJMoa064691 CrossRefPubMedGoogle Scholar
  188. 188.
    Recaldin T, Fear DJ (2016) Transcription factors regulating B cell fate in the germinal centre. Clin Exp Immunol 183:65–75. https://doi.org/10.1111/cei.12702 CrossRefPubMedGoogle Scholar
  189. 189.
    Peled JU et al (2008) The biochemistry of somatic hypermutation. Annu Rev Immunol 26:481–511. https://doi.org/10.1146/annurev.immunol.26.021607.090236 CrossRefPubMedGoogle Scholar
  190. 190.
    van de Veen W et al (2016) Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol 138:654–665. https://doi.org/10.1016/j.jaci.2016.07.006 CrossRefPubMedGoogle Scholar
  191. 191.
    Allakhverdi Z et al (2009) CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation. J Allergy Clin Immunol 123:472–478. doi:S0091-6749(08)01875-7 [pii] https://doi.org/10.1016/j.jaci.2008.10.022
  192. 192.
    Adcock IM, Caramori G, Chung KF (2008) New targets for drug development in asthma. Lancet 372:1073–1087. https://doi.org/10.1016/S0140-6736(08)61449-X CrossRefPubMedGoogle Scholar
  193. 193.
    Chung KF (2011) p38 mitogen-activated protein kinase pathways in asthma and COPD. Chest 139:1470–1479. https://doi.org/10.1378/chest.10-1914 CrossRefPubMedGoogle Scholar
  194. 194.
    Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S (2015) CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev 26:311–327. https://doi.org/10.1016/j.cytogfr.2014.11.009 CrossRefPubMedGoogle Scholar
  195. 195.
    Proud D, Leigh R (2011) Epithelial cells and airway diseases. Immunol Rev 242:186–204. https://doi.org/10.1111/j.1600-065X.2011.01033.x CrossRefPubMedGoogle Scholar
  196. 196.
    Spurrell JC, Wiehler S, Zaheer RS, Sanders SP, Proud D (2005) Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 289:L85–L95. https://doi.org/10.1152/ajplung.00397.2004 CrossRefPubMedGoogle Scholar
  197. 197.
    Terada N et al (2001) Expression of C-C chemokine TARC in human nasal mucosa and its regulation by cytokines. Clin Exp Allergy 31:1923–1931CrossRefPubMedGoogle Scholar
  198. 198.
    Heijink IH et al (2007) Der p, IL-4, and TGF-beta cooperatively induce EGFR-dependent TARC expression in airway epithelium. Am J Respir Cell Mol Biol 36:351–359. https://doi.org/10.1165/rcmb.2006-0160OC CrossRefPubMedGoogle Scholar
  199. 199.
    Panina-Bordignon P et al (2001) The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest 107:1357–1364. https://doi.org/10.1172/JCI12655 CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Montes-Vizuet R et al (2006) CC chemokine ligand 1 is released into the airways of atopic asthmatics. Eur Respir J 28:59–67. https://doi.org/10.1183/09031936.06.00134304 CrossRefPubMedGoogle Scholar
  201. 201.
    O'Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327:1098–1102. https://doi.org/10.1126/science.1178334 CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Taha R, Hamid Q, Cameron L, Olivenstein R (2003) T helper type 2 cytokine receptors and associated transcription factors GATA-3, c-MAF, and signal transducer and activator of transcription factor-6 in induced sputum of atopic asthmatic patients. Chest 123:2074–2082CrossRefPubMedGoogle Scholar
  203. 203.
    Malik S et al (2017) Transcription factor Foxo1 is essential for IL-9 induction in T helper cells. Nat Commun 8:815. https://doi.org/10.1038/s41467-017-00674-6 CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Chang HS et al (2017) Neutrophilic inflammation in asthma: mechanisms and therapeutic considerations. Expert Rev Respir Med 11:29–40. https://doi.org/10.1080/17476348.2017.1268919 CrossRefPubMedGoogle Scholar
  205. 205.
    Valeri M, Raffatellu M (2016) Cytokines IL-17 and IL-22 in the host response to infection. Pathog Dis 74. https://doi.org/10.1093/femspd/ftw111
  206. 206.
    Boyman O et al (2015) EAACI IG Biologicals task force paper on the use of biologic agents in allergic disorders. Allergy 70:727–754. https://doi.org/10.1111/all.12616 CrossRefPubMedGoogle Scholar
  207. 207.
    Chung KF (2016) Asthma phenotyping: a necessity for improved therapeutic precision and new targeted therapies. J Intern Med 279:192–204. https://doi.org/10.1111/joim.12382 CrossRefPubMedGoogle Scholar
  208. 208.
    Flayer CH, Haczku A (2017) The Th2 gene cluster unraveled: role of RHS6. Allergy 72:679–681. https://doi.org/10.1111/all.13130 CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Ansel KM, Djuretic I, Tanasa B, Rao A (2006) Regulation of Th2 differentiation and Il4 locus accessibility. Annu Rev Immunol 24:607–656. https://doi.org/10.1146/annurev.immunol.23.021704.115821 CrossRefPubMedGoogle Scholar
  210. 210.
    Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14:390–403. https://doi.org/10.1038/nrg3454 CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Chatila TA, Li N, Garcia-Lloret M, Kim HJ, Nel AE (2008) T-cell effector pathways in allergic diseases: transcriptional mechanisms and therapeutic targets. J Allergy Clin Immunol 121:812–823.; quiz 824-815. https://doi.org/10.1016/j.jaci.2008.02.025 CrossRefPubMedGoogle Scholar
  212. 212.
    Wang C, Collins M, Kuchroo VK (2015) Effector T cell differentiation: are master regulators of effector T cells still the masters? Curr Opin Immunol 37:6–10. https://doi.org/10.1016/j.coi.2015.08.001 CrossRefPubMedGoogle Scholar
  213. 213.
    Lee GR, Kim ST, Spilianakis CG, Fields PE, Flavell RA (2006) T helper cell differentiation: regulation by cis elements and epigenetics. Immunity 24:369–379. https://doi.org/10.1016/j.immuni.2006.03.007 CrossRefPubMedGoogle Scholar
  214. 214.
    Mercer TR, Mattick JS (2013) Understanding the regulatory and transcriptional complexity of the genome through structure. Genome Res 23:1081–1088. https://doi.org/10.1101/gr.156612.113 CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Hwang SS, Jang SW, Lee KO, Kim HS, Lee GR (2016) RHS6 coordinately regulates the Th2 cytokine genes by recruiting GATA3, SATB1, and IRF4. Allergy. https://doi.org/10.1111/all.13078
  216. 216.
    Mohrs M et al (2001) Deletion of a coordinate regulator of type 2 cytokine expression in mice. Nat Immunol 2:842–847. https://doi.org/10.1038/ni0901-842 CrossRefPubMedGoogle Scholar
  217. 217.
    Lee GR, Fields PE, Griffin TJ, Flavell RA (2003) Regulation of the Th2 cytokine locus by a locus control region. Immunity 19:145–153CrossRefPubMedGoogle Scholar
  218. 218.
    Lee GR, Fields PE, Flavell RA (2001) Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 14:447–459CrossRefGoogle Scholar
  219. 219.
    Fields PE, Lee GR, Kim ST, Bartsevich VV, Flavell RA (2004) Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity 21:865–876. https://doi.org/10.1016/j.immuni.2004.10.015 CrossRefPubMedGoogle Scholar
  220. 220.
    Koh BH et al (2010) Th2 LCR is essential for regulation of Th2 cytokine genes and for pathogenesis of allergic asthma. Proc Natl Acad Sci U S A 107:10614–10619. https://doi.org/10.1073/pnas.1005383107 CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Williams A et al (2013) Hypersensitive site 6 of the Th2 locus control region is essential for Th2 cytokine expression. Proc Natl Acad Sci U S A 110:6955–6960. https://doi.org/10.1073/pnas.1304720110 CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Zeng WP (2013) ‘All things considered’: transcriptional regulation of T helper type 2 cell differentiation from precursor to effector activation. Immunology 140:31–38. https://doi.org/10.1111/imm.12121 CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Kim K, Kim N, Lee GR (2016) Transcription factors Oct-1 and GATA-3 cooperatively regulate Th2 cytokine gene expression via the RHS5 within the Th2 locus control region. PLoS One 11:e0148576. https://doi.org/10.1371/journal.pone.0148576 CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Hwang SS, Jang SW, Lee GR (2017) RHS6-mediated chromosomal looping and nuclear substructure binding is required for Th2 cytokine gene expression. Biochim Biophys Acta 1860:383–391. https://doi.org/10.1016/j.bbagrm.2017.01.008 CrossRefPubMedGoogle Scholar
  225. 225.
    Hwang SS, Jang SW, Lee KO, Kim HS, Lee GR (2017) RHS6 coordinately regulates the Th2 cytokine genes by recruiting GATA3, SATB1, and IRF4. Allergy 72:772–782. https://doi.org/10.1111/all.13078 CrossRefPubMedGoogle Scholar
  226. 226.
    Zhu J (2010) Transcriptional regulation of Th2 cell differentiation. Immunol Cell Biol 88:244–249. https://doi.org/10.1038/icb.2009.114 CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Burute M, Gottimukkala K, Galande S (2012) Chromatin organizer SATB1 is an important determinant of T-cell differentiation. Immunol Cell Biol 90:852–859CrossRefPubMedGoogle Scholar
  228. 228.
    Accordini S et al (2016) An interleukin 13 polymorphism is associated with symptom severity in adult subjects with ever asthma. PLoS One 11:e0151292. https://doi.org/10.1371/journal.pone.0151292 CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Schieck M et al (2014) A polymorphism in the TH 2 locus control region is associated with changes in DNA methylation and gene expression. Allergy 69:1171–1180. https://doi.org/10.1111/all.12450 CrossRefPubMedGoogle Scholar
  230. 230.
    Sharma V et al (2014) Fine-mapping of IgE-associated loci 1q23, 5q31, and 12q13 using 1000 Genomes Project data. Allergy 69:1077–1084. https://doi.org/10.1111/all.12431 CrossRefPubMedGoogle Scholar
  231. 231.
    Slifka MK, Amanna I (2014) How advances in immunology provide insight into improving vaccine efficacy. Vaccine 32:2948–2957. https://doi.org/10.1016/j.vaccine.2014.03.078 CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Killingbeck SS, Ge MQ, Haczku A (2017) Patching it together: epicutaneous vaccination with heat-labile Escherichia coli toxin against birch pollen allergy. Allergy 72:5–8. https://doi.org/10.1111/all.13064 CrossRefPubMedGoogle Scholar
  233. 233.
    Levitz SM (2016) Aspergillus vaccines: Hardly worth studying or worthy of hard study? Med Mycol. https://doi.org/10.1093/mmy/myw081
  234. 234.
    Calderon MA et al (2013) Allergen immunotherapy: a new semantic framework from the European Academy of Allergy and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL consensus report. Allergy 68:825–828CrossRefPubMedGoogle Scholar
  235. 235.
    Akdis M, Akdis CA (2014) Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J Allergy Clin Immunol 133:621–631. https://doi.org/10.1016/j.jaci.2013.12.1088 CrossRefPubMedGoogle Scholar
  236. 236.
    Larche M, Akdis CA, Valenta R (2006) Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol 6:761–771. https://doi.org/10.1038/nri1934 CrossRefPubMedGoogle Scholar
  237. 237.
    Curtis HH (1902) The Immunization Treatment of Hay Fever. JAMA XXXIX(20):1267–1268. doi:10.1001/jama.1902.02480460045013CrossRefGoogle Scholar
  238. 238.
    Bachmann MF, Kundig TM (2016) Allergen specific immunotherapy: is it vaccination against toxins after all? Allergy. https://doi.org/10.1111/all.12890
  239. 239.
    Tam HH et al (2016) Specific allergen immunotherapy for the treatment of atopic eczema: a Cochrane systematic review. Allergy 71:1345–1356. https://doi.org/10.1111/all.12932 CrossRefPubMedGoogle Scholar
  240. 240.
    Jutel M, Kosowska A, Smolinska S (2016) Allergen immunotherapy: past, present, and future. Allergy, Asthma Immunol Res 8:191–197. https://doi.org/10.4168/aair.2016.8.3.191 CrossRefGoogle Scholar
  241. 241.
    Assa'ad A (2009) Eosinophilic gastrointestinal disorders. Allergy Asthma Proc 30:17–22. https://doi.org/10.2500/aap.2009.30.3189 CrossRefPubMedGoogle Scholar
  242. 242.
    Nelson HS (2016) Allergen immunotherapy now and in the future. Allergy Asthma Proc 37:268–272. https://doi.org/10.2500/aap.2016.37.3966 CrossRefPubMedGoogle Scholar
  243. 243.
    Burks AW et al (2013) Update on allergy immunotherapy: American Academy of Allergy, Asthma & Immunology/European Academy of Allergy and Clinical Immunology/PRACTALL consensus report. J Allergy Clin Immunol 131:1288–1296. e1283. https://doi.org/10.1016/j.jaci.2013.01.049 CrossRefPubMedGoogle Scholar
  244. 244.
    Canonica GW et al (2016) Therapeutic interventions in severe asthma. World Allergy Organ J 9:40. https://doi.org/10.1186/s40413-016-0130-3 CrossRefPubMedPubMedCentralGoogle Scholar
  245. 245.
    Akdis M et al (2016) Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: receptors, functions, and roles in diseases. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2016.06.033
  246. 246.
    van der Neut Kolfschoten M et al (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317:1554–1557. https://doi.org/10.1126/science.1144603 CrossRefPubMedGoogle Scholar
  247. 247.
    Ozdemir C, Kucuksezer UC, Akdis M, Akdis CA (2016) Mechanisms of aeroallergen immunotherapy: subcutaneous immunotherapy and sublingual immunotherapy. Immunol Allergy Clin N Am 36:71–86. https://doi.org/10.1016/j.iac.2015.08.003 CrossRefGoogle Scholar
  248. 248.
    Rosser EC, Mauri C (2015) Regulatory B cells: origin, phenotype, and function. Immunity 42:607–612. https://doi.org/10.1016/j.immuni.2015.04.005 CrossRefPubMedGoogle Scholar
  249. 249.
    Behrens RH et al (2014) Efficacy and safety of a patch vaccine containing heat-labile toxin from Escherichia coli against travellers' diarrhoea: a phase 3, randomised, double-blind, placebo-controlled field trial in travellers from Europe to Mexico and Guatemala. Lancet Infect Dis 14:197–204. https://doi.org/10.1016/S1473-3099(13)70297-4 CrossRefPubMedGoogle Scholar
  250. 250.
    Ma Y (2016) Recent advances in nontoxic Escherichia coli heat-labile toxin and its derivative adjuvants. Expert Rev Vaccines:1–11. https://doi.org/10.1080/14760584.2016.1182868
  251. 251.
    da Hora VP, Conceicao FR, Dellagostin OA, Doolan DL (2011) Non-toxic derivatives of LT as potent adjuvants. Vaccine 29:1538–1544. https://doi.org/10.1016/j.vaccine.2010.11.091 CrossRefPubMedGoogle Scholar
  252. 252.
    Liang S, Hajishengallis G (2010) Heat-labile enterotoxins as adjuvants or anti-inflammatory agents. Immunol Investig 39:449–467CrossRefGoogle Scholar
  253. 253.
    El-Kassas S et al (2015) Cell clustering and delay/arrest in T-cell division implicate a novel mechanism of immune modulation by E. coli heat-labile enterotoxin B-subunits. Cell Immunol 295:150–162. https://doi.org/10.1016/j.cellimm.2015.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Cabauatan CR et al (2017) Heat-labile Escherichia coli toxin enhances the induction of allergen-specific IgG antibodies in epicutaneous patch vaccination. Allergy 72:164–168. https://doi.org/10.1111/all.13036 CrossRefPubMedGoogle Scholar
  255. 255.
    Valenta R, Campana R, Focke-Tejkl M, Niederberger V (2016) Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: lessons from the past and novel mechanisms of action for the future. J Allergy Clin Immunol 137:351–357. https://doi.org/10.1016/j.jaci.2015.12.1299 CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Palucka K, Banchereau J, Mellman I (2010) Designing vaccines based on biology of human dendritic cell subsets. Immunity 33:464–478. https://doi.org/10.1016/j.immuni.2010.10.007 CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Zaleska A et al (2014) Immune regulation by intralymphatic immunotherapy with modular allergen translocation MAT vaccine. Allergy 69:1162–1170. https://doi.org/10.1111/all.12461 CrossRefPubMedGoogle Scholar
  258. 258.
    Lin CY et al (2015) Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases. Hum Vaccin Immunother 11:650–656. https://doi.org/10.1080/21645515.2015.1009345 CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Cabauatan CR et al (2016) Heat-labile Escherichia coli toxin enhances the induction of allergen-specific IgG antibodies in epicutaneous patch vaccination. Allergy. https://doi.org/10.1111/all.13036
  260. 260.
    Lin CH, Cheng SL (2016) A review of omalizumab for the management of severe asthma. Drug Des Devel Ther 10:2369–2378. https://doi.org/10.2147/DDDT.S112208 CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    Chang TW et al (2015) The potential pharmacologic mechanisms of omalizumab in patients with chronic spontaneous urticaria. J Allergy Clin Immunol 135:337–342. https://doi.org/10.1016/j.jaci.2014.04.036 CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Chang TW, Shiung YY (2006) Anti-IgE as a mast cell-stabilizing therapeutic agent. J Allergy Clin Immunol 117:1203–1212.; quiz 1213. https://doi.org/10.1016/j.jaci.2006.04.005 CrossRefPubMedGoogle Scholar
  263. 263.
    Ortega HG et al (2014) Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med 371:1198–1207. https://doi.org/10.1056/NEJMoa1403290 CrossRefPubMedGoogle Scholar
  264. 264.
    Bel EH et al (2014) Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N Engl J Med 371:1189–1197. https://doi.org/10.1056/NEJMoa1403291 CrossRefPubMedGoogle Scholar
  265. 265.
    Tan LD, Bratt JM, Godor D, Louie S, Kenyon NJ (2016) Benralizumab: a unique IL-5 inhibitor for severe asthma. J Asthma Allergy 9:71–81. https://doi.org/10.2147/JAA.S78049 CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Varricchi G, Bagnasco D, Borriello F, Heffler E, Canonica GW (2016) Interleukin-5 pathway inhibition in the treatment of eosinophilic respiratory disorders: evidence and unmet needs. Curr Opin Allergy Clin Immunol 16:186–200. https://doi.org/10.1097/ACI.0000000000000251 CrossRefPubMedPubMedCentralGoogle Scholar
  267. 267.
    Wang FP, Liu T, Lan Z, Li SY, Mao H (2016) Efficacy and safety of anti-interleukin-5 therapy in patients with asthma: a systematic review and meta-analysis. PLoS One 11:e0166833. https://doi.org/10.1371/journal.pone.0166833 CrossRefPubMedPubMedCentralGoogle Scholar
  268. 268.
    Antoniu SA (2017) Benralizumab as a potential treatment of asthma. Expert Opin Biol Ther:1–6. https://doi.org/10.1080/14712598.2017.1319471
  269. 269.
    Cabon Y et al (2017) Comparison of anti-interleukin-5 therapies in patients with severe asthma: global and indirect meta-analyses of randomized placebo-controlled trials. Clin Exp Allergy 47:129–138. https://doi.org/10.1111/cea.12853 CrossRefPubMedGoogle Scholar
  270. 270.
    Ferguson GT et al (2017) Benralizumab for patients with mild to moderate, persistent asthma (BISE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med. https://doi.org/10.1016/S2213-2600(17)30190-X
  271. 271.
    Nair P et al (2017) Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N Engl J Med. https://doi.org/10.1056/NEJMoa1703501
  272. 272.
    Nair P et al (2009) Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med 360:985–993. https://doi.org/10.1056/NEJMoa0805435 CrossRefPubMedGoogle Scholar
  273. 273.
    Pavord ID et al (2012) Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 380:651–659. https://doi.org/10.1016/S0140-6736(12)60988-X CrossRefPubMedGoogle Scholar
  274. 274.
    Ortega H et al (2014) Cluster analysis and characterization of response to mepolizumab. A step closer to personalized medicine for patients with severe asthma. Ann Am Thorac Soc 11:1011–1017. https://doi.org/10.1513/AnnalsATS.201312-454OC CrossRefPubMedGoogle Scholar
  275. 275.
    Leonard WJ (2002) TSLP: finally in the limelight. Nat Immunol 3:605–607. https://doi.org/10.1038/ni0702-605 CrossRefPubMedGoogle Scholar
  276. 276.
    Corren J et al (2017) Tezepelumab in adults with uncontrolled asthma. N Engl J Med 377:936–946. https://doi.org/10.1056/NEJMoa1704064 CrossRefPubMedGoogle Scholar
  277. 277.
    Kuo CS et al (2017) T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur Respir J 49. https://doi.org/10.1183/13993003.02135-2016
  278. 278.
    Mitchell PD, O’Byrne PM (2017) Epithelial-derived cytokines in asthma. Chest 151:1338–1344. https://doi.org/10.1016/j.chest.2016.10.042 CrossRefPubMedGoogle Scholar
  279. 279.
    Mitchell PD, O'Byrne PM (2017) Biologics and the lung: TSLP and other epithelial cell-derived cytokines in asthma. Pharmacol Ther 169:104–112. https://doi.org/10.1016/j.pharmthera.2016.06.009 CrossRefPubMedGoogle Scholar
  280. 280.
    Striz I (2017) Cytokines of the IL-1 family: recognized targets in chronic inflammation underrated in organ transplantations. Clin Sci (Lond) 131:2241–2256. https://doi.org/10.1042/CS20170098 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cameron H. Flayer
    • 1
  • Sarah S. Killingbeck
    • 1
  • Erik Larson
    • 1
  • Zoulfia Allakhverdi
    • 2
  • Angela Haczku
    • 1
  1. 1.School of MedicineUniversity of California at DavisDavisUSA
  2. 2.The Research Institute of the McGill University Health CentreMontrealCanada

Personalised recommendations