Nonlinear Oscillatory Shear Mechanical Responses

  • Kyu Hyun
  • Manfred WilhelmEmail author
Part of the Advances in Dielectrics book series (ADVDIELECT)


Mechanical dynamic oscillatory shear test is generally used to characterize and investigate mechanical properties of complex fluids or soft matters. Especially, small amplitude oscillatory shear (SAOS) tests are the canonical method for probing the linear viscoelastic properties of complex fluids because of the firm theoretical background and the ease of implementing suitable test protocols. Material functions of SAOS tests are analogous with dielectric functions from dielectric spectroscopy. However, recently nonlinear responses under large amplitude oscillatory shear (LAOS) flows are also under the spotlight due to usefulness to characterize complex fluids. In this chapter, LAOS tests are reviewed. The key to successful LAOS test is the analysis and fundamental understanding of the nonlinear mechanical responses. To analyze nonlinear responses, there are several analyzing methods and various nonlinear material functions suggested by several researchers. Among the several methods available, FT (Fourier transform)-rheology is intensively reviewed. Finally, several applications to investigate complex fluids (polymer melt and solution, polymer composite and blend, emulsion and block copolymer, and so on) are introduced.


SAOS LAOS FT-rheology 



The KH acknowledge the financial support of the Alexander von Humboldt Foundation. The authors thank Valerian Hirschberg, Miriam Cziep, and Hyeong Yong Song for supplying figures and Carlo Botha for English proofreading.


Substantial parts (especially Sect. 3 and 4) of this chapter are taken from a rheological review [3] where rheological nonlinearities are explained in more detail but might not be read by scientists with a background in dielectric spectroscopy. Consequently, this chapter will be very helpful for the reader with a dielectric background to envision the similar concepts of both methodologies.


  1. 1.
    R.G. Larson, The structure and rheology of complex fluids (Oxford University Press, New York, 1999)Google Scholar
  2. 2.
    F.A. Morrison, Understanding Rheology (Oxford University Press, New York, 2001)Google Scholar
  3. 3.
    K. Hyun, M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, G.H. McKinley, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 36, 1697–1753 (2011)CrossRefGoogle Scholar
  4. 4.
    J.D. Ferry, Viscoelastic Properties of Polymers (Wiley, NY, 1980)Google Scholar
  5. 5.
    R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric Liquids, vol. 1 (Wiley, NY, 1987)Google Scholar
  6. 6.
    N.W. Tschoegl, The phenomenological theory of linear viscoelastic behavior: an introduction (Springer-Verlag, NY, 1989)CrossRefGoogle Scholar
  7. 7.
    J.M. Dealy, K.F. Wissbrun, Melt rheology and its role in plastics processing: theory and applications (VNR, NY, 1990)Google Scholar
  8. 8.
    F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003)CrossRefGoogle Scholar
  9. 9.
    Dealy J.M., Larson R.G. Structure and rheology of molten polymers (2006)Google Scholar
  10. 10.
    M. Wilhelm, Fourier-transform rheology. Macromol. Mater. Eng. 287, 83–105 (2002)CrossRefGoogle Scholar
  11. 11.
    A.J. Giacomin, J.M. Dealy, Large-amplitude oscillatory shear, in Techniques in Rheological Measurements, Chapter 4, ed. by A.A. Collyer (Chapman and Hall, London, 1993)Google Scholar
  12. 12.
    H.M. Wyss, K. Miyazaki, J. Mattsson, Z. Hu, D.R. Reichmann, D.A. Weitz, Strain-Rate Frequency Superposition: A Rheological Probe of Structural Relaxation in Soft Materials. Phys. Rev. Lett. 98, 238303 (2007)CrossRefPubMedGoogle Scholar
  13. 13.
    Y.H. Wen, J.L. Schaefer, L.A. Archer, Dynamics and Rheology of Soft Colloidal Glasses. ACS Macro Lett. 4(1), 119–123 (2015)CrossRefGoogle Scholar
  14. 14.
    K. Hyun, S.H. Kim, K.H. Ahn, S.J. Lee, Large amplitude oscillatory shear as a way to classify the complex. J. Non-newtonian Fluid Mech. 107, 51–65 (2002)CrossRefGoogle Scholar
  15. 15.
    M. Sugimoto, Y. Suzuki, K. Hyun, K.H. Ahn, T. Ushioda, A. Nishioka, T. Taniguchi, K. Koyama, Melt rheology of long-chain-branched polypropylenes. Rheol. Acta 46, 33–44 (2006)CrossRefGoogle Scholar
  16. 16.
    K. Hyun, J.G. Nam, M. Wilhelm, K.H. Ahn, S.J. Lee, Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow. Korea-Australia Rheology J 15, 97–105 (2003)Google Scholar
  17. 17.
    O.C. Klein, H.W. Spiess, A. Calin, C. Balan, M. Wilhelm, Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40, 4250–4259 (2007)CrossRefGoogle Scholar
  18. 18.
    K.S. Cho, K. Hyun, K.H. Ahn, S.J. Lee, A geometrical interpretation of large amplitude oscillatory shear response. J. Rheol. 49, 747–758 (2005)CrossRefGoogle Scholar
  19. 19.
    R.H. Ewoldt, A.E. Hosoi, G.H. McKinley, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52, 1427–1458 (2008)CrossRefGoogle Scholar
  20. 20.
    W. Yu, P. Wang, C. Zhou, General stress decomposition in nonlinear oscillatory shear flow. J. Rheol. 53, 215–238 (2009)CrossRefGoogle Scholar
  21. 21.
    K. Reinheimer, J. Kübel, M. Wilhelm, Optimizing the sensitivity of FT-Rheology to quantify and differentiate for the first time the nonlinear mechanical response of dispersed beer foams of light and dark beer. Z. Phys. Chem. 226, 547–567 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Onogi, T. Masuda, T. Matsumoto, Nonlinear behavior of viscoelastic materials. I. Disperse systems of polystyrene solution and carbon black. Trans. Soc. Rheol. 14, 275–294 (1970)CrossRefGoogle Scholar
  23. 23.
    S.G. Hatzikiriakos, J.M. Dealy, Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies. J. Rheol. 35, 497–523 (1991)CrossRefGoogle Scholar
  24. 24.
    S.G. Hatzikiriakos, J.M. Dealy, Role of slip and fracture in the oscillating flow of HDPE in a capillary. J. Rheol. 36, 845–884 (1992)CrossRefGoogle Scholar
  25. 25.
    M.D. Graham, Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows. J. Rheol. 39, 697–712 (1995)CrossRefGoogle Scholar
  26. 26.
    D.W. Adrian, A.J. Giacomin, The quasi-periodic nature of a polyurethane melt in oscillatory shear. J. Rheol. 36, 1227–1243 (1992)CrossRefGoogle Scholar
  27. 27.
    A.S. Yoshimura, R.K. Prud’homme, Wall slip effects on dynamic oscillatory measurements. J. Rheol. 32, 575–584 (1988)CrossRefGoogle Scholar
  28. 28.
    K. Atalık, R. Keunings, On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear. J. Non-newtonian Fluid. Mech. 122, 107–116 (2004)CrossRefGoogle Scholar
  29. 29.
    M. Wilhelm, D. Maring, H.W. Spiess, Fourier-transform rheology. Rheol. Acta. 37, 399–405 (1998)CrossRefGoogle Scholar
  30. 30.
    J.A. Yosick, A.J. Giacomin, W.E. Stewart, F. Ding, Fluid inertia in large amplitude oscillatory shear. Rheol. Acta 37, 365–373 (1998)CrossRefGoogle Scholar
  31. 31.
    R. Mas, A. Magnin, Experimental validation of steady shear and dynamic viscosity relation for yield stress fluids. Rheol. Acta 36, 49–55 (1997)CrossRefGoogle Scholar
  32. 32.
    J.L. Leblanc, Investigating the nonlinear viscoelastic behavior of rubber materials through Fourier transform rheometry. J. Appl. Polym. Sci. 95, 90–106 (2005)CrossRefGoogle Scholar
  33. 33.
    V. Hirschberg, M. Wilhelm, D. Rodrigue, Fatigue Behavior of Polystyrene (PS) analyzed from the Fourier Transform (FT) of its Stress Response: First evidence of I2/1(N) and I3/1(N) as new fingerprints. Polym. Test. 60, 343–350 (2017)CrossRefGoogle Scholar
  34. 34.
    K. Hyun, E.S. Baik, K.H. Ahn, S.J. Lee, M. Sugimoto, K. Koyama, Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts. J. Rheol. 51, 1319–1342 (2007)CrossRefGoogle Scholar
  35. 35.
    K. Hyun, M. Wilhelm, Establishing a New Mechanical Nonlinear coefficient Q from FT-Rheology: first investigation on entangled linear and comb polymer model systems. Macromolecules 42, 411–422 (2009)CrossRefGoogle Scholar
  36. 36.
