Advertisement

Nonlinear Dielectric Response of Polar Liquids

  • Dmitry V. Matyushov
Chapter
Part of the Advances in Dielectrics book series (ADVDIELECT)

Abstract

The linear dielectric constant of a polar molecular material is mostly the function of the molecular dipole moment and of the binary correlations between the dipