Advertisement

Nonlinear Dielectric Relaxation in AC and DC Electric Fields

  • P. M. Déjardin
  • W. T. Coffey
  • F. Ladieu
  • Yu. P. Kalmykov
Chapter
Part of the Advances in Dielectrics book series (ADVDIELECT)

Abstract

Current theories of the nonlinear static and dynamic dielectric susceptibilities of polar fluids subjected to strong AC and DC electric fields are reviewed with specific emphasis on those extending Debye’s theory of linear dielectric relaxation of an assembly of polar molecules. The inclusion of intermolecular interactions in this theory as well as nonlinear dielectric relaxation in the presence of time-dependent fields is discussed. In particular, we emphasize the role played by intermolecular interactions in the determination of the macroscopic dielectric properties of a polar fluid via microscopic calculations, in both the linear and nonlinear responses.

Notes

Acknowledgements

We are indebted to Profs F. van Wijland L.F. Cugliandolo for helpful conversations and for having introduced us to the Dean-Kawasaki formalism.

References

  1. 1.
    P. Debye, Polar Molecules (Chem. Catalog. Co., New York, 1929; Reprinted Dover, New York, 1954)Google Scholar
  2. 2.
    A. Einstein, Investigations on the Theory of the Brownian Movement (Methuen, London, 1926, reprinted by Dover, New York, 1954)Google Scholar
  3. 3.
    W.T. Coffey, Yu.P. Kalmykov, The Langevin Equation, 4th edn. (World Scientific, Singapore, 2017)CrossRefGoogle Scholar
  4. 4.
    H. Benoit, Contribution à l’étude de l’effet Kerr présenté par les solutions de macromolécules rigides. Ann. Phys. 6, 561 (1951)CrossRefGoogle Scholar
  5. 5.
    H. Watanabe, A. Morita, Kerr effect relaxation in high electric fields. Adv. Chem. Phys. 56, 255 (1984)Google Scholar
  6. 6.
    A. Morita, On nonlinear dielectric relaxation. J. Phys. D Appl. Phys. 11, 1357 (1978)CrossRefGoogle Scholar
  7. 7.
    W.T. Coffey, B.V. Paranjape, Dielectric and Kerr effect relaxation in alternating electric fields. Proc. Roy. Ir. Acad. A 78, 17 (1978)Google Scholar
  8. 8.
    V. Rosato, G. Williams, Dynamic Kerr effect and dielectric relaxation of polarizable dipolar molecules, J. Chem. Soc. Faraday Trans. 2 77, 1767 (1981)CrossRefGoogle Scholar
  9. 9.
    T. Furukawa, M. Tada, K. Nakajima, I. Seo, Nonlinear dielectric relaxation in a vinylidene cyanide/vinyl acetate copolymer, Jpn. J. Appl. Phys. 27, 200 (1988); T. Furukawa and K. Matsumoto, Nonlinear dielectric relaxation spectra for polyvinyl acetate, ibid., 31, 840 (1992)CrossRefGoogle Scholar
  10. 10.
    C. Crauste-Thibierge, C. Brun, F. Ladieu, D. l’Hôte, G. Biroli and J.-P. Bouchaud, Evidence of Growing Spatial Correlation at the Glass Transition from Nonlinear Response Experiments, Phys. Rev. Lett. 104, 165703 (2010); C. Brun, F. Ladieu, D. l’Hôte, M. Tarzia, G. Biroli and J.-P. Bouchaud, Nonlinear dielectric susceptibilities : Accurate determination of the growing correlation volume in a supercooled liquid, Phys. Rev. B 84, 104204 (2011)Google Scholar
  11. 11.
    H. Block, E.F. Hayes, Dielectric behavior of stiff polymers in solution when subjected to high voltage gradients. Trans. Faraday Soc. 66, 2512 (1970)CrossRefGoogle Scholar
  12. 12.
    K. De Smet, L. Hellemans, J.F. Rouleau, R. Corteau, T.K. Bose, Rotational relaxation of rigid dipolar molecules in nonlinear dielectric spectra, Phys. Rev. E 57, 1384 (1998); P. Kędziora, J. Jadżyn, K. De Smet, L. Hellemans, Linear and nonlinear dipolar relaxation of 4,4′-n-hexylcyanobiphenyl, J. Mol. Liquids 80, 19 (1999); J. Jadżyn, P. Kędziora, L. Hellemans, Phys. Lett. A 251, 49 (1999); P. Kędziora, J. Jadżyn, K. De Smet, L. Hellemans, Nonlinear dielectric relaxation in non-interacting dipolar systems, Chem. Phys. Lett. 289, 541 (1998)Google Scholar
  13. 13.
    Yu. L. Raikher, V.I. Stepanov and S.V. Burylov, Nonlinear orientation-optical effects in a dipolar particle suspension, Kolloid. Zh. 52, 887 (1990) [Colloid. J. USSR, 52, 768 (1990]; Low-frequency dynamics of the orientational birefringence in a suspension of dipolar particles, J. Coll. Interface Sci. 144, 308 (1991)Google Scholar
  14. 14.
    J.L. Déjardin, Yu. P. Kalmykov, P.M. Déjardin, Birefringence and dielectric relaxation in strong electric fields, Adv. Chem. Phys. 117, 275 (2001); J.L. Déjardin, Yu. P. Kalmykov, Nonlinear dielectric relaxation of polar molecules in a strong ac electric field: Steady state response, Phys. Rev. E 61, 1211 (2000); Steady state response of the nonlinear dielectric relaxation and birefringence in strong superimposed ac and dc bias electric fields: Polar and polarizable molecules, J. Chem. Phys. 112, 2916 (2000); Yu. P. Kalmykov, Matrix method of calculation of the Kerr effect transient and ac stationary responses of arbitrarily shaped macromolecules, J. Chem. Phys. 131, 074107 (2009)Google Scholar
  15. 15.
    R.B. Jones, Transient and steady linear response of dielectric particles in a high bias field subject to a weak AC probe field, J. Phys. Cond. Matter, 14, 7719 (2002); B.U. Felderhof, R.B. Jones, Nonlinear response of a dipolar system with rotational diffusion to an oscillating field, ibid. 15, S1363 (2003); Mean field theory of the nonlinear response of an interacting dipolar system with rotational diffusion to an oscillating field, ibid. 15, 4011 (2003)Google Scholar
  16. 16.
    R. Richert, Frequency dependence of dielectric saturation. Phys. Rev. E 88, 062313 (2013)CrossRefGoogle Scholar
  17. 17.
    G. Meier, A. Saupe, Dielectric relaxation in nematic liquid crystals, Mol. Cryst. 1, 515 (1966); A.J. Martin, G. Meier, A. Saupe, Extended Debye theory for dielectric relaxation in nematic liquid crystals, Symp. Faraday Soc. 5, 119 (1971); P.L. Nordio, G. Rigatti, and U. Segre, Dielectric relaxation theory in nematic liquids, Mol. Phys., 25, 129 (1973); B.A. Storonkin, Theory of dielectric relaxation in nematic liquid crystals, Kristallografiya 30, 841 (1985) [Sov. Phys. Crystallogr. 30, 489 (1985)]; A. Kozak, J.K. Moscicki, G. Williams, On dielectric relaxation in liquid crystals, Mol. Cryst. Liq. Cryst. 201, 1 (1991)CrossRefGoogle Scholar
  18. 18.
    W.T. Coffey, D.S.F. Crothers, Y.P. Kalmykov, J.T. Waldron, Exact solution for the extended Debye theory of dielectric relaxation of nematic liquid crystals, Physica A 213, 551 (1995); Yu.P. Kalmykov, W.T. Coffey, Analytical solutions for rotational diffusion in the mean field potential: application to the theory of dielectric relaxation in nematic liquid crystals, Liquid Cryst. 25, 329 (1998); W.T. Coffey, Yu.P. Kalmykov, Rotational diffusion and dielectric relaxation in nematic liquid crystals, Adv. Chem. Phys. 113, 487 (2000)Google Scholar
  19. 19.
    H.A. Kramers, Brownian Motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284 (1940)CrossRefGoogle Scholar
  20. 20.
    J. Jadzyn, G. Czechowski, R. Douali, and C. Legrand, On the molecular interpretation of the dielectric relaxation of nematic liquid crystals, Liquid Cryst. 26, 1591 (1999); S. Urban, A. Würflinger, and B. Gestblom. On the derivation of the nematic order parameter from the dielectric relaxation time, Phys. Chem. Chem. Phys. 1, 2787 (1999); S. Urban, B. Gestblom, W. Kuczyński, S. Pawlus, and A. Würflinger, Nematic order parameter as determined from dielectric relaxation data and other methods, Phys. Chem. Chem. Phys. 5, 924 (2003); S. Urban, B. Gestblom, and S. Pawlus, Dielectric properties of 4-methoxy-4’-cyanobiphenyl (1 OCB) in the supercooled isotropic and nematic phases, Z. Naturforsch. A, 58, 357 (2003); K. Merkel, A. Kocot, J.K. Vij, G.H. Mehl, and T. Meyer, Orientational order and dynamics of the dendritic liquid crystal organo-siloxane tetrapodes determined using dielectric spectroscopy, Phys. Rev. E, 73, 051702 (2006)Google Scholar
  21. 21.
    P.M. Déjardin and Yu.P. Kalmykov, Relaxation of the magnetization in uniaxial single-domain ferromagnetic particles driven by a strong ac magnetic field, J. Appl. Phys. 106, 123908 (2009); S.V. Titov, P.M. Déjardin, H. El Mrabti, and Yu. P. Kalmykov, Nonlinear magnetization relaxation of superparamagnetic nanoparticles in superimposed ac and dc magnetic bias fields, Phys. Rev. B 82, 100413(R) (2010); H. El Mrabti, S.V. Titov, P.M. Déjardin, and Yu.P. Kalmykov, Nonlinear stationary ac response of the magnetization of uniaxial superparamagnetic nanoparticles, J. Appl. Phys. 110, 023901 (2011); N. Wei, D. Byrne, W.T. Coffey, Yu.P. Kalmykov, and S.V. Titov, Nonlinear frequency-dependent effects in the dc magnetization of uniaxial magnetic nanoparticles in superimposed strong alternating current and direct current fields, J. Appl. Phys. 116, 173903 (2014)Google Scholar
  22. 22.
    P.M. Déjardin, F. Ladieu, Nonlinear susceptibilities of interacting polar molecules in the self-consistent field approximation. J. Chem. Phys. 140, 034506 (2014)CrossRefPubMedGoogle Scholar
  23. 23.
    R. Richert, Nonlinear Dielectric effects in liquids: a guided tour. J. Phys: Cond. Mat. 29, 363001 (2017)Google Scholar
  24. 24.
    R. Courant, D. Hilbert, Methoden der Mathematischen Physik, vol. 1 (Springer, Berlin, 1924)CrossRefGoogle Scholar
  25. 25.
    W.T. Coffey, Yu.P. Kalmykov, N. Wei, Nonlinear normal and anomalous response of non-interacting electric and magnetic dipoles subjected to strong AC and DC bias fields. Nonlinear Dyn. 80, 1861 (2014)CrossRefGoogle Scholar
  26. 26.
    H. Fröhlich, Theory of Dielectrics, 2nd edn. (Oxford University Press, Oxford, 1958)Google Scholar
  27. 27.
    N. Wei, P.M. Déjardin, YuP Kalmykov, W.T. Coffey, External DC bias field effects in the non-linear AC response of permanent dipoles in a mean field potential. Phys. Rev. E 93, 042208 (2016)CrossRefPubMedGoogle Scholar
  28. 28.
    H. Risken, The Fokker-Planck Equation, 2nd edn. (Springer, Berlin, 1989)CrossRefGoogle Scholar
  29. 29.
    D.A. Garanin, Integral relaxation time of single-domain ferromagnetic particles. Phys. Rev. E 54, 3250 (1996)CrossRefGoogle Scholar
  30. 30.
    B.J. Berne, A self-consistent theory of rotational diffusion, J. Chem. Phys. 62, 1154 (1975); M. Warchol and W.E. Vaughan, Forced rotational diffusion of linear molecules. Nonlinear aspects, J. Chem. Phys. 71, 502 (1979)Google Scholar
  31. 31.
    F. Ladieu, D. L’Hôte, C. Brun, Nonlinear dielectric susceptibilities in supercooled liquids: a toy model. Phys. Rev. B 85, 184207 (2012)CrossRefGoogle Scholar
  32. 32.
    P.M. Déjardin and F. Ladieu, unpublished work (2014)Google Scholar
  33. 33.
    J.P. Hansen, I. McDonald, Theory of Simple Liquids, 3rd edn. (Elsevier, Amsterdam, 2006)Google Scholar
  34. 34.
    W.F. Brown, Dielectrics, in Handbuch der Physik, vol. 17, ed. by S. Flügge (Springer, Berlin, 1956), p. 1Google Scholar
  35. 35.
    J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941)Google Scholar
  36. 36.
    P. Madden, D. Kivelson, A consistent molecular treatment of dielectric phenomena. Adv. Chem. Phys. 56, 497 (1984)Google Scholar
  37. 37.
    L. Onsager, Electric moments of molecules in Liquids. J. Am. Chem. Soc. 58, 1486 (1936)CrossRefGoogle Scholar