    D.M. Holye, D. Auhl, O.G. Harlen, V.C. Barroso, M. Wilhelm, T.C.B. McLeish, Large amplitude oscillatory shear and Fourier transform rheology analysis of branched polymer melts. J. Rheol. 58, 969–997 (2014)CrossRefGoogle Scholar
  37. 37.
    A.K. Gurnon, N.J. Wagner, Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameter: giesekus model of banding and nonbanding wormlike micelles. J. Rheol. 56, 333–351 (2012)CrossRefGoogle Scholar
  38. 38.
    R.B. Bird, A.J. Giacomin, A.M. Schmalzer, C. Aumnate, Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: shear stress response. J. Chem. Phys. 140, 074904 (2014)CrossRefPubMedGoogle Scholar
  39. 39.
    D.S. Pearson, W.E. Rochefort, Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields. J. Polym. Sci. Polym. Phys. Ed. 20, 83–98 (1982)CrossRefGoogle Scholar
  40. 40.
    M.H. Wagner, V.H. Rolón-Garrido, K. Hyun, M. Wilhelm, Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers. J. Rheol. 55, 495–516 (2011)CrossRefGoogle Scholar
  41. 41.
    M. Abbasi, N.G. Ebrahimi, M. Wilhelm, Investigation of the rheological behavior of industrial tubular and autoclave LDPEs under SAOS, LAOS, and transient shear, and elongational flows compared with predictions from the MSF theory. J. Rheol. 57, 1693–1714 (2013)CrossRefGoogle Scholar
  42. 42.
    A.J. Giacomin, R.B. Bird, L.M. Johnson, A.W. Mix, Large-amplitude oscillatory shear flow from the corotational Maxwell model. J. Non-Newt. Fluid Mech. 166, 1081–1099 (2011)CrossRefGoogle Scholar
  43. 43.
    D. Merger, M. Abbasi, J. Merger, A.J. Giacomin, Ch. Saengow, M. Wilhelm, Simple scalar model for large amplitude oscillatory shear. Appl. Rheol. 26, 53809 (2016)Google Scholar
  44. 44.
    M.A. Cziep, M. Abbasi, M. Heck, L. Arens, M. Wilhelm, Effect of molecular weight, polydispersity and monomer of linear homopolymer melts on the intrinsic mechanical nonlinearity 3Q0(w) in MAOS. Macromolecules 49, 3566–3579 (2016)CrossRefGoogle Scholar
  45. 45.
    H.Y. Song, S.J. Park, K. Hyun, Characterization of Dilution Effect of Semi-dilute Polymer Solution on Intrinsic Nonlinearity Q0 via FT-rheology. Macromolecules 50, 6238–6254 (2017)CrossRefGoogle Scholar
  46. 46.
    J.L. Leblanc, Large amplitude oscillatory shear experiments to investigate the nonlinear viscoelastic properties of highly loaded carbon black rubber compounds without curatives. J. Appl. Poly. Sci. 109, 1271–1293 (2008)CrossRefGoogle Scholar
  47. 47.
    J.L. Leblanc, Non-linear viscoelastic characterization of natural rubber gum through large amplitude harmonic experiments. J. Rubber. Res. 10, 63–88 (2007)Google Scholar
  48. 48.
    G. Fleury, G. Schlatter, R. Muller, Nonlinear rheology for long chain branching characterization, comparison of two methodologies: fourier Transform rheology and relaxation. Rheol. Acta 44, 174–187 (2004)CrossRefGoogle Scholar
  49. 49.
    G. Schlatter, G. Fleury, R. Muller, Fourier transform rheology of branched polyethylene: experiments and models for assessing the macromolecular architecture. Macromolecules 38, 6492–6503 (2005)CrossRefGoogle Scholar
  50. 50.
    I. Vittorias, M. Parkinson, K. Klimke, B. Debbaut, M. Wilhelm, Detection and quantification of industrial polyethylene branching topologies via Fourier-transform rheology. NMR and simulation using the Pom-pom model Rheol. Acta 46, 321–340 (2007)Google Scholar
  51. 51.
    T. Neidhöfer, S. Sioula, N. Hadjichristidis, M. Wilhelm, Distinguishing linear from star-branched polystyrene solutions with Fourier-Transform rheology. Macromol. Rapid Commun. 25, 1921–1926 (2004)CrossRefGoogle Scholar
  52. 52.
    M. Kempf, D. Ahirwal, M. Cziep, M. Wilhelm, Synthesis and linear and nonlinear melt rheology of well-defined comb architectures of PS and PpMS with a low and controlled degree of long-chain branching. Macromolecules 46, 4978–4994 (2013)CrossRefGoogle Scholar
  53. 53.
    H.T. Lim, K.H. Ahn, J.S. Hong, K. Hyun, Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow. J. Rheol. 57, 767–789 (2013)CrossRefGoogle Scholar
  54. 54.
    L. Schwab, N. Hojdis, J. Lacayo-Pineda, M. Wilhelm, Fourier-Transform rheology of unvulcanized, carbon black filled styrene butadiene rubber. Macromol. Mat. Eng. 301, 457–468 (2016)CrossRefGoogle Scholar
  55. 55.
    W. Yu, M. Bousmina, C. Zhou, Note on morphology determination in emulsions via rheology. J. Non-newtonian Fluid. Mech. 133, 57–62 (2006)CrossRefGoogle Scholar
  56. 56.
    C. Carotenuto, M. Gross, P.L. Maffetone, Fourier transform rheology of dilute immiscible polymer blends: a novel procedure to probe blend morphology. Macromolecules 41, 4492–4500 (2008)CrossRefGoogle Scholar
  57. 57.
    K. Reinheimer, M. Grosso, F. Hetzel, J. Kübel, M. Wilhelm, Fourier Transform Rheology as a universal non-linear mechanical characterization of droplet size and interfacial tension of dilute monodisperse emulsions. J. Colloid Interface Sci. 360, 818–825 (2011)CrossRefPubMedGoogle Scholar
  58. 58.
    K. Reinheimer, M. Grosso, F. Hetzel, J. Kübel, M. Wilhelm, Fourier Transform Rheology as an innovative morphological characterization technique for the emulsion volume average radius and its distribution. J. Colloid Interface Sci. 380, 201–212 (2012)CrossRefPubMedGoogle Scholar
  59. 59.
    R. Salehiyan, Y. Yoo, W.J. Choi, K. Hyun, Characterization of morphologies of compatibilized polypropylene/polystyrene blends with nanoparticles via nonlinear rheological properties from FT-rheology. Macromolecules 47, 4066–4076 (2014)CrossRefGoogle Scholar
  60. 60.
    R. Salehiyan, H.Y. Song, W.J. Choi, K. Hyun, Characterization of effects of silica nanoparticles on (80/20) PP/PS blends via nonlinear rheological properties from fourier transform rheology. Macromolecules 48, 4669–4679 (2015)CrossRefGoogle Scholar
  61. 61.
    R. Salehiyan, H.Y. Song, M. Kim, W.J. Choi, K. Hyun, Morphological evaluation of pp/ps blends filled with different types of clays by nonlinear rheological analysis. Macromolecules 49, 3148–3160 (2016)CrossRefGoogle Scholar
  62. 62.
    H.G. Ock, K.H. Ahn, S.J. Lee, K. Hyun, Characterization of compatibilizing effect of organoclay in poly(lactic acid) and natural rubber blends by FT-rheology. Macromolecules 49, 2832–2842 (2016)CrossRefGoogle Scholar
  63. 63.
    T. Meins, N. Dingenouts, J. Kübel, M. Wilhelm, In-situ Rheo-Dielectric, ex-situ 2D-SAXS and FT-Rheology investigations of the shear induced alignment of Poly(styrene-b-1,4-isoprene) diblock copolymer melts. Macromolecules 45, 7206–7219 (2012)CrossRefGoogle Scholar
  64. 64.
    C. Oelschlaeger, J.S. Gutmann, M. Wolkenauer, H.W. Spiess, K. Knoll, M. Wilhelm, Kinetics of shear microphase orientation and reorientation in lamellar diblock and triblock copolymer melts as detected via FT-Rheology and 2D-SAXS. Macromol. Chem. Phys. 208, 1719–1729 (2007)CrossRefGoogle Scholar
  65. 65.
    S.H. Lee, H.Y. Song, K. Hyun, Lee JH. Nonlinearity from FT-rheology for liquid crystal 8CB under large amplitude oscillatory shear (LAOS) flow. J. Rheol. 59, 1–19 (2015)CrossRefGoogle Scholar
  66. 66.
    B. Struth, K. Hyun, E. Kats, T. Meins, M. Walther, M. Wilhelm, G. Grübel, Observation of New States of Liquid Crystal 8CB under Nonlinear Shear Conditions as Observed via a Novel and Unique Rheology/Small-Angle X-ray Scattering Combination. Langmuir 27, 2880–2887 (2011)CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical and Biomolecular EngineeringPusan National UniversityBusanSouth Korea
  2. 2.Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations