Advertisement

Mediators of Inflammation

  • Izabela Galvão
  • Michelle A. Sugimoto
  • Juliana P. Vago
  • Marina G. Machado
  • Lirlândia P. Sousa
Chapter

Abstract

Inflammation is a physiologic response against noxious stimuli and microbial invaders. The basic elements of inflammation include host cells, blood vessels, proteins and lipid mediators, which work together to eliminate the inflammatory stimulus as well as initiate the resolution and repair. Mediators of inflammation are regulatory molecules that control the generation, maintenance and resolution of this response, which is triggered after recognition of infection or injure. The initial recognition of the inflammatory stimuli leads to the production of pro-inflammatory mediators. These mediators are derived from immune cells (e.g. vasoactive amines, lipid mediators, platelet-activating factor, reactive oxygen species, nitric oxide, cytokines and chemokines) or are acute phase proteins produced by the liver that circulate in the plasma (e.g. the complement, coagulation and kallikrein-kinin systems). Together, the mediators of inflammation orchestrate all the inflammatory events such as blood vessel dilatation, vascular permeability, leukocyte migration to the affected tissue and pain.

Keywords

Inflammation Vasoactive amines Lipid mediators Cytokines Chemokines Plasma-driven mediators 

References

  1. 1.
    Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, Golenbock D, Gresnigt MS, Heneka MT, Hoffman HM, Hotchkiss R, Joosten LAB, Kastner DL, Korte M, Latz E, Libby P, Mandrup-Poulsen T, Mantovani A, Mills KHG, Nowak KL, O’neill LA, Pickkers P, Van der Poll T, Ridker PM, Schalkwijk J, Schwartz DA, Siegmund B, Steer CJ, Tilg H, Van Der Meer JWM, Van de Veerdonk FL, Dinarello CA (2017) A guiding map for inflammation. Nat Immunol 18:826–831PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435PubMedCrossRefGoogle Scholar
  3. 3.
    Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882CrossRefPubMedGoogle Scholar
  4. 4.
    Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140(6):771PubMedCrossRefGoogle Scholar
  5. 5.
    Fullerton JN, Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15:551–567PubMedCrossRefGoogle Scholar
  6. 6.
    Rapport MM, Green AA, Page IH (1948) Crystalline serotonin. Science 108:329–330PubMedCrossRefGoogle Scholar
  7. 7.
    Thurmond RL (2010) Histamine inflammation. Preface. Adv Exp Med Biol 709:vii–viiiPubMedGoogle Scholar
  8. 8.
    Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132:397–414PubMedCrossRefGoogle Scholar
  9. 9.
    Kushnir-Sukhov NM, Brown JM, WU Y, Kirshenbaum A, Metcalfe DD (2007) Human mast cells are capable of serotonin synthesis and release. J Allergy Clin Immunol 119:498–499PubMedCrossRefGoogle Scholar
  10. 10.
    O’connell PJ, Wang X, Leon-Ponte M, Griffiths C, Pingle SC, Ahern GP (2006) A novel form of immune signaling revealed by transmission of the inflammatory mediator serotonin between dendritic cells and T cells. Blood 107:1010–1017PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ahern GP (2011) 5-HT and the immune system. Curr Opin Pharmacol 11:29–33PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Leon-Ponte M, Ahern GP, O’Connell PJ (2007) Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109:3139–3146PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Mann DA, Oakley F (2013) Serotonin paracrine signaling in tissue fibrosis. Biochim Biophys Acta 1832:905–910PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Shajib MS, Khan WI (2015) The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol (Oxf) 213:561–574CrossRefGoogle Scholar
  15. 15.
    Tyce GM (1990) Origin and metabolism of serotonin. J Cardiovasc Pharmacol 3(16 Suppl):S1–S7CrossRefGoogle Scholar
  16. 16.
    Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66:1673–1680PubMedCrossRefGoogle Scholar
  17. 17.
    Weihe E, Schafer MK, Erickson JD, Eiden LE (1994) Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Mol Neurosci 5:149–164PubMedCrossRefGoogle Scholar
  18. 18.
    Forsberg EJ, Miller RJ (1983) Regulation of serotonin release from rabbit intestinal enterochromaffin cells. J Pharmacol Exp Ther 227:755–766PubMedGoogle Scholar
  19. 19.
    Herr N, Bode C, Duerschmied D (2017) The effects of serotonin in immune cells. Front Cardiovasc Med 4:48PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Barnes NM (2011) 5-HT: the promiscuous and happy hormone! Curr Opin Pharmacol 11:1–2PubMedCrossRefGoogle Scholar
  21. 21.
    Wurch T, Pauwels PJ (2003) Modulation of 5-HT(1A) receptor-mediated Ca(2+) responses by co-expression with various recombinant G(alpha) proteins in CHO-K1 cells. Naunyn Schmiedeberg’s Arch Pharmacol 368:99–105CrossRefGoogle Scholar
  22. 22.
    Kushnir-Sukhov NM, Gilfillan AM, Coleman JW, Brown JM, Bruening S, Toth M, Metcalfe DD (2006) 5-hydroxytryptamine induces mast cell adhesion and migration. J Immunol 177:6422–6432PubMedCrossRefGoogle Scholar
  23. 23.
    Matsumura Y, Byrne SN, Nghiem DX, Miyahara Y, Ullrich SE (2006) A role for inflammatory mediators in the induction of immunoregulatory B cells. J Immunol 177:4810–4817PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Baganz NL, Blakely RD (2013) A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci 4:48–63PubMedCrossRefGoogle Scholar
  25. 25.
    Rinaldi A, Chiaravalli AM, Mian M, Zucca E, Tibiletti MG, Capella C, Bertoni F (2010) Serotonin receptor 3A expression in normal and neoplastic B cells. Pathobiology 77:129–135PubMedCrossRefGoogle Scholar
  26. 26.
    Mikulski Z, Zaslona Z, Cakarova L, Hartmann P, Wilhelm J, Tecott LH, Lohmeyer J, Kummer W (2010) Serotonin activates murine alveolar macrophages through 5-HT2C receptors. Am J Physiol Lung Cell Mol Physiol 299:L272–L280PubMedCrossRefGoogle Scholar
  27. 27.
    Serafeim A, Grafton G, Chamba A, Gregory CD, Blakely RD, Bowery NG, Barnes NM, Gordon J (2002) 5-Hydroxytryptamine drives apoptosis in biopsylike Burkitt lymphoma cells: reversal by selective serotonin reuptake inhibitors. Blood 99:2545–2553PubMedCrossRefGoogle Scholar
  28. 28.
    Durk T, Panther E, Muller T, Sorichter S, Ferrari D, Pizzirani C, Di Virgilio F, Myrtek D, Norgauer J, Idzko M (2005) 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol 17:599–606PubMedCrossRefGoogle Scholar
  29. 29.
    Freire-Garabal M, Nunez MJ, Balboa J, Lopez-Delgado P, Gallego R, Garcia-Caballero T, Fernandez-Roel MD, Brenlla J, Rey-Mendez M (2003) Serotonin upregulates the activity of phagocytosis through 5-HT1A receptors. Br J Pharmacol 139:457–463PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    De Las Casas-Engel M, Corbi AL (2014) Serotonin modulation of macrophage polarization: inflammation and beyond. Adv Exp Med Biol 824:89–115PubMedCrossRefGoogle Scholar
  31. 31.
    Duerschmied D, Suidan GL, Demers M, Herr N, Carbo C, Brill A, Cifuni SM, Mauler M, Cicko S, Bader M, Idzko M, Bode C, Wagner DD (2013) Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 121:1008–1015PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Muller T, Durk T, Blumenthal B, Grimm M, Cicko S, Panther E, Sorichter S, Herouy Y, Di Virgilio F, Ferrari D, Norgauer J, Idzko M (2009) 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One 4:e6453PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kim JJ, Wang H, Terc JD, Zambrowicz B, Yang QM, Khan WI (2015) Blocking peripheral serotonin synthesis by telotristat etiprate (LX1032/LX1606) reduces severity of both chemical- and infection-induced intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 309:G455–G465PubMedCrossRefGoogle Scholar
  34. 34.
    Walther DJ, Peter JU, Winter S, Holtje M, Paulmann N, Grohmann M, Vowinckel J, Alamo-Bethencourt V, Wilhelm CS, Ahnert-Hilger G, Bader M (2003) Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115:851–862PubMedCrossRefGoogle Scholar
  35. 35.
    Tanaka T, Doe JM, Horstmann SA, Ahmad S, Ahmad A, Min SJ, Reynolds PR, Suram S, Gaydos J, Burnham EL, Vandivier RW (2014) Neuroendocrine signaling via the serotonin transporter regulates clearance of apoptotic cells. J Biol Chem 289:10466–10475PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Durk T, Duerschmied D, Muller T, Grimm M, Reuter S, Vieira RP, Ayata K, Cicko S, Sorichter S, Walther DJ, Virchow JC, Taube C, Idzko M (2013) Production of serotonin by tryptophan hydroxylase 1 and release via platelets contribute to allergic airway inflammation. Am J Respir Crit Care Med 187:476–485PubMedCrossRefGoogle Scholar
  37. 37.
    Coates MD, Mahoney CR, Linden DR, Sampson JE, Chen J, Blaszyk H, Crowell MD, Sharkey KA, Gershon MD, Mawe GM, Moses PL (2004) Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 126:1657–1664PubMedCrossRefGoogle Scholar
  38. 38.
    Gres S, Canteiro S, Mercader J, Carpene C (2013) Oxidation of high doses of serotonin favors lipid accumulation in mouse and human fat cells. Mol Nutr Food Res 57:1089–1099PubMedCrossRefGoogle Scholar
  39. 39.
    Villeneuve C, Caudrillier A, Ordener C, Pizzinat N, Parini A, Mialet-Perez J (2009) Dose-dependent activation of distinct hypertrophic pathways by serotonin in cardiac cells. Am J Physiol Heart Circ Physiol 297:H821–H828PubMedCrossRefGoogle Scholar
  40. 40.
    Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445PubMedCrossRefGoogle Scholar
  41. 41.
    Lefebvre, H., Compagnon, P., Contesse, V., Delarue, C., Thuillez, C., Vaudry, H., Kuhn, J. M. (2001) Production and metabolism of serotonin (5-HT) by the human adrenal cortex: paracrine stimulation of aldosterone secretion by 5-HT. J Clin Endocrinol Metab, 86, 5001-7.CrossRefGoogle Scholar
  42. 42.
    Namboodiri MA, Dubbels R, Klein DC (1987) Arylalkylamine N-acetyltransferase from mammalian pineal gland. Methods Enzymol 142:583–590PubMedCrossRefGoogle Scholar
  43. 43.
    Buczynski MW, Dumlao DS, Dennis EA (2009) Thematic review series: proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res 50:1015–1038PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bolton SJ, Mcnulty CA, Thomas RJ, Hewitt CR, Wardlaw AJ (2003) Expression of and functional responses to protease-activated receptors on human eosinophils. J Leukoc Biol 74:60–68PubMedCrossRefGoogle Scholar
  45. 45.
    Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875PubMedCrossRefGoogle Scholar
  47. 47.
    Morris T, Rajakariar R, Stables M, Gilroy DW (2006) Not all eicosanoids are bad. Trends Pharmacol Sci 27:609–611PubMedCrossRefGoogle Scholar
  48. 48.
    Serhan CN (2010) Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol 177:1576–1591PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN (2001) Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol 2:612–619PubMedCrossRefGoogle Scholar
  50. 50.
    Tessaro FH, Ayala TS, Martins JO (2015) Lipid mediators are critical in resolving inflammation: a review of the emerging roles of eicosanoids in diabetes mellitus. Biomed Res Int 2015:568408PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gilroy DW, Perretti M (2005) Aspirin and steroids: new mechanistic findings and avenues for drug discovery. Curr Opin Pharmacol 5:405–411PubMedCrossRefGoogle Scholar
  52. 52.
    Serhan CN (2017) Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J 31:1273PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Harkewicz R, Dennis EA (2011) Applications of mass spectrometry to lipids and membranes. Annu Rev Biochem 80:301–325PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Dumlao DS, Buczynski MW, Norris PC, Harkewicz R, Dennis EA (2011) High-throughput lipidomic analysis of fatty acid derived eicosanoids and N-acylethanolamines. Biochim Biophys Acta 1811:724–736PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Dennis EA, Norris PC (2015) Eicosanoid storm in infection and inflammation. Nat Rev Immunol 15:511–523PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Quehenberger O, Dennis EA (2011) The human plasma lipidome. N Engl J Med 365:1812–1823PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 111:6130–6185PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Burke JE, Dennis EA (2009) Phospholipase A2 structure/function, mechanism, and signaling. J Lipid Res 50(Suppl):S237–S242PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ghosh M, Tucker DE, Burchett SA, Leslie CC (2006) Properties of the Group IV phospholipase A2 family. Prog Lipid Res 45:487–510PubMedCrossRefGoogle Scholar
  60. 60.
    Uozumi N, Shimizu T (2002) Roles for cytosolic phospholipase A2alpha as revealed by gene-targeted mice. Prostaglandins Other Lipid Mediat 68-69:59–69PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Leslie CC (2015) Cytosolic phospholipase A(2): physiological function and role in disease. J Lipid Res 56:1386–1402PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Fitzpatrick FA, Soberman R (2001) Regulated formation of eicosanoids. J Clin Invest 107:1347–1351PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Quach ND, Arnold RD, Cummings BS (2014) Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem Pharmacol 90:338–348PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Norris PC, Reichart D, Dumlao DS, Glass CK, Dennis EA (2011) Specificity of eicosanoid production depends on the TLR-4-stimulated macrophage phenotype. J Leukoc Biol 90:563–574PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Smith WL, Dewitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van de Putte LB, Lipsky PE (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073PubMedCrossRefGoogle Scholar
  67. 67.
    Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, Simmons DL (2002) COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci U S A 99:13926–13931PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Park JY, Pillinger MH, Abramson SB (2006) Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin Immunol 119:229–240PubMedCrossRefGoogle Scholar
  69. 69.
    Hersh EV, Lally ET, Moore PA (2005) Update on cyclooxygenase inhibitors: has a third COX isoform entered the fray? Curr Med Res Opin 21:1217–1226PubMedCrossRefGoogle Scholar
  70. 70.
    Kam PCA, So A (2009) COX-3: uncertainties and controversies. Curr Anaesth Crit Care 20:50–53CrossRefGoogle Scholar
  71. 71.
    Hirata T, Narumiya S (2012) Prostanoids as regulators of innate and adaptive immunity. Adv Immunol 116:143–174PubMedCrossRefGoogle Scholar
  72. 72.
    Mashima R, Okuyama T (2015) The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol 6:297–310PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bellien J, Joannides R (2013) Epoxyeicosatrienoic acid pathway in human health and diseases. J Cardiovasc Pharmacol 61:188–196PubMedCrossRefGoogle Scholar
  74. 74.
    Capdevila JH, Falck JR, Estabrook RW (1992) Cytochrome P450 and the arachidonate cascade. FASEB J 6:731–736PubMedCrossRefGoogle Scholar
  75. 75.
    Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ 2nd (2011) Isoprostane generation and function. Chem Rev 111:5973–5996PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    MORROW JD (2006) The isoprostanes - unique products of arachidonate peroxidation: their role as mediators of oxidant stress. Curr Pharm Des 12:895–902PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Benveniste J, Henson PM, Cochrane CG (1972) Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils, and a platelet-activating factor. J Exp Med 136:1356–1377PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Benveniste J (1975) Passage of immune complexes through vascular walls. Evidence for the role of an immediate hypersensitivity mechanism and its mediator: platelet-activating factor. Rheumatology 6:293–302PubMedPubMedCentralGoogle Scholar
  79. 79.
    Lombard MN, Izzo AA, Benhaddi M, Natour J, Benveniste J (1996) Liver and plasma concentrations in paf-acether and its precursors after partial hepatectomy. Cell Prolif 29:33–41PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Tsoukatos D, Demopoulos CA, Tselepis AD, Moschidis MC, Donos A, Evangelou A, Benveniste J (1993) Inhibition by cardiolipins of platelet-activating factor-induced rabbit platelet activation. Lipids 28:1119–1124PubMedCrossRefGoogle Scholar
  81. 81.
    Xu H, Valenzuela N, Fai S, Figeys D, Bennett SA (2013) Targeted lipidomics – advances in profiling lysophosphocholine and platelet-activating factor second messengers. FEBS J 280:5652–5667PubMedCrossRefGoogle Scholar
  82. 82.
    Edwards LJ, Constantinescu CS (2009) Platelet activating factor/platelet activating factor receptor pathway as a potential therapeutic target in autoimmune diseases. Inflamm Allergy Drug Targets 8:182–190PubMedCrossRefGoogle Scholar
  83. 83.
    Yagnik D (2014) Macrophage derived platelet activating factor implicated in the resolution phase of gouty inflammation. Int J Inflam 2014:526496PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Prescott SM, Zimmerman GA, Stafforini DM, Mcintyre TM (2000) Platelet-activating factor and related lipid mediators. Annu Rev Biochem 69:419–445PubMedCrossRefGoogle Scholar
  85. 85.
    Bergstroem S, Danielsson H, Samuelsson B (1964) The enzymatic formation of prostaglandin E2 from arachidonic acid prostaglandins and related factors 32. Biochim Biophys Acta 90:207–210PubMedCrossRefGoogle Scholar
  86. 86.
    Venable ME, Zimmerman GA, Mcintyre TM, Prescott SM (1993) Platelet-activating factor: a phospholipid autacoid with diverse actions. J Lipid Res 34:691–702PubMedGoogle Scholar
  87. 87.
    Heller R, Bussolino F, Ghigo D, Garbarino G, Pescarmona G, Till U, Bosia A (1991) Stimulation of platelet-activating factor synthesis in human endothelial cells by activation of the de novo pathway. Phorbol 12-myristate 13-acetate activates 1-alkyl-2-lyso-sn-glycero-3-phosphate:acetyl-CoA acetyltransferase and dithiothreitol-insensitive 1-alkyl-2-acetyl-sn-glycerol:CDP-choline cholinephosphotransferase. J Biol Chem 266:21358–21361PubMedGoogle Scholar
  88. 88.
    Ammit AJ, O’neill C (1997) The role of albumin in the release of platelet-activating factor by mouse preimplantation embryos in vitro. J Reprod Fertil 109:309–318PubMedCrossRefGoogle Scholar
  89. 89.
    Marathe GK, Davies SS, Harrison KA, Silva AR, Murphy RC, Castro-Faria-Neto H, Prescott SM, Zimmerman GA, Mcintyre TM (1999) Inflammatory platelet-activating factor-like phospholipids in oxidized low density lipoproteins are fragmented alkyl phosphatidylcholines. J Biol Chem 274:28395–28404PubMedCrossRefGoogle Scholar
  90. 90.
    Nakamura M, Honda Z, Waga I, Matsumoto T, Noma M, Shimizu T (1992) Endotoxin transduces Ca2+ signaling via platelet-activating factor receptor. FEBS Lett 314:125–129PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Montrucchio G, Alloatti G, Camussi G (2000) Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev 80:1669–1699PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Shukla SD (1992) Platelet-activating factor receptor and signal transduction mechanisms. FASEB J 6:2296–2301PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Yost CC, Weyrich AS, Zimmerman GA (2010) The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses. Biochimie 92:692–697PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Tsoupras AB, Iatrou C, Frangia C, Demopoulos CA (2009) The implication of platelet activating factor in cancer growth and metastasis: potent beneficial role of PAF-inhibitors and antioxidants. Infect Disord Drug Targets 9:390–399PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Eliakim R, Karmeli F, Razin E, Rachmilewitz D (1988) Role of platelet-activating factor in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine and prednisolone. Gastroenterology 95:1167–1172PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Khan SN, Belin J, Smith AD, Sidey M, Zilkha KJ (1985) Response to platelet-activating factor of platelets from patients with multiple sclerosis. Acta Neurol Scand 71:212–220PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Nakamura T, Kuriyama M, Ishihara K, Matsumura Y, Miyamoto T (1991) Platelet-activating factor (PAF) in allergic diseases: inhibitory effects of anti-allergic drugs, ketotifen and three kampo medicines on PAF production. Lipids 26:1297–1300PubMedCrossRefGoogle Scholar
  98. 98.
    Vadas P, Gold M, Perelman B, Liss GM, Lack G, Blyth T, Simons FE, Simons KJ, Cass D, Yeung J (2008) Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med 358:28–35PubMedCrossRefGoogle Scholar
  99. 99.
    Ryan SD, Harris CS, Carswell CL, Baenziger JE, Bennett SA (2008) Heterogeneity in the sn-1 carbon chain of platelet-activating factor glycerophospholipids determines pro- or anti-apoptotic signaling in primary neurons. J Lipid Res 49:2250–2258PubMedCrossRefGoogle Scholar
  100. 100.
    Melnikova V, Bar-Eli M (2007) Inflammation and melanoma growth and metastasis: the role of platelet-activating factor (PAF) and its receptor. Cancer Metastasis Rev 26:359–371PubMedCrossRefGoogle Scholar
  101. 101.
    Commoner B, Townsend J, Pake GE (1954) Free radicals in biological materials. Nature 174:689–691PubMedCrossRefGoogle Scholar
  102. 102.
    Mccord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  103. 103.
    Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Chanock SJ, EL Benna J, Smith RM, Babior BM (1994) The respiratory burst oxidase. J Biol Chem 269:24519–24522PubMedGoogle Scholar
  105. 105.
    Liochev SI, Fridovich I (1999) Superoxide and iron: partners in crime. IUBMB Life 48:157–161PubMedCrossRefGoogle Scholar
  106. 106.
    Robert AM, Robert L (2014) Xanthine oxido-reductase, free radicals and cardiovascular disease. A critical review. Pathol Oncol Res 20:1–10PubMedCrossRefGoogle Scholar
  107. 107.
    Aliev G, Priyadarshini M, Reddy VP, Grieg NH, Kaminsky Y, Cacabelos R, Ashraf GM, Jabir NR, Kamal MA, Nikolenko VN, Zamyatnin AA Jr, Benberin VV, Bachurin SO (2014) Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease. Curr Med Chem 21:2208–2217PubMedCrossRefGoogle Scholar
  108. 108.
    Macnee W (2001) Oxidative stress and lung inflammation in airways disease. Eur J Pharmacol 429:195–207PubMedCrossRefGoogle Scholar
  109. 109.
    Franchini AM, Hunt D, Melendez JA, Drake JR (2013) FcgammaR-driven release of IL-6 by macrophages requires NOX2-dependent production of reactive oxygen species. J Biol Chem 288:25098–25108PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Rastogi R, Geng X, Li F, Ding Y (2016) NOX activation by subunit interaction and underlying mechanisms in disease. Front Cell Neurosci 10:301PubMedGoogle Scholar
  111. 111.
    Panday A, Sahoo MK, Osorio D, Batra S (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12:5–23PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Halliwell B (2006) Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci 31:509–515PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Roos D, van Bruggen R, Meischl C (2003) Oxidative killing of microbes by neutrophils. Microbes Infect 5:1307–1315PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Conner EM, Grisham MB (1996) Inflammation, free radicals, and antioxidants. Nutrition 12:274–277PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E (2004) Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J Immunol 172:2522–2529PubMedCrossRefGoogle Scholar
  118. 118.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  120. 120.
    Rodriguez PC, Ochoa AC, Al-Khami AA (2017) Arginine metabolism in myeloid cells shapes innate and adaptive immunity. Front Immunol 8:93PubMedPubMedCentralGoogle Scholar
  121. 121.
    Heiss C, Rodriguez-Mateos A, Kelm M (2015) Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal 22:1230–1242PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Lind M, Hayes A, Caprnda M, Petrovic D, Rodrigo L, Kruzliak P, Zulli A (2017) Inducible nitric oxide synthase: good or bad? Biomed Pharmacother 93:370–375PubMedCrossRefGoogle Scholar
  123. 123.
