Nonlinear Dielectric Spectroscopy pp 277-300 | Cite as
Nonlinear Dielectric Response of Plastic Crystals
Abstract
This article summarizes ongoing experimental efforts on nonlinear dielectric spectroscopy on plastic crystals. In plastic crystals, the relevant dipolar orientational degrees of freedom are fixed on a crystalline lattice with perfect translational symmetry. However, while they can reorient freely in the high-temperature plastic phase, they often undergo glassy freezing at low temperatures. Hence, plastic crystals are often considered as model systems for structural glass formers. It is well known that plastic crystals reveal striking similarities with phenomena of conventional supercooled liquids. However, in most cases, they can be characterized as rather strong glass formers. Nonlinear dielectric spectroscopy is an ideal tool to study glass-transition phenomena, providing insight into cooperative phenomena or hidden phase transitions, undetectable by purely linear spectroscopy. In the present article, we discuss dielectric experiments using large electric ac fields probing the nonlinear 1ω and the third-order harmonic 3ω susceptibility. In the 1ω experiments, we find striking differences compared with observations on conventional structural glass formers: at low frequencies plastic crystals do not approach the trivial response, but reveal strong additional nonlinearity. These phenomena document the importance of entropic effects in this class of glassy materials. The harmonic third-order susceptibility reveals a hump-like shape, similar to observations in canonical glass formers, indicating the importance of cooperativity dominating the glass transition. In the frequency regime of the secondary relaxations, only minor nonlinear effects can be detected, supporting arguments in favor of the non-cooperative nature of these faster dynamics processes. Based on a model by Bouchaud and Biroli, from the hump observed in the 3ω susceptibility spectra, the temperature dependence of the number of correlated particles can be determined. We document that the results in plastic crystals perfectly well scale with the results derived from measurements on conventional glass formers, providing evidence that in plastic crystals the non-Arrhenius behavior of the relaxation times also arises from a temperature dependence of the energy barriers due to growing cooperative clusters.
Keywords
Plastic crystals Glassy crystals Supercooled liquids Nonlinear dielectric spectroscopy Harmonic susceptibility Relaxation dynamics Glass transition Non-Arrhenius behaviorNotes
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft via Research Unit FOR 1394. Stimulating discussions with S. Albert, Th. Bauer, G. Biroli, U. Buchenau, G. Diezemann, G. P. Johari, F. Ladieu, K. L. Ngai, R. Richert, R. M. Pick, and K. Samwer are gratefully acknowledged.
References
- 1.R. Brand, P. Lunkenheimer, A. Loidl, J. Chem. Phys. 116, 10386 (2002)CrossRefGoogle Scholar
- 2.J. Timmermans, J. Chim. Phys. 35, 331 (1938)CrossRefGoogle Scholar
- 3.N.G. Parsonage, L.A.K. Staveley, Disorder in Crystals (Oxford University Press, Oxford, 1978)Google Scholar
- 4.J.N. Sherwood, The Plastically Crystalline State (Wiley, New York, 1979)Google Scholar
- 5.K. Adachi, H. Suga, S. Seki, Bull. Chem. Soc. Jpn 41, 1073 (1968)CrossRefGoogle Scholar
- 6.U.T. Höchli, K. Knorr, A. Loidl, Adv. Phys. 39, 405 (1990)CrossRefGoogle Scholar
- 7.A. Loidl, R. Böhmer, in Disorder Effects on Relaxational Processes, ed. by R. Richert, A. Blumen (Springer, Berlin, 1994), p. 659Google Scholar
- 8.M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996)CrossRefGoogle Scholar
- 9.H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999)Google Scholar
- 10.M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)CrossRefPubMedGoogle Scholar
- 11.P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl, Contemp. Phys. 41, 15 (2000)CrossRefGoogle Scholar
- 12.J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006)CrossRefGoogle Scholar
- 13.D.L. Leslie-Pelecky, N.O. Birge, Phys. Rev. Lett. 72, 1232 (1994)CrossRefPubMedGoogle Scholar
- 14.M.A. Ramos, S. Vieira, F.J. Bermejo, J. Dawidowski, H.E. Fischer, H. Schober, M.A. González, C.K. Loong, D.L. Price, Phys. Rev. Lett. 78, 82 (1997)CrossRefGoogle Scholar
- 15.R. Brand, P. Lunkenheimer, U. Schneider, A. Loidl, Phys. Rev. Lett. 82, 1951 (1999)CrossRefGoogle Scholar
- 16.F. Affouard, M. Descamps, Phys. Rev. Lett. 87, 035501 (2001)CrossRefPubMedGoogle Scholar
- 17.P.-J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, M. Armand, Nature Mater. 3, 476 (2004)CrossRefGoogle Scholar
- 18.R. Richert, J. Phys.: Condens. Matter 29, 363001 (2017)Google Scholar
- 19.P. Lunkenheimer, M. Michl, Th. Bauer, A. Loidl, Eur. Phys. J. Special Topics 226, 3157 (2017)CrossRefGoogle Scholar
- 20.R. Richert, S. Weinstein, Phys. Rev. Lett. 97, 095703 (2006)CrossRefPubMedGoogle Scholar
- 21.L.-M. Wang, R. Richert, Phys. Rev. Lett. 99, 185701 (2007)CrossRefPubMedGoogle Scholar
- 22.A. Drozd-Rzoska, S.J. Rzoska, J. Zioło, Phys. Rev. E 77, 041501 (2008)Google Scholar
- 23.C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J-P. Bouchaud, Phys. Rev. Lett. 104, 165703 (2010)Google Scholar
- 24.L.P. Singh, R. Richert, Phys. Rev. Lett. 109, 167802 (2012)CrossRefPubMedGoogle Scholar
- 25.Th. Bauer, P. Lunkenheimer, S. Kastner, A. Loidl, Phys. Rev. Lett. 110, 107603 (2013)CrossRefPubMedGoogle Scholar
- 26.Th. Bauer, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 111, 225702 (2013)CrossRefPubMedGoogle Scholar
- 27.S. Albert, Th. Bauer, M. Michl, G. Biroli, J.-P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu, Science 352, 1308 (2016)CrossRefPubMedGoogle Scholar
- 28.M. Michl, Th. Bauer, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 114, 067601 (2015)CrossRefPubMedGoogle Scholar
- 29.B. Riechers, K. Samwer, R. Richert, J. Chem. Phys. 142, 154504 (2015)CrossRefPubMedGoogle Scholar
- 30.S. Samanta, R. Richert, J. Chem. Phys. 142, 044504 (2015)CrossRefPubMedGoogle Scholar
- 31.M. Michl, Th. Bauer, P. Lunkenheimer, A. Loidl, J. Chem. Phys. 144, 114506 (2016)CrossRefPubMedGoogle Scholar
- 32.B. Schiener, R. Böhmer, A. Loidl, R.V. Chamberlin, Science 274, 752 (1996)CrossRefGoogle Scholar
- 33.S. Weinstein, R. Richert, Phys. Rev. B 75, 064302 (2007)CrossRefGoogle Scholar
- 34.G.P. Johari, M. Goldstein, J. Chem. Phys. 53, 2372 (1970)CrossRefGoogle Scholar
- 35.P. Lunkenheimer, A. Loidl, in Broadband Dielectric Spectroscopy, ed. by F. Kremer, A. Schönhals (Springer, Berlin, 2002), Chap. 5Google Scholar
- 36.J.-P. Bouchaud, G. Biroli, Phys. Rev. B 72, 064204 (2005)CrossRefGoogle Scholar
- 37.M. Tarzia, G. Biroli, A. Lefèvre, J.-P. Bouchaud, J. Chem. Phys. 132, 054501 (2010)CrossRefPubMedGoogle Scholar
- 38.C. Brun, F. Ladieu, D. L’Hôte, M. Tarzia, G. Biroli, J.-P. Bouchaud, Phys. Rev. B 84, 104204 (2011)CrossRefGoogle Scholar
- 39.G.P. Johari, J. Chem. Phys. 138, 154503 (2013)CrossRefPubMedGoogle Scholar
- 40.G.P. Johari, J. Chem. Phys. 145, 164502 (2016)CrossRefPubMedGoogle Scholar
- 41.M. Winterlich, G. Diezemann, H. Zimmermann, R. Böhmer, Phys. Rev. Lett. 91, 235504 (2003)CrossRefPubMedGoogle Scholar
- 42.G.P. Johari, J. Khouri, J. Chem. Phys. 137, 104502 (2012)CrossRefPubMedGoogle Scholar
- 43.T.R. Kirkpatrick, P.G. Wolynes, Phys. Rev. B 36, 8552 (1987)CrossRefGoogle Scholar
- 44.P.G. Debenedetti, F.H. Stillinger, Nature 310, 259 (2001)CrossRefGoogle Scholar
- 45.F. Mizuno, J.-P. Belieres, N. Kuwata, A. Pradel, M. Ribes, C. A. Angell, J. Non-Cryst. Solids 352, 5147 (2006)Google Scholar
- 46.C.A. Angell, in Relaxation in Complex Systems, ed. by K.L. Ngai, G.B. Wright (Office of Naval Research, Washington DC, 1985), p. 3Google Scholar
- 47.L.C. Pardo, P. Lunkenheimer, A. Loidl, J. Chem. Phys. 124, 124911 (2006)CrossRefPubMedGoogle Scholar
- 48.Th. Bauer, M. Köhler, P. Lunkenheimer, A. Loidl, C.A. Angell, J. Chem. Phys. 133, 144509 (2010)CrossRefPubMedGoogle Scholar
- 49.M. Götz, Th. Bauer, P. Lunkenheimer, A. Loidl, J. Chem. Phys. 140, 094504 (2014)CrossRefPubMedGoogle Scholar
- 50.P. Lunkenheimer, S. Kastner, M. Köhler, A. Loidl, Phys. Rev. E 81, 051504 (2010)CrossRefGoogle Scholar
- 51.P. Lunkenheimer, M. Köhler, S. Kastner, A. Loidl, in Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications, ed. by P.G. Wolynes, V. Lubchenko (Wiley, Hoboken, 2012), Chap. 3, p. 115CrossRefGoogle Scholar
- 52.C.A. Angell, W. Sichina, Ann. N.Y. Acad. Sci. 279, 53 (1976)CrossRefGoogle Scholar
- 53.D.J. Plazek, K.L. Ngai, Macromolecules 24, 1222 (1991)CrossRefGoogle Scholar
- 54.R. Böhmer, C.A. Angell, Phys. Rev. B 45, 10091 (1992)CrossRefGoogle Scholar
- 55.A. Srinivasan, F. J. Bermejo, A. de Andrés, J. Dawidowski, J. Zúñiga, A. Criado, Phys. Rev. B 53, 8172 (1996)CrossRefGoogle Scholar
- 56.R. Brand, P. Lunkenheimer, U. Schneider, A. Loidl, Phys. Rev. B 62, 8878 (2000)CrossRefGoogle Scholar
- 57.C.A. Angell, J. Phys. Chem. Solids 49, 863 (1988)CrossRefGoogle Scholar
- 58.R. Böhmer, C.A. Angell, in Disorder Effects on Relaxational Processes, ed. by R. Richert, A. Blumen (Springer, Berlin, 1994), p. 11CrossRefGoogle Scholar
- 59.G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)CrossRefGoogle Scholar
- 60.R. Brand, P. Lunkenheimer, A. Loidl, Phys. Rev. B 56, R5713 (1997)CrossRefGoogle Scholar
- 61.M. Shablakh, L.A. Dissado, R.M. Hill, J. Chem. Soc. Faraday Trans. II 79, 369 (1983)CrossRefGoogle Scholar
- 62.O. Anderson, R.G. Ross, Mol. Phys. 71, 523 (1990)CrossRefGoogle Scholar
- 63.H. Forsmann, O. Anderson, J. Non-Cryst, Solids 131–133, 1145 (1991)Google Scholar
- 64.L.P. Singh, S.S.N. Murthy, Phys. Chem. Chem. Phys. 11, 5110 (2009)CrossRefPubMedGoogle Scholar
- 65.P. Lunkenheimer, A. Loidl, J. Chem. Phys. 104, 4324 (1996)CrossRefGoogle Scholar
- 66.O. Yamamuro, M. Hayashi, T. Matsuo, P. Lunkenheimer, J. Chem. Phys. 119, 4775 (2003)CrossRefGoogle Scholar
- 67.D.W. Davidson, R.H. Cole, J. Chem. Phys. 18, 1417 (1950)CrossRefGoogle Scholar
- 68.B. Schiener, R.V. Chamberlin, G. Diezemann, R. Böhmer, J. Chem. Phys. 107, 7746 (1997)CrossRefGoogle Scholar
- 69.J. Herweg, Z. Phys. 3, 36 (1920)CrossRefGoogle Scholar
- 70.P. Debye, Polar Molecules (Dover Publications, New York, 1929)Google Scholar
- 71.J.L. Déjardin, YuP Kalmykov, Phys. Rev. E 61, 1211 (2000)CrossRefGoogle Scholar
- 72.Th. Bauer, M. Michl, P. Lunkenheimer, A. Loidl, J. Non-Cryst. Solids 407, 66 (2015)Google Scholar
- 73.P. Kim, A.R. Young-Gonzales, R. Richert, J. Chem. Phys. 145, 064510 (2016)CrossRefGoogle Scholar
- 74.S. Samanta, R. Richert, J. Phys. Chem. B 120, 7737 (2016)CrossRefPubMedGoogle Scholar
- 75.R. Richert, J. Chem. Phys. 146, 064501 (2017)CrossRefPubMedGoogle Scholar
- 76.P. Gadige, S. Albert, M. Michl, Th. Bauer, P. Lunkenheimer, A. Loidl, R. Tourbot, C. Wiertel-Gasquet, G. Biroli, J.-P. Bouchaud, F. Ladieu, Phys. Rev. E 96, 032611 (2017)CrossRefPubMedGoogle Scholar
- 77.F.H. Stillinger, Science 267, 1935 (1995)CrossRefPubMedGoogle Scholar
- 78.J.S. Harmon, M.D. Demetriou, W.L. Johnson, K. Samwer, Phys. Rev. Lett. 99, 135502 (2007)CrossRefPubMedGoogle Scholar
- 79.C. Gainaru, O. Lips, A. Troshagina, R. Kahlau, A. Brodin, F. Fujara, E.A. Rössler, J. Chem. Phys. 128, 174505 (2008)CrossRefPubMedGoogle Scholar
- 80.R.V. Chamberlin, Phys. Rev. Lett. 82, 2520 (1999)CrossRefGoogle Scholar
- 81.K.L. Ngai, J. Phys.: Condens. Matter 15, S1107 (2003)Google Scholar
- 82.W. Götze, M. Sperl, Phys. Rev. Lett. 92, 105701 (2004)CrossRefPubMedGoogle Scholar
- 83.K.L. Ngai, M. Paluch, J. Chem. Phys. 120, 857 (2004)CrossRefPubMedGoogle Scholar
- 84.K.L. Ngai, Phys. Rev. E 57, 7346 (1998)CrossRefGoogle Scholar
- 85.R.L. Leheny, S.R. Nagel, Europhys. Lett. 39, 447 (1997)CrossRefGoogle Scholar
- 86.U. Schneider, R. Brand, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 84, 5560 (2000)CrossRefPubMedGoogle Scholar
- 87.K.L. Ngai, P. Lunkenheimer, C. León, U. Schneider, R. Brand, A. Loidl, J. Chem. Phys. 115, 1405 (2001)CrossRefGoogle Scholar
- 88.A. Döß, M. Paluch, H. Sillescu, G. Hinze, Phys. Rev. Lett. 88, 095701 (2002)Google Scholar
- 89.A. Kudlik, S. Benkhof, T. Blochowicz, C. Tschirwitz, E. Rössler, J. Mol. Struct. 479, 201 (1999)Google Scholar
- 90.M. Beiner, H. Huth, K. Schröter, J. Non-Cryst. Solids 279, 126 (2001)Google Scholar
- 91.S. Samanta, R. Richert, J. Phys. Chem. B 119, 8909 (2015)CrossRefPubMedGoogle Scholar
- 92.K.L. Ngai, J. Chem. Phys. 142, 114502 (2015)CrossRefPubMedGoogle Scholar
- 93.S. Samanta, R. Richert, J. Chem. Phys. 140, 054503 (2014)CrossRefPubMedGoogle Scholar
- 94.B. Roling, L.N. Patro, O. Burghaus, M. Gräf, Eur. Phys. J. Special Topics 226, 3095 (2017)Google Scholar
- 95.C. Brun, C. Crauste-Thibierge, F. Ladieu, D. L’Hôte, J. Chem. Phys. 134, 194507 (2011)Google Scholar
- 96.G. Diezemann, Phys. Rev. E 85, 051502 (2012)CrossRefGoogle Scholar
- 97.G. Diezemann, J. Chem. Phys. 138, 12A505 (2013)CrossRefPubMedGoogle Scholar
- 98.R.M. Pick, J. Chem. Phys. 140, 054508 (2014)CrossRefPubMedGoogle Scholar
- 99.U. Buchenau, J. Chem. Phys. 146, 214503 (2017)CrossRefPubMedGoogle Scholar
- 100.C. Gainaru, S. Kastner, F. Mayr, P. Lunkenheimer, S. Schildmann, H. J. Weber, W. Hiller, A. Loidl, R. Böhmer, Phys. Rev. Lett. 107, 118304 (2011)Google Scholar
- 101.C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E.A. Rössler, R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010)CrossRefPubMedGoogle Scholar
- 102.R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, J. Chem. Phys. 99, 4201 (1993)CrossRefGoogle Scholar
- 103.S.A. Kivelson, G. Tarjus, Nature Mater. 7, 831 (2008)CrossRefGoogle Scholar