Advertisement

Superlinear Scalability in Parallel Computing and Multi-robot Systems: Shared Resources, Collaboration, and Network Topology

  • Heiko Hamann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10793)

Abstract

The uniting idea of both parallel computing and multi-robot systems is that having multiple processors or robots working on a task decreases the processing time. Typically we desire a linear speedup, that is, doubling the number of processing units halves the execution time. Sometimes superlinear scalability is observed in parallel computing systems and more frequently in multi-robot and swarm systems. Superlinearity means each individual processing unit gets more efficient by increasing the system size—a desired and rather counterintuitive phenomenon.

In an interdisciplinary approach, we compare abstract models of system performance from three different fields of research: parallel computing, multi-robot systems, and network science. We find agreement in the modeled universal properties of scalability and summarize our findings by formulating more generic interpretations of the observed phenomena. Our result is that scalability across fields can be interpreted as a tradeoff in three dimensions between too competitive and too cooperative processing schemes, too little information sharing and too much information sharing, while finding a balance between neither underusing nor depleting shared resources. We successfully verify our claims by two simple simulations of a multi-robot and a network system.

Keywords

Parallel computing Multi-robot systems Distributed robotics Swarm robotics Scalability Speedup 

References

  1. 1.
    Ingham, A.G., Levinger, G., Graves, J., Peckham, V.: The Ringelmann effect: studies of group size and group performance. J. Exp. Soc. Psychol. 10(4), 371–384 (1974)CrossRefGoogle Scholar
  2. 2.
    Gustafson, J.L.: Fixed time, tiered memory, and superlinear speedup. In: Proceedings of the Fifth Distributed Memory Computing Conference (DMCC5), pp. 1255–1260 (1990)Google Scholar
  3. 3.
    Helmbold, D.P., McDowell, C.E.: Modelling speedup (n) greater than n. IEEE Trans. Parallel Distrib. Syst. 1(2), 250–256 (1990)CrossRefGoogle Scholar
  4. 4.
    Faber, V., Lubeck, O.M., White Jr., A.B.: Superlinear speedup of an efficient sequential algorithm is not possible. Parallel Comput. 3(3), 259–260 (1986)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gunther, N.J., Puglia, P., Tomasette, K.: Hadoop super-linear scalability: the perpetual motion of parallel performance. ACM Queue 13(5), 46–55 (2015)Google Scholar
  6. 6.
    Ijspeert, A.J., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through the exploitation of local interactions in autonomous collective robotics: the stick pulling experiment. Auton. Robots 11, 149–171 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Lein, A., Vaughan, R.T.: Adaptive multi-robot bucket brigade foraging. Artif. Life 11, 337 (2008)Google Scholar
  8. 8.
    Pini, G., Brutschy, A., Birattari, M., Dorigo, M.: Interference reduction through task partitioning in a robotic swarm. In: Sixth International Conference on Informatics in Control, Automation and Robotics-ICINCO, pp. 52–59 (2009)Google Scholar
  9. 9.
    Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., Floreano, D.: Superlinear physical performances in a SWARM-BOT. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 282–291. Springer, Heidelberg (2005).  https://doi.org/10.1007/11553090_29 CrossRefGoogle Scholar
  10. 10.
    Hamann, H.: Towards swarm calculus: universal properties of swarm performance and collective decisions. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 168–179. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32650-9_15 CrossRefGoogle Scholar
  11. 11.
    Hamann, H.: Towards swarm calculus: urn models of collective decisions and universal properties of swarm performance. Swarm Intell. 7(2–3), 145–172 (2013)CrossRefGoogle Scholar
  12. 12.
    Schneider-Fontán, M., Matarić, M.J.: A study of territoriality: The role of critical mass in adaptive task division. In: Maes, P., Wilson, S.W., Matarić, M.J., (eds.) From animals to animats IV, pp. 553–561. MIT Press (1996)Google Scholar
  13. 13.
    Arkin, R.C., Balch, T., Nitz, E.: Communication of behavioral state in multi-agent retrieval tasks. In: Book, W., Luh, J. (eds.) IEEE Conference on Robotics and Automation, vol. 3, pp. 588–594. IEEE Press, Los Alamitos (1993)CrossRefGoogle Scholar
  14. 14.
    Lerman, K., Galstyan, A.: Mathematical model of foraging in a group of robots: effect of interference. Auton. Robots 13, 127–141 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Goldberg, D., Matarić, M.J.: Interference as a tool for designing and evaluating multi-robot controllers. In: Kuipers, B.J., Webber, B., (eds.) Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI 1997), pp. 637–642. MIT Press, Cambridge (1997)Google Scholar
  16. 16.
    Østergaard, E.H., Sukhatme, G.S., Matarić, M.J.: Emergent bucket brigading: a simple mechanisms for improving performance in multi-robot constrained-space foraging tasks. In: André, E., Sen, S., Frasson, C., Müller, J.P., (eds.) Proceedings of the Fifth International Conference on Autonomous Agents (AGENTS 2001), pp. 29–35. ACM, New York (2001)Google Scholar
  17. 17.
    Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks: stigmergy and collective robotics. Artificial Life IV, pp. 189–197 (1994)Google Scholar
  18. 18.
    Lerman, K., Martinoli, A., Galstyan, A.: A review of probabilistic macroscopic models for swarm robotic systems. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 143–152. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30552-1_12 CrossRefGoogle Scholar
  19. 19.
    Khaluf, Y., Birattari, M., Rammig, F.: Probabilistic analysis of long-term swarm performance under spatial interferences. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 121–132. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45008-2_10 CrossRefGoogle Scholar
  20. 20.
    Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Auton. Agents Multi Agent Syst. 28(1), 101–125 (2014)CrossRefGoogle Scholar
  21. 21.
    Hamann, H., Schmickl, T., Wörn, H., Crailsheim, K.: Analysis of emergent symmetry breaking in collective decision making. Neural Comput. Appl. 21(2), 207–218 (2012)CrossRefGoogle Scholar
  22. 22.
    Nembrini, J., Winfield, A.F.T., Melhuish, C.: Minimalist coherent swarming of wireless networked autonomous mobile robots. In: Hallam, B., Floreano, D., Hallam, J., Hayes, G., Meyer, J.A., (eds.) Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior on From Animals to Animats, pp. 373–382. MIT Press, Cambridge (2002)Google Scholar
  23. 23.
    Bjerknes, J.D., Winfield, A., Melhuish, C.: An analysis of emergent taxis in a wireless connected swarm of mobile robots. In: Shi, Y., Dorigo, M. (eds.) IEEE Swarm Intelligence Symposium, pp. 45–52. IEEE Press, Los Alamitos (2007)Google Scholar
  24. 24.
    Meister, T., Thenius, R., Kengyel, D., Schmickl, T.: Cooperation of two different swarms controlled by BEECLUST algorithm. In: Mathematical Models for the Living Systems and Life Sciences (ECAL), pp. 1124–1125 (2013)Google Scholar
  25. 25.
    Hamann, H.: Modeling and investigation of robot swarms. Master’s thesis, University of Stuttgart, Germany (2006)Google Scholar
  26. 26.
    Jeanne, R.L., Nordheim, E.V.: Productivity in a social wasp: per capita output increases with swarm size. Behav. Ecol. 7(1), 43–48 (1996)CrossRefGoogle Scholar
  27. 27.
    Lighthill, M.J., Whitham, G.B.: On kinematic waves II. A theory of traffic flow on long crowded roads. Proc. Royal Soc. London A229(1178), 317–345 (1955)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Gunther, N.J.: A simple capacity model of massively parallel transaction systems. In: CMG National Conference, pp. 1035–1044 (1993)Google Scholar
  29. 29.
    Lazer, D., Friedman, A.: The network structure of exploration and exploitation. Adm. Sci. Q. 52, 667–694 (2007)CrossRefGoogle Scholar
  30. 30.
    Kauffman, S.A., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128(1), 11–45 (1987)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Eiben, Á.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Computing Series. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-662-44874-8 CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer EngineeringUniversity of LübeckLübeckGermany

Personalised recommendations