    Fang FC (1997) Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 99:2818–2825PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, Ridnour LA, Colton CA (2011) Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89:873–891PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Dijkstra G, Moshage H, Van Dullemen HM, De Jager-Krikken A, Tiebosch AT, Kleibeuker JH, Jansen PL, Van Goor H (1998) Expression of nitric oxide synthases and formation of nitrotyrosine and reactive oxygen species in inflammatory bowel disease. J Pathol 186:416–421PubMedCrossRefGoogle Scholar
  126. 126.
    Xie QW, Kashiwabara Y, Nathan C (1994) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 269:4705–4708PubMedGoogle Scholar
  127. 127.
    Kharitonov SA, Yates D, Robbins RA, Logan-Sinclair R, Shinebourne EA, Barnes PJ (1994) Increased nitric oxide in exhaled air of asthmatic patients. Lancet 343:133–135PubMedCrossRefGoogle Scholar
  128. 128.
    Ross R, Reske-Kunz AB (2001) The role of NO in contact hypersensitivity. Int Immunopharmacol 1:1469–1478PubMedCrossRefGoogle Scholar
  129. 129.
    Curfs JH, Meis JF, Hoogkamp-Korstanje JA (1997) A primer on cytokines: sources, receptors, effects, and inducers. Clin Microbiol Rev 10:742–780PubMedPubMedCentralGoogle Scholar
  130. 130.
    Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550PubMedCrossRefGoogle Scholar
  131. 131.
    Vosshenrich CA, Di Santo JP (2002) Interleukin signaling. Curr Biol 12:R760–R763PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Rider P, Carmi Y, Guttman O, Braiman A, Cohen I, Voronov E, White MR, Dinarello CA, Apte RN (2011) IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol 187:4835–4843PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O’mahony L, Palomares O, Rhyner C, Ouaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA (2011) Interleukins, from 1 to 37, and interferon-gamma: receptors, functions, and roles in diseases. J Allergy Clin Immunol 127:701-21.e1-70PubMedPubMedCentralGoogle Scholar
  134. 134.
    Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA (2010) IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol 11:1014–1022PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Eisenberg SP, Evans RJ, Arend WP, Verderber E, Brewer MT, Hannum CH, Thompson RC (1990) Primary structure and functional expression from complementary DNA of a human interleukin-1 receptor antagonist. Nature 343:341–346PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Akdis M, Akdis CA (2009) Therapeutic manipulation of immune tolerance in allergic disease. Nat Rev Drug Discov 8:645–660PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Lantz CS, Boesiger J, Song CH, Mach N, Kobayashi T, Mulligan RC, Nawa Y, Dranoff G, Galli SJ (1998) Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392:90–93PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Hurst SM, Wilkinson TS, Mcloughlin RM, Jones S, Horiuchi S, Yamamoto N, Rose-John S, Fuller GM, Topley N, Jones SA (2001) Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 14:705–714PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Paul SR, Schendel P (1992) The cloning and biological characterization of recombinant human interleukin 11. Int J Cell Cloning 10:135–143PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Ambrus JL Jr, Jurgensen CH, Brown EJ, Mcfarland P, Fauci AS (1988) Identification of a receptor for high molecular weight human B cell growth factor. J Immunol 141:861–869PubMedPubMedCentralGoogle Scholar
  141. 141.
    Dinarello CA, Kim SH (2006) IL-32, a novel cytokine with a possible role in disease. Ann Rheum Dis 65(Suppl 3):iii61–iii64PubMedPubMedCentralGoogle Scholar
  142. 142.
    Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A 72:3666–3670PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Sedger LM, Mcdermott MF (2014) TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants – past, present and future. Cytokine Growth Factor Rev 25:453–472PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729–733PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Tartaglia LA, Weber RF, Figari IS, Reynolds C, Palladino MA Jr, Goeddel DV (1991) The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci U S A 88:9292–9296PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214:149–160PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Mark KS, Trickler WJ, Miller DW (2001) Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J Pharmacol Exp Ther 297:1051–1058PubMedPubMedCentralGoogle Scholar
  148. 148.
    Bevilacqua MP, Pober JS, Majeau GR, Fiers W, Cotran RS, Gimbrone MA Jr (1986) Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci U S A 83:4533–4537PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Doss GP, Agoramoorthy G, Chakraborty C (2014) TNF/TNFR: drug target for autoimmune diseases and immune-mediated inflammatory diseases. Front Biosci (Landmark Ed) 19:1028–1040CrossRefGoogle Scholar
  150. 150.
    Lopusna K, Rezuchova I, Betakova T, Skovranova L, Tomaskova J, Lukacikova L, Kabat P (2013) Interferons lambda, new cytokines with antiviral activity. Acta Virol 57:171–179PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Pestka S, Langer JA, Zoon KC, Samuel CE (1987) Interferons and their actions. Annu Rev Biochem 56:727–777PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Pestka S, Kotenko SV, Muthukumaran G, Izotova LS, Cook JR, Garotta G (1997) The interferon gamma (IFN-gamma) receptor: a paradigm for the multichain cytokine receptor. Cytokine Growth Factor Rev 8:189–206PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA, Sheikh F, Dickensheets H, Donnelly RP (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4:69–77PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Mcnab F, Mayer-Barber K, Sher A, Wack A, O’Garra A (2015) Type I interferons in infectious disease. Nat Rev Immunol 15:87–103PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Green DS, Young HA, Valencia JC (2017) Current prospects of type II interferon gamma signaling and autoimmunity. J Biol Chem 292:13925–13933PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Donnelly RP, Kotenko SV (2010) Interferon-lambda: a new addition to an old family. J Interf Cytokine Res 30:555–564CrossRefGoogle Scholar
  157. 157.
    Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702PubMedCrossRefGoogle Scholar
  158. 158.
    Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AE, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A (2014) International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 66:1–79PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Sokol CL, Luster AD (2015) The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 7:a016303PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Dunkelberger JR, Song WC (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20:34–50PubMedCrossRefGoogle Scholar
  162. 162.
    Lubbers R, van Essen MF, van Kooten C, Trouw LA (2017) Production of complement components by cells of the immune system. Clin Exp Immunol 188:183–194PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Nesargikar PN, Spiller B, Chavez R (2012) The complement system: history, pathways, cascade and inhibitors. Eur J Microbiol Immunol (Bp) 2:103–111CrossRefGoogle Scholar
  164. 164.
    Ehrnthaller C, Ignatius A, Gebhard F, Huber-Lang M (2011) New insights of an old defense system: structure, function, and clinical relevance of the complement system. Mol Med 17:317–329PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Morgan BP (1999) Regulation of the complement membrane attack pathway. Crit Rev Immunol 19:173–198PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Gasque P (2004) Complement: a unique innate immune sensor for danger signals. Mol Immunol 41:1089–1098PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Ganter MT, Brohi K, Cohen MJ, Shaffer LA, Walsh MC, Stahl GL, Pittet JF (2007) Role of the alternative pathway in the early complement activation following major trauma. Shock 28:29–34PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Thurman JM, Holers VM (2006) The central role of the alternative complement pathway in human disease. J Immunol 176:1305–1310PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Hajela K, Kojima M, Ambrus G, Wong KH, Moffatt BE, Ferluga J, Hajela S, Gal P, Sim RB (2002) The biological functions of MBL-associated serine proteases (MASPs). Immunobiology 205:467–475PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Matsushita M, Thiel S, Jensenius JC, Terai I, Fujita T (2000) Proteolytic activities of two types of mannose-binding lectin-associated serine protease. J Immunol 165:2637–2642PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Palta S, Saroa R, Palta A (2014) Overview of the coagulation system. Indian J Anaesth 58:515–523PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Cottrell GS, Coelho AM, Bunnett NW (2002) Protease-activated receptors: the role of cell-surface proteolysis in signalling. Essays Biochem 38:169–183PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Esmon CT, Xu J, Lupu F (2011) Innate immunity and coagulation. J Thromb Haemost 1(9 Suppl):182–188CrossRefGoogle Scholar
  174. 174.
    Jennewein C, Tran N, Paulus P, Ellinghaus P, Eble JA, Zacharowski K (2011) Novel aspects of fibrin(ogen) fragments during inflammation. Mol Med 17:568–573PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Foley JH, Conway EM (2016) Cross talk pathways between coagulation and inflammation. Circ Res 118:1392–1408PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Draxler DF, Medcalf RL (2015) The fibrinolytic system-more than fibrinolysis? Transfus Med Rev 29:102–109PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Syrovets T, Lunov O, Simmet T (2012) Plasmin as a proinflammatory cell activator. J Leukoc Biol 92:509–519PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Sugimoto MA, Ribeiro ALC, Costa BRC, Vago JP, Lima KM, Carneiro FS, Ortiz MMO, Lima GLN, Carmo AAF, Rocha RM, Perez DA, Reis AC, Pinho V, Miles LA, Garcia CC, Teixeira MM, Sousa LP (2017) Plasmin and plasminogen induce macrophage reprogramming and regulate key steps of inflammation resolution via annexin A1. Blood 129:2896–2907PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Rømer J, Bugge TH, Fyke C, Lund LR, Flick MJ, Degen JL, Danø K (1996) Impaired wound healing in mice with a disrupted plasminogen gene. Nat Med 2:287–292PubMedCrossRefGoogle Scholar
  180. 180.
    Shen Y, Guo Y, Du C, Wilczynska M, Hellstrom S, Ny T (2012a) Mice deficient in urokinase-type plasminogen activator have delayed healing of tympanic membrane perforations. PLoS One 7:e51303PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Shen Y, Guo Y, Mikus P, Sulniute R, Wilczynska M, Ny T, Li J (2012b) Plasminogen is a key proinflammatory regulator that accelerates the healing of acute and diabetic wounds. Blood 119:5879–5887PubMedCrossRefGoogle Scholar
  182. 182.
    Sulniute R, Shen Y, Guo YZ, Fallah M, Ahlskog N, Ny L, Rakhimova O, Broden J, Boija H, Moghaddam A, Li J, Wilczynska M, Ny T (2016) Plasminogen is a critical regulator of cutaneous wound healing. Thromb Haemost 115:1001–1009PubMedCrossRefGoogle Scholar
  183. 183.
    Asehnoune K, Moine P (2013) Protease-activated receptor-1: key player in the sepsis coagulation-inflammation crosstalk. Crit Care 17:119PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Colognato R, Slupsky JR, Jendrach M, Burysek L, Syrovets T, Simmet T (2003) Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells. Blood 102:2645–2652PubMedCrossRefGoogle Scholar
  185. 185.
    Knight DA, Lim S, Scaffidi AK, Roche N, Chung KF, Stewart GA, Thompson PJ (2001) Protease-activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium from patients with asthma. J Allergy Clin Immunol 108:797–803PubMedCrossRefGoogle Scholar
  186. 186.
    Stenton GR, Nohara O, Dery RE, Vliagoftis H, Gilchrist M, Johri A, Wallace JL, Hollenberg MD, Moqbel R, Befus AD (2002) Proteinase-activated receptor (PAR)-1 and -2 agonists induce mediator release from mast cells by pathways distinct from PAR-1 and PAR-2. J Pharmacol Exp Ther 302:466–474PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Coughlin SR, Camerer E (2003) PARticipation in inflammation. J Clin Invest 111:25–27PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Busch G, Seitz I, Steppich B, Hess S, Eckl R, Schomig A, Ott I (2005) Coagulation factor Xa stimulates interleukin-8 release in endothelial cells and mononuclear leukocytes: implications in acute myocardial infarction. Arterioscler Thromb Vasc Biol 25:461–466PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Seitz I, Hess S, Schulz H, Eckl R, Busch G, Montens HP, Brandl R, Seidl S, Schomig A, Ott I (2007) Membrane-type serine protease-1/matriptase induces interleukin-6 and -8 in endothelial cells by activation of protease-activated receptor-2: potential implications in atherosclerosis. Arterioscler Thromb Vasc Biol 27:769–775PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Bryant JW, Shariat-Madar Z (2009) Human plasma kallikrein-kinin system: physiological and biochemical parameters. Cardiovasc Hematol Agents Med Chem 7:234–250PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Schmaier AH (2016) The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 14:28–39PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Dutra RC (2017) Kinin receptors: key regulators of autoimmunity. Autoimmun Rev 16:192–207PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Leeb-Lundberg LM, Marceau F, Muller-Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 57:27–77PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Golias C, Charalabopoulos A, Stagikas D, Charalabopoulos K, Batistatou A (2007) The kinin system--bradykinin: biological effects and clinical implications. Multiple role of the kinin system--bradykinin. Hippokratia 11:124–128PubMedPubMedCentralGoogle Scholar
  195. 195.
    Amara U, Rittirsch D, Flierl M, Bruckner U, Klos A, Gebhard F, Lambris JD, Huber-Lang M (2008) Interaction between the coagulation and complement system. Adv Exp Med Biol 632:71–79PubMedPubMedCentralGoogle Scholar
  196. 196.
    Schuliga M (2015) The inflammatory actions of coagulant and fibrinolytic proteases in disease. Mediat Inflamm 2015:437695CrossRefGoogle Scholar
  197. 197.
    Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Mancek-Keber M (2014) Inflammation-mediating proteases: structure, function in (patho) physiology and inhibition. Protein Pept Lett 21:1209–1229PubMedGoogle Scholar
  199. 199.
    Vago JP, Tavares LP, Sugimoto MA, Lima GL, Galvao I, De Caux TR, Lima KM, Ribeiro AL, Carneiro FS, Nunes FF, Pinho V, Perretti M, Teixeira MM, Sousa LP (2016) Proresolving actions of synthetic and natural protease inhibitors are mediated by annexin A1. J Immunol 196:1922–1932PubMedCrossRefGoogle Scholar
  200. 200.
    Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Izabela Galvão
    • 1
  • Michelle A. Sugimoto
    • 1
  • Juliana P. Vago
    • 2
  • Marina G. Machado
    • 2
  • Lirlândia P. Sousa
    • 1
    • 3
  1. 1.Laboratório de Sinalização da Inflamação, Departamento de Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Laboratório de Sinalização da Inflamação, Departamento de Análises Clínicas e Toxicológicas da Faculdade de FarmáciaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Laboratório de Sinalização da Inflamação, Departamento de Análises Clínicas e Toxicológicas da Faculdade de FarmáciaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations