Advertisement

Hybrid Metaheuristics Applied to Image Reconstruction for an Electrical Impedance Tomography Prototype

  • Wellington Pinheiro dos SantosEmail author
  • Ricardo Emmanuel de Souza
  • Valter Augusto de Freitas Barbosa
  • Reiga Ramalho Ribeiro
  • Allan Rivalles Souza Feitosa
  • Victor Luiz Bezerra Araújo da Silva
  • David Edson Ribeiro
  • Rafaela Covello Freitas
  • Juliana Carneiro Gomes
  • Natália Souza Soares
  • Manoela Paschoal de Medeiros Lima
  • Rodrigo Beltrão Valença
  • Rodrigo Luiz Tomio Ogava
  • Ítalo José do Nascimento Silva Araújo Dias
Chapter

Abstract

Evolutionary computation has much scope for solving several important practical applications. However, sometimes they return only marginal performance, related to inappropriate selection of various parameters (tuning), inadequate representation, the number of iterations and stop criteria, and so on. For these cases, hybridization could be a reasonable way to improve the performance of algorithms. Electrical impedance tomography (EIT) is a non-invasive imaging technique free of ionizing radiation. EIT image reconstruction is considered an ill-posed problem and, therefore, its results are dependent on dynamics and constraints of reconstruction algorithms. The use of evolutionary and bioinspired techniques to reconstruct EIT images has been taking place in the reconstruction algorithm area with promising qualitative results. In this chapter, we discuss the implementation of evolutionary and bioinspired algorithms and its hybridizations to EIT image reconstruction. Quantitative and qualitative analyses of the results demonstrate that hybrid algorithms, here considered, in general, obtain more coherent anatomical images than canonical and non-hybrid algorithms.

Keywords

Metaheuristics Hybridization Particle swarm optimization Differential evolution Fish school search Density based on fish school search Electrical impedance tomography Image reconstruction 

References

  1. 1.
    C. Grosan, A. Abraham, Hybrid evolutionary algorithms: methodologies, architectures, and reviews, in Hybrid Evolutionary Algorithms (Springer, Berlin, 2007), pp. 1–17Google Scholar
  2. 2.
    Y. Wang, Z. Cai, G. Guo, Y. Zhou, Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems. IEEE Trans. Syst. Man Cybern. B (Cybern.) 37(3), 560–575 (2007)Google Scholar
  3. 3.
    C. Liang, Y. Huang, Y. Yang, A quay crane dynamic scheduling problem by hybrid evolutionary algorithm for berth allocation planning. Comput. Ind. Eng. 56(3), 1021–1028 (2009)Google Scholar
  4. 4.
    F. Grimaccia, M. Mussetta, R.E. Zich, Genetical swarm optimization: self-adaptive hybrid evolutionary algorithm for electromagnetics. IEEE Trans. Antennas Propag. 55(3), 781–785 (2007)Google Scholar
  5. 5.
    J.M. Peña, V. Robles, P. Larranaga, V. Herves, F. Rosales, M.S. Pérez, Ga-eda: hybrid evolutionary algorithm using genetic and estimation of distribution algorithms, in International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (Springer, Berlin, 2004), pp. 361–371Google Scholar
  6. 6.
    D.H. Wolpert, W.G. Macready et al., No free lunch theorems for search. Technical Report SFI-TR-95-02-010, Santa Fe Institute (1995)Google Scholar
  7. 7.
    D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)Google Scholar
  8. 8.
    D.H. Wolpert, W.G. Macready, Coevolutionary free lunches. IEEE Trans. Evol. Comput. 9(6), 721–735 (2005)Google Scholar
  9. 9.
    T. Cheng, B. Peng, Z. Lü, A hybrid evolutionary algorithm to solve the job shop scheduling problem. Ann. Oper. Res. 242(2), 223–237 (2016)Google Scholar
  10. 10.
    P. Guo, W. Cheng, Y. Wang, Hybrid evolutionary algorithm with extreme machine learning fitness function evaluation for two-stage capacitated facility location problems. Expert Syst. Appl. 71, 57–68 (2017)Google Scholar
  11. 11.
    R.R. Ribeiro, A.R. Feitosa, R.E. de Souza, W.P. dos Santos, A modified differential evolution algorithm for the reconstruction of electrical impedance tomography images, in 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC) (IEEE, New York, 2014), pp. 1–6Google Scholar
  12. 12.
    R.R. Ribeiro, A.R. Feitosa, R.E. de Souza, W.P. dos Santos, Reconstruction of electrical impedance tomography images using chaotic self-adaptive ring-topology differential evolution and genetic algorithms, in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, New York, 2014), pp. 2605–2610Google Scholar
  13. 13.
    M.G. Rasteiro, R. Silva, F.A.P. Garcia, P. Faia, Electrical tomography: a review of configurations and applications to particulate processes. KONA Powder Part. J. 29, 67–80 (2011)Google Scholar
  14. 14.
    G.L.C. Carosio, V. Rolnik, P. Seleghim Jr., Improving efficiency in electrical impedance tomography problem by hybrid parallel genetic algorithm and a priori information, in Proceedings of the XXX Congresso Nacional de Matemática Aplicada e Computacional, Florianopolis (2007)Google Scholar
  15. 15.
    F.C. Peters, L.P.S. Barra, A.C.C. Lemonge, Application of a hybrid optimization method for identification of steel reinforcement in concrete by electrical impedance tomography, in 2nd International Conference on Engineering Optimization (2010)Google Scholar
  16. 16.
    V.P. Rolnik, P. Seleghim Jr., A specialized genetic algorithm for the electrical impedance tomography of two-phase flows. J. Braz. Soc. Mech. Sci. Eng. 28(4), 378–389 (2006)Google Scholar
  17. 17.
    T.K. Bera, S.K. Biswas, K. Rajan, J. Nagaraju, Improving image quality in electrical impedance tomography (EIT) using projection error propagation-based regularization (PEPR) technique: a simulation study. J. Electr. Bioimpedance 2(1), 2–12 (2011)Google Scholar
  18. 18.
    W.P. dos Santos, F.M. de Assis, Algoritmos dialéticos para inteligência computacional. Editora Universitária UFPE (2013)Google Scholar
  19. 19.
    A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, vol. 2 (Springer, Berlin, 2015)Google Scholar
  20. 20.
    A.E. Eiben, M. Schoenauer, Evolutionary computing. Inf. Process. Lett. 82(1), 1–6 (2002)Google Scholar
  21. 21.
    J. Kennedy, E. Russell, Particle swarm optimization, in Proceedings of 1995 IEEE International Conference on Neural Networks (1995), pp. 1942–1948Google Scholar
  22. 22.
    K.-L. Du, M.N.S. Swamy, Bacterial Foraging Algorithm (Springer International Publishing, Cham, 2016), pp. 217–225Google Scholar
  23. 23.
    C.J. Bastos Filho, F.B. de Lima Neto, A.J. Lins, A.I. Nascimento, M.P. Lima, A novel search algorithm based on fish school behavior, in IEEE International Conference on Systems, Man and Cybernetics, SMC 2008 (IEEE, New York, 2008), pp. 2646–2651Google Scholar
  24. 24.
    S.S. Madeiro, F.B. de Lima-Neto, C.J.A. Bastos-Filho, E.M. do Nascimento Figueiredo, Density as the segregation mechanism in fish school search for multimodal optimization problems, in Advances in Swarm Intelligence (Springer, Berlin, 2011), pp. 563–572Google Scholar
  25. 25.
    A. Chikhalikar, A. Darade, Swarm intelligence techniques: comparative study of ACO and BCO. Self 4, 5 (1995)Google Scholar
  26. 26.
    D. Karaboga, An idea based on honey bee swarm for numerical optimization. Technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)Google Scholar
  27. 27.
    S.-M. Chen, A. Sarosh, Y.-F. Dong, Simulated annealing based artificial bee colony algorithm for global numerical optimization. Appl. Math. Comput. 219(8), 3575–3589 (2012)Google Scholar
  28. 28.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi et al., Optimization by simulated annealing. Science 220(4598), 671–680 (1983)Google Scholar
  29. 29.
    T. de Castro Martins, M.d.S.G. Tsuzuki, Electrical impedance tomography reconstruction through simulated annealing with total least square error as objective function, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, New York, 2012), pp. 1518–1521Google Scholar
  30. 30.
    J. G. Sauer, Abordagem de Evolução diferencial híbrida com busca local aplicada ao problema do caixeiro viajante. PhD thesis, Pontifícia Universidade Católica do Paraná, 2007Google Scholar
  31. 31.
    R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)Google Scholar
  32. 32.
    G.T.d.S. Oliveira et al., Estudo e aplicações da evolução diferencial (2006)Google Scholar
  33. 33.
    S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)Google Scholar
  34. 34.
    S. Das, A. Konar, Automatic image pixel clustering with an improved differential evolution. Appl. Soft Comput. 9(1), 226–236 (2009)Google Scholar
  35. 35.
    C.J. Ter Braak, A Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy bayesian computing for real parameter spaces. Stat. Comput. 16(3), 239–249 (2006)Google Scholar
  36. 36.
    W.P. dos Santos, F.M. de Assis, Optimization based on dialectics, in International Joint Conference on Neural Networks, IJCNN 2009 (IEEE, New York, 2009), pp. 2804–2811Google Scholar
  37. 37.
    K. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization (Springer Science & Business Media, New York, 2006)Google Scholar
  38. 38.
    M.G.P. de Lacerda, F.B. de Lima Neto, A new heuristic of fish school segregation for multi-solution optimization of multimodal problems, in Second International Conference on Intelligent Systems and Applications (INTELLI 2013) (2013), pp. 115–121Google Scholar
  39. 39.
    A. Lins, C.J. Bastos-Filho, D.N. Nascimento, M.A.O. Junior, F.B. de Lima-Neto, Analysis of the performance of the fish school search algorithm running in graphic processing units, in Theory and New Applications of Swarm Intelligence (2012), pp. 17–32Google Scholar
  40. 40.
    A. Adler, T. Dai, W.R.B. Lionheart, Temporal image reconstruction in electrical impedance tomography. Physiol. Meas. 28(7), S1 (2007)Google Scholar
  41. 41.
    A.R.S. Feitosa, Reconstrução de imagens de tomografia por impedância elétrica utilizando o método dialético de otimização. Master’s thesis, Universidade Federal de Pernambuco (2015)Google Scholar
  42. 42.
    V.P. Rolnik, P. Seleghim Jr., A specialized genetic algorithm for the electrical impedance tomography of two-phase flows. J. Braz. Soc. Mech. Sci. Eng. 28(4), 378–389 (2006)Google Scholar
  43. 43.
    M.G. Rasteiro, R.C.C. Silva, F.A.P. Garcia, P.M. Faia, Electrical tomography: a review of configurations and applications to particulate processes. KONA Powder Part. J. 29, 67–80 (2011)Google Scholar
  44. 44.
    M. Cheney, D. Isaacson, J.C. Newell, Electrical impedance tomography. SIAM Rev. 41(1), 85–101 (1999)Google Scholar
  45. 45.
    O.H. Menin, Método dos elementos de contorno para tomografia de impedância elétrica. Master’s thesis, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (2009)Google Scholar
  46. 46.
    J.N. Tehrani, C. Jin, A. McEwan, A. van Schaik, A comparison between compressed sensing algorithms in electrical impedance tomography, in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (IEEE, New York, 2010), pp. 3109–3112Google Scholar
  47. 47.
    S.P. Kumar, N. Sriraam, P. Benakop, B. Jinaga, Reconstruction of brain electrical impedance tomography images using particle swarm optimization, in 2010 5th International Conference on Industrial and Information Systems (IEEE, New York, 2010), pp. 339–342Google Scholar
  48. 48.
    T.J. Yorkey, J.G. Webster, W.J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans. Biomed. Eng. 34(11), 843–852 (1987)Google Scholar
  49. 49.
    R. Bayford, Bioimpedance tomography (electrical impedance tomography). Annu. Rev. Biomed. Eng. 8, 63–91 (2006)Google Scholar
  50. 50.
    H. Wang, G. Xu, S. Zhang, W. Yan, An implementation of generalized back projection algorithm for the 2-D anisotropic EIT problem. IEEE Trans. Magn. 51(3), 1–4 (2015)Google Scholar
  51. 51.
    C.N. Lara Herrera, Algoritmo de tomografia por impedância elétrica baseado em simulated annealing. Master’s thesis, Universidade de São Paulo (2007)Google Scholar
  52. 52.
    G.V. Momenté, B.H.L.N. Peixoto, M.S.G. Tsuzuki, T.D.C. Martins, New objective function for electrical image tomography reconstruction, in ABCM Symposium Series in Mechatronics (2013)Google Scholar
  53. 53.
    P. Hua, E.J. Woo, J.G. Webster, W.J. Tompkins, Finite element modeling of electrode-skin contact impedance in electrical impedance tomography. IEEE Trans. Biomed. Eng. 40, 335–343 (1993)Google Scholar
  54. 54.
    V.P. Rolnik, Contribuição ao desenvolvimento de uma nova técnica de reconstrução tomográfica para sondas de visualização direta. PhD thesis, Escola de Engenharia de São Carlos da Universidade de São Paulo (2003)Google Scholar
  55. 55.
    M. Tang, W. Wang, J. Wheeler, M. McCormick, X. Dong, The number of electrodes and basis functions in EIT image reconstruction. Physiol. Meas. 23(1), 129 (2002)Google Scholar
  56. 56.
    C.-N. Huang, F.-M. Yu, H.-Y. Chung, The scanning data collection strategy for enhancing the quality of electrical impedance tomography. IEEE Trans. Instrum. Meas. 57(6), 1193–1198 (2008)Google Scholar
  57. 57.
    V.A.F. Barbosa, R.R. Ribeiro, A.R.S. Feitosa, V.L.B.A. da Silva, A.D.D. Rocha, R.C. Freitas, R.E. de Souza, W.P. dos Santos, Reconstrução de imagens de tomografia por impedância elétrica usando cardume de peixes, busca não-cega e algoritmo genético, in Anais do 12 Congresso Brasileiro de Inteligência Computacional, ABRICOM, Curitiba, PR, ed. by C.J.A. Bastos Filho, A.R. Pozo, H.S. Lopes (2015), pp. 1–6Google Scholar
  58. 58.
    A. Adler, W.R. Lionheart, Uses and abuses of EIDORS: an extensible software base for EIT. Physiol. Meas. 27(5), S25 (2006)Google Scholar
  59. 59.
    Y. Liu, F. Sun, A fast differential evolution algorithm using k-nearest neighbour predictor. Expert Syst. Appl. 38(4), 4254–4258 (2011)Google Scholar
  60. 60.
    K. Liu, X. Du, L. Kang, Differential evolution algorithm based on simulated annealing, in Advances in Computation and Intelligence (2007), pp. 120–126Google Scholar
  61. 61.
    P. Wang, X. Qian, Y. Zhou, N. Li, A novel differential evolution algorithm based on simulated annealing, in 2010 Chinese Control and Decision Conference (CCDC) (IEEE, New York, 2010), pp. 7–10Google Scholar
  62. 62.
    M.F.M. Vallejo, C.N.L. Herrera, F.S. de Moura, J.C.C. Aya, R.G. Lima, The use of linear programming as search method of images in electrical impedance tomography, in Proceedings of the 19th International Congress of Mechanical Engineering (2007)Google Scholar
  63. 63.
    G. Singh, S. Anand, B. Lall, A. Srivastava, V. Singh, Development of a microcontroller based electrical impedance tomography system, in 2015 IEEE Long Island Systems, Applications and Technology Conference (LISAT) (IEEE, New York, 2015), pp. 1–4CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wellington Pinheiro dos Santos
    • 1
    Email author
  • Ricardo Emmanuel de Souza
    • 1
  • Valter Augusto de Freitas Barbosa
    • 1
  • Reiga Ramalho Ribeiro
    • 1
  • Allan Rivalles Souza Feitosa
    • 1
  • Victor Luiz Bezerra Araújo da Silva
    • 2
  • David Edson Ribeiro
    • 1
  • Rafaela Covello Freitas
    • 2
  • Juliana Carneiro Gomes
    • 1
  • Natália Souza Soares
    • 1
  • Manoela Paschoal de Medeiros Lima
    • 1
  • Rodrigo Beltrão Valença
    • 1
  • Rodrigo Luiz Tomio Ogava
    • 1
  • Ítalo José do Nascimento Silva Araújo Dias
    • 1
  1. 1.Universidade Federal de PernambucoRecifeBrazil
  2. 2.Escola Politécnica da Universidade de PernambucoRecifeBrazil

Personalised recommendations