Advertisement

Effects of Strong Static Fields on the Dielectric Relaxation of Supercooled Liquids

  • Ranko Richert
Chapter
Part of the Advances in Dielectrics book series (ADVDIELECT)

Abstract

When large DC-bias fields are applied to polar dielectric liquids, the orientational polarization of dipoles will lead to a considerable macroscopic dipole moment of the sample. In this situation, the dielectric relaxation behavior probed by a small amplitude AC-field superimposed onto the large DC-field will differ from the zero-bias field limit. This chapter summarizes the experimental approaches to dielectric spectroscopy in the presence of a large amplitude static field and the findings from such experiments. Only nonlinear effects that are completely reversible will be addressed, focusing on glass forming materials, as systems near their glass transition turn out to be particularly sensitive to external fields. The relation to third harmonic responses obtained from AC-fields is briefly discussed.

Notes

Acknowledgments

This work is partly supported by the National Science Foundation under Grant No. CHE-1564663.

References

  1. 1.
    H. Fröhlich, Theory of Dielectrics (Clarendon, Oxford, 1958)Google Scholar
  2. 2.
    J. Herweg, Die elektrischen dipole in flüssigen Dielektricis. Z Physik 3, 36 (1920)CrossRefGoogle Scholar
  3. 3.
    F. Kremer, A. Schönhals (eds.), Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)Google Scholar
  4. 4.
    R. Richert, Supercooled liquids and glasses by dielectric relaxation spectroscopy. Adv. Chem. Phys. 156, 101 (2014)Google Scholar
  5. 5.
    I.M. Hodge, Enthalpy relaxation and recovery in amorphous materials. J. Non-Cryst. Solids 169, 211 (1994)CrossRefGoogle Scholar
  6. 6.
    J. Brandrup, E.H. Immergut (eds.), Polymer Handbook, 2nd edn. (Wiley, New York, 1975)Google Scholar
  7. 7.
    D.G. Lahoz, G. Walker, An experimental analysis of electromagnetic forces in liquids. J. Phys. D Appl. Phys. 8, 1994 (1975)CrossRefGoogle Scholar
  8. 8.
    C.J.F. Böttcher, Theory of Electric Polarization, vol. 1 (Elsevier, Amsterdam, 1973)Google Scholar
  9. 9.
    S. Weinstein, R. Richert, Nonlinear features in the dielectric behavior of propylene glycol. Phys. Rev. B 75, 064302 (2007)CrossRefGoogle Scholar
  10. 10.
    J.A. Schellman, Dielectric saturation. J. Chem. Phys. 24, 912 (1956)CrossRefGoogle Scholar
  11. 11.
    G.G. Wiseman, J.K. Kuebler, Electrocaloric effect in ferroelectric Rochelle salt. Phys. Rev. 131, 2023 (1963)CrossRefGoogle Scholar
  12. 12.
    A.R. Young-Gonzales, S. Samanta, R. Richert, Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime. J. Chem. Phys. 143, 104504 (2015)CrossRefPubMedGoogle Scholar
  13. 13.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984)Google Scholar
  14. 14.
    P. Ben Ishai, M.S. Talary, A. Caduff, E. Levy, Y. Feldman, Electrode polarization in dielectric measurements: a review. Meas. Sci. Technol. 24, 102001 (2013)CrossRefGoogle Scholar
  15. 15.
    P.A. Bradley, G. Parry Jones, A system for the investigation of nonlinear dielectric effects using digital techniques. J. Phys. E: Sci. Instrum. 7, 449 (1974)CrossRefGoogle Scholar
  16. 16.
    A.E. Davies, M.J. van der Sluijs, G. Parry Jones, Notes on a system for the investigation of nonlinear dielectric effects. J. Phys. E: Sci. Instrum. 11, 737 (1978)CrossRefGoogle Scholar
  17. 17.
    M. Górny, J. Zioło, S.J. Rzoska, A new application of the nonlinear dielectric method for studying relaxation processes in liquids. Rev. Sci. Instrum. 67, 4290 (1996)CrossRefGoogle Scholar
  18. 18.
    S.J. Rzoska, V.P. Zhelezny (eds.), Nonlinear Dielectric Phenomena in Complex Liquids (Kluwer Academic Publishers, Dordrecht, 2004)Google Scholar
  19. 19.
    S.J. Rzoska, A. Drozd-Rzoska, Dual field nonlinear dielectric spectroscopy in a glass forming EPON 828 epoxy resin. J. Phys.: Condens. Matter 24, 035101 (2012)Google Scholar
  20. 20.
    D. L′Hôte, R. Tourbot, F. Ladieu, P. Gadige, Control parameter for the glass transition of glycerol evidenced by the static-field-induced nonlinear response. Phys. Rev. B 90, 104202 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Samanta, R. Richert, Dynamics of glass-forming liquids. XVIII. Does entropy control structural relaxation times? J. Chem. Phys. 142, 044504 (2015)CrossRefPubMedGoogle Scholar
  22. 22.
    S. Samanta, R. Richert, Non-linear dielectric behavior of a secondary relaxation: glassy d-sorbitol. J. Phys. Chem. B 119, 8909 (2015)CrossRefPubMedGoogle Scholar
  23. 23.
    P. Langevin, Sur la théorie du magnétisme. J. Phys. Theor. Appl. 4, 678 (1905)CrossRefGoogle Scholar
  24. 24.
    P. Debye, Der Rotationszustand von Molekülen in Flüssigkeiten. Phys. Z. 36, 100 (1935)Google Scholar
  25. 25.
    P. Debye, Polar Molecules (Chemical Catalog Company, New York, 1929)Google Scholar
  26. 26.
    R. Richert, Frequency dependence of dielectric saturation. Phys. Rev. E 88, 062313 (2013)CrossRefGoogle Scholar
  27. 27.
    G.P. Jones, in Non-Linear Dielectric Effects: Dielectric and Related Molecular Processes, specialist periodical reports vol. 2, ed. by M. Davies (The Chemical Society, London, 1975)Google Scholar
  28. 28.
    A. Piekara, B. Piekara, Saturation électrique dans les liquides purs et leurs mélanges. Compt. Rend. Acad. Sci. (Paris) 203, 852 (1936)Google Scholar
  29. 29.
    A. Piekara, Dielectric saturation and hydrogen bonding. J. Chem. Phys. 36, 2145 (1962)CrossRefGoogle Scholar
  30. 30.
    J. Małecki, Dielectric saturation in aliphatic alcohols. J. Chem. Phys. 36, 2144 (1962)CrossRefGoogle Scholar
  31. 31.
    A. Piekara, A. Chelkowski, New experiments on dielectric saturation in polar liquids. J. Chem. Phys. 25, 794 (1956)CrossRefGoogle Scholar
  32. 32.
    I. Danielewicz-Ferchmin, On the non-linear dielectric effect in some non-polar liquids and nitrobenzene. Chem. Phys. Lett. 155, 539 (1989)CrossRefGoogle Scholar
  33. 33.
    J.H. van Vleck, On the role of dipole-dipole coupling in dielectric media. J. Chem. Phys. 5, 556 (1937)CrossRefGoogle Scholar
  34. 34.
    S. Kielich, Semi-macroscopic treatment of the theory of non-linear phenomena in dielectric liquids submitted to strong electric and magnetic fields. Acta Phys. Polon. 17, 239 (1958)Google Scholar
  35. 35.
    R.L. Fulton, The theory of nonlinear dielectric. Polar, polarizable molecules. J. Chem. Phys. 78, 6877 (1983)CrossRefGoogle Scholar
  36. 36.
    R.L. Fulton, On the theory of nonlinear dielectrics. J. Chem. Phys. 78, 6865 (1983)CrossRefGoogle Scholar
  37. 37.
    J.L. Déjardin, Y.P. Kalmykov, P.M. Déjardin, Birefringence and dielectric relaxation in strong electric fields. Adv. Chem. Phys. 117, 275 (2001)Google Scholar
  38. 38.
    I. Szalai, S. Nagy, S. Dietrich, Nonlinear dielectric effect of dipolar fluids. J. Chem. Phys. 131, 154905 (2009)CrossRefPubMedGoogle Scholar
  39. 39.
    S. Buyukdagli, Dielectric anisotropy in polar solvents under external fields. J. Stat. Mech. 2015, P08022 (2015)CrossRefGoogle Scholar
  40. 40.
    D.V. Matyushov, Nonlinear dielectric response of polar liquids. J. Chem. Phys. 142, 244502 (2015)CrossRefPubMedGoogle Scholar
  41. 41.
    J. Małecki, The relaxation of the nonlinear dielectric effect. J. Mol. Struct. 436–437, 595 (1997)Google Scholar
  42. 42.
    J. Małecki, Non-linear dielectric behaviour and chemical equilibria in liquids. Electrochim. Acta 33, 1235 (1988)CrossRefGoogle Scholar
  43. 43.
    J. Małecki, Investigations of hexanol-1 multimers and complexes by the method of dielectric polarization in weak and strong electric fields. J. Chem. Phys. 43, 1351 (1965)CrossRefGoogle Scholar
  44. 44.
    J.A. Małecki, Study of self-association of 2-methyl-2-butanol based on non-linear dielectric effect. Chem. Phys. Lett. 297, 29 (1998)CrossRefGoogle Scholar
  45. 45.
    L.P. Singh, R. Richert, Watching hydrogen bonded structures in an alcohol convert from rings to chains. Phys. Rev. Lett. 109, 167802 (2012)CrossRefPubMedGoogle Scholar
  46. 46.
    L.P. Singh, C. Alba-Simionesco, R. Richert, Dynamics of glass-forming liquids. XVII. Dielectric relaxation and intermolecular association in a series of isomeric octyl alcohols. J. Chem. Phys. 139, 144503 (2013)CrossRefPubMedGoogle Scholar
  47. 47.
    W. Dannhauser, Dielectric study of intermolecular association in isomeric octyl alcohols. J. Chem. Phys. 48, 1911 (1968)CrossRefGoogle Scholar
  48. 48.
    R. Böhmer, C. Gainaru, R. Richert, Structure and dynamics of monohydroxy alcohols—milestones towards their microscopic understanding, 100 years after Debye. Phys. Rep. 545, 125 (2014)CrossRefGoogle Scholar
  49. 49.
    A.R. Young-Gonzales, R. Richert, Field induced changes in the ring/chain equilibrium of hydrogen bonded structures: 5-methyl-3-heptanol. J. Chem. Phys. 145, 074503 (2016)CrossRefPubMedGoogle Scholar
  50. 50.
    W.M. Winslow, Induced fibration of suspensions. J. Appl. Phys. 20, 1137 (1949)CrossRefGoogle Scholar
  51. 51.
    C.T. Moynihan, A.V. Lesikar, Comparison and analysis of relaxation processes at the glass transition temperature. Ann. New York Acad. Sci. 371, 151 (1981)CrossRefGoogle Scholar
  52. 52.
    G.P. Johari, Effects of electric field on the entropy, viscosity, relaxation time, and glass-formation. J. Chem. Phys. 138, 154503 (2013)CrossRefPubMedGoogle Scholar
  53. 53.
    G. Adam, J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965)CrossRefGoogle Scholar
  54. 54.
    W. Kauzmann, The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219 (1948)CrossRefGoogle Scholar
  55. 55.
    D.V. Matyushov, Configurational entropy of polar glass formers and the effect of electric field on glass transition. J. Chem. Phys. 145, 034504 (2016)CrossRefPubMedGoogle Scholar
  56. 56.
    S. Samanta, R. Richert, Electrorheological source of nonlinear dielectric effects in molecular glass-forming liquids. J. Phys. Chem. B 120, 7737 (2016)CrossRefPubMedGoogle Scholar
  57. 57.
    A.R. Young-Gonzales, K. Adrjanowicz, M. Paluch, R. Richert, Nonlinear dielectric features of highly polar glass formers: derivatives of propylene carbonate. J. Chem. Phys. 147, 224501 (2017)CrossRefPubMedGoogle Scholar
  58. 58.
    S. Samanta, O. Yamamuro, R. Richert, Connecting thermodynamics and dynamics in a supercooled liquid: cresolphthalein-dimethylether. Thermochim. Acta 636, 57 (2016)CrossRefGoogle Scholar
  59. 59.
    M. Goldstein, Comparing landscape calculations with calorimetric data on ortho-terphenyl, and the question of the configurational fraction of the excess entropy. J. Chem. Phys. 123, 244511 (2005)CrossRefPubMedGoogle Scholar
  60. 60.
    L.-M. Wang, R. Richert, Measuring the configurational heat capacity of liquids. Phys. Rev. Lett. 99, 185701 (2007)CrossRefPubMedGoogle Scholar
  61. 61.
    R. Richert, Relaxation time and excess entropy in viscous liquids: electric field versus temperature as control parameter. J. Chem. Phys. 146, 064501 (2017)CrossRefPubMedGoogle Scholar
  62. 62.
    R. Richert, Nonlinear dielectric effects in liquids: a guided tour. J. Phys.: Condens. Matter 29, 363001 (2017)Google Scholar
  63. 63.
    P. Lunkenheimer, R. Wehn, U. Schneider, A. Loidl, Glassy aging dynamics. Phys. Rev. Lett. 95, 055702 (2005)CrossRefPubMedGoogle Scholar
  64. 64.
    R. Richert, P. Lunkenheimer, S. Kastner, A. Loidl, On the derivation of equilibrium relaxation times from aging experiments. J. Phys. Chem. B 117, 12689 (2013)CrossRefPubMedGoogle Scholar
  65. 65.
    A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, A.R. Ramos, Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J. Polym. Sci. B: Polym Phys. 34, 2467 (1996)CrossRefGoogle Scholar
  66. 66.
    R. Richert, Physical aging and heterogeneous dynamics. Phys. Rev. Lett. 104, 085702 (2010)CrossRefPubMedGoogle Scholar
  67. 67.
    S. Samanta, R. Richert, Limitations of heterogeneous models of liquid dynamics: very slow rate exchange in the excess wing. J. Chem. Phys. 140, 054503 (2014)CrossRefPubMedGoogle Scholar
  68. 68.
    M.D. Ediger, Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99 (2000)CrossRefPubMedGoogle Scholar
  69. 69.
    R. Richert, Heterogeneous dynamics in liquids: fluctuations in space and time. J. Phys.: Condens. Matter 14, R703 (2002)Google Scholar
  70. 70.
    W. Huang, R. Richert, Dynamics of glass-forming liquids. XIII. Microwave heating in slow motion. J. Chem. Phys. 130, 194509 (2009)CrossRefPubMedGoogle Scholar
  71. 71.
    R. Richert, Reverse calorimetry of a supercooled liquid: propylene carbonate. Thermochim. Acta 522, 28 (2011)CrossRefGoogle Scholar
  72. 72.
    R. Coelho, D. Khac Manh, Utilisation de la biréfringence électro-optique pour l′étude de la relaxation dipolaire dans les liquides polaires faiblement conducteurs. C R Acad. Sc Paris—Serie C 264, 641 (1967)Google Scholar
  73. 73.
    M.S. Beevers, J. Crossley, D.C. Garrington, G. Williams, Dielectric and dynamic Kerr-effect studies in liquid systems. Faraday Symp. Chem. Soc. 11, 38 (1977)CrossRefGoogle Scholar
  74. 74.
    M.S. Beevers, D.A. Elliott, G. Williams, Static and dynamic Kerr-effect studies of glycerol in its highly viscous state. J. Chem. Soc. Faraday Trans. 2(76), 112 (1980)CrossRefGoogle Scholar
  75. 75.
    J. Crossley, G. Williams, Structural relaxation in 2-methyl-2,4-pentanediol studied by dielectric and Kerr-effect techniques. J. Chem. Soc. Faraday Trans. 2(73), 1651 (1977)CrossRefGoogle Scholar
  76. 76.
    J. Crossley, G. Williams, Relaxation in hydrogen-bonded liquids studied by dielectric and Kerr-effect techniques. J. Chem. Soc., Faraday Trans. 2 73, 1906 (1977)CrossRefGoogle Scholar
  77. 77.
    W.T. Coffey, B.V. Paranjape, Dielectric and Kerr effect relaxation in alternating electric fields. Proc. R. Ir. Acad. 78, 17 (1978)Google Scholar
  78. 78.
    J.L. Déjardin, P.M. Déjardin, Y.P. Kalmykov, Nonlinear electro-optical response. I. Steady state Kerr effect relaxation arising from a weak ac electric field superimposed on a strong dc bias field. J. Chem. Phys. 106, 5824 (1997)CrossRefGoogle Scholar
  79. 79.
    W.T. Coffey, Y.P. Kalmykov, S.V. Titov, Anomalous nonlinear dielectric and Kerr effect relaxation steady state responses in superimposed ac and dc electric fields. J. Chem. Phys. 126, 084502 (2007)CrossRefPubMedGoogle Scholar
  80. 80.
    M.S. Beevers, J. Crossley, D.C. Garrington, G. Williams, Consideration of dielectric relaxation and the Kerr-effect relaxation in relation to the reorientational motions of molecules. J. Chem. Soc. Faraday Trans. 2 72, 1482 (1976)CrossRefGoogle Scholar
  81. 81.
    C. Thibierge, D. L’Hôte, F. Ladieu, R. Tourbot, A method for measuring the nonlinear response in dielectric spectroscopy through third harmonics detection. Rev. Sci. Instrum. 79, 103905 (2008)CrossRefPubMedGoogle Scholar
  82. 82.
    J.-P. Bouchaud, G. Biroli, Nonlinear susceptibility in glassy systems: a probe for cooperative dynamical length scales. Phys. Rev. B 72, 064204 (2005)CrossRefGoogle Scholar
  83. 83.
    M. Tarzia, G. Biroli, A. Lefèvre, J.-P. Bouchaud, Anomalous nonlinear response of glassy liquids: general arguments and a mode-coupling approach. J. Chem. Phys. 132, 054501 (2010)CrossRefPubMedGoogle Scholar
  84. 84.
    F. Ladieu, C. Brun, D. L’Hôte, Nonlinear dielectric susceptibilities in supercooled liquids: a toy model. Phys. Rev. B 85, 184207 (2012)CrossRefGoogle Scholar
  85. 85.
    C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.-P. Bouchaud, Evidence of growing spatial correlations at the glass transition from nonlinear response experiments. Phys. Rev. Lett. 104, 165703 (2010)CrossRefPubMedGoogle Scholar
  86. 86.
    C. Brun, F. Ladieu, D. L’Hôte, M. Tarzia, G. Biroli, J.-P. Bouchaud, Nonlinear dielectric susceptibilities: accurate determination of the growing correlation volume in a supercooled liquid. Phys. Rev. B 84, 104204 (2011)CrossRefGoogle Scholar
  87. 87.
    C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.-P. Bouchaud, Nonlinear susceptibility measurements in a supercooled liquid close to Tg: growth of the correlation length and possible critical behavior. J. Non-Cryst. Solids 357, 279 (2011)CrossRefGoogle Scholar
  88. 88.
    T. Bauer, P. Lunkenheimer, A. Loidl, Cooperativity and the freezing of molecular motion at the glass transition. Phys. Rev. Lett. 111, 225702 (2013)CrossRefPubMedGoogle Scholar
  89. 89.
    R. Casalini, D. Fragiadakis, C.M. Roland, Dynamic correlation length scales under isochronal conditions. J. Chem. Phys. 142, 064504 (2015)CrossRefPubMedGoogle Scholar
  90. 90.
    S. Albert, T. Bauer, M. Michl, G. Biroli, J.-P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu, Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers. Science 352, 1308 (2016)CrossRefPubMedGoogle Scholar
  91. 91.
    R. Richert, Nonlinear dielectric signatures of entropy changes in liquids subject to time-dependent electric fields. J. Chem. Phys. 144, 114501 (2016)CrossRefPubMedGoogle Scholar
  92. 92.
    B. Schiener, R. Böhmer, A. Loidl, R.V. Chamberlin, Nonresonant spectral hole burning in the slow dielectric response of supercooled liquids. Science 274, 752 (1996)CrossRefGoogle Scholar
  93. 93.
    R. Richert, S. Weinstein, Nonlinear dielectric response and thermodynamic heterogeneity in liquids. Phys. Rev. Lett. 97, 095703 (2006)CrossRefPubMedGoogle Scholar
  94. 94.
    W. Huang, R. Richert, The physics of heating by time-dependent fields: microwaves and water revisited. J. Phys. Chem. B 112, 9909 (2008)CrossRefPubMedGoogle Scholar
  95. 95.
    T. Bauer, P. Lunkenheimer, S. Kastner, A. Loidl, Nonlinear dielectric response at the excess wing of glass-forming liquids. Phys. Rev. Lett. 110, 107603 (2013)CrossRefPubMedGoogle Scholar
  96. 96.
    K.R. Jeffrey, R. Richert, K. Duvvuri, Dielectric hole burning: signature of dielectric and thermal relaxation time heterogeneity. J. Chem. Phys. 119, 6150 (2003)CrossRefGoogle Scholar
  97. 97.
    P. Kim, A.R. Young-Gonzales, R. Richert, Dynamics of glass-forming liquids. XX. Third harmonic experiments of non-linear dielectric effects versus a phenomenological model. J. Chem. Phys. 145, 064510 (2016)CrossRefGoogle Scholar
  98. 98.
    G. Diezemann, Nonlinear response theory for Markov processes: simple models for glassy relaxation. Phys. Rev. E 85, 051502 (2012)CrossRefGoogle Scholar
  99. 99.
    G. Diezemann, Higher-order correlation functions and nonlinear response functions in a Gaussian trap model. J. Chem. Phys. 138, 12A505 (2013)CrossRefPubMedGoogle Scholar
  100. 100.
    G. Diezemann, Nonlinear response functions in an exponential trap model. J. Non-Cryst. Solids 407, 61 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Molecular SciencesArizona State UniversityTempeUSA

Personalised recommendations