  38. 38.
    R.P. Bell, The electrostatic energy of dipole molecules in different media. Trans. Faraday Soc. 27, 797 (1931)CrossRefGoogle Scholar
  39. 39.
    M.W. Evans, G.J. Evans, W.T. Coffey, P. Grigolini, Molecular dynamics and the theory of broad, vol. Spectroscopy (Wiley, New York, 1982)Google Scholar
  40. 40.
    J.G. Kirkwood, The dielectric polarization of polar liquids. J. Chem. Phys. 7, 911 (1939)CrossRefGoogle Scholar
  41. 41.
    B.K.P. Scaife, Complex Permittivity (English Universities Press, London, 1971)Google Scholar
  42. 42.
    G. Oster, J.G. Kirkwood, The influence of hindered molecular rotation on the dielectric constants of water, alcohols, and other polar liquids. J. Chem. Phys. 11, 175 (1943)CrossRefGoogle Scholar
  43. 43.
    T.S. Nee, R. Zwanzig, Theory of dielectric relaxation in polar liquids. J. Chem. Phys. 58, 6353 (1970)CrossRefGoogle Scholar
  44. 44.
    E. Fatuzzo, P.R. Mason, A calculation of the complex dielectric constant of a polar liquid by the librating molecule method. Proc. Phys. Soc. 90, 729 (1967)CrossRefGoogle Scholar
  45. 45.
    W.T. Coffey, B.K.P. Scaife, On the theory of dielectric saturation of polar fluids, Proc. Roy. Irish. Acad. A 76, 195 (1976); W.T. Coffey, B.K.P. Scaife, On the solution of some potential problems for a nonlinear dielectric, J. Electrostatics 1, 193 (1975); W.T. Coffey, Ph.D. Thesis (The University of Dublin, 1975)Google Scholar
  46. 46.
    C.J.F. Böttcher, Theory of Electric Polarization, vol. I (Elsevier, Amsterdam, 1973)Google Scholar
  47. 47.
    B.K.P. Scaife, Principles of Dielectrics, 2nd edn. (Clarendon, Oxford, 1998)Google Scholar
  48. 48.
    J.H. Van Vleck, On the role of dipole-dipole coupling in dielectric media. J. Chem. Phys. 5, 556 (1937)CrossRefGoogle Scholar
  49. 49.
    J.M. Thiébaut, Thèse de 3e Cycle, (Nancy, 1968)Google Scholar
  50. 50.
    S. Kielich, Semi-macroscopic treatment of the theory of nonlinear phenomena in dielectric liquids subjected to strong electric and magnetic fields. Acta Phys. Pol. 17, 239–255 (1958)Google Scholar
  51. 51.
    J. Barriol, J.L. Greffe, Relations between the Microscopic Model of Polarizable Dielectrics and the Macroscopic Model II: Dielectric Saturation and Fluctuation of the Dielectric Moment. J. Chim. Phys. 66, 575 (1969)CrossRefGoogle Scholar
  52. 52.
    K. Kawasaki, Stochastic Model of slow dynamics in supercooled liquids and dense colloidal suspensions, Physica A 208, 35 (1994); D.S. Dean, Langevin equation for a system of interacting Langevin processes, J. Phys. A : Math. Gen. 29, L613 (1996)CrossRefGoogle Scholar
  53. 53.
    L.F. Cugliandolo, P.M. Déjardin, G.S. Lozano, F. van Wijland, Stochastic dynamics of collective modes for Brownian dipoles. Phys. Rev. E 91, 032139 (2015)CrossRefGoogle Scholar
  54. 54.
    B.J. Berne, A self-consistent theory of rotational diffusion. J. Chem. Phys. 62, 1154 (1975)CrossRefGoogle Scholar
  55. 55.
    P.M. Déjardin, Y. Cornaton, P. Ghesquière, C. Caliot, R. Brouzet, Calculation of linear and nonlinear orientational correlation factors of polar liquids from the rotational Dean-Kawasaki equation. J. Chem. Phys. 148, 044504 (2018)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • P. M. Déjardin
    • 1
  • W. T. Coffey
    • 2
  • F. Ladieu
    • 3
  • Yu. P. Kalmykov
    • 1
  1. 1.Laboratoire de Mathématiques et de Physique (LAMPS, EA4217)Université de Perpignan via DomitiaPerpignanFrance
  2. 2.Department of Electronic and Electrical EngineeringTrinity CollegeDublin 2Ireland
  3. 3.SPEC, CEA, CNRSUniversité Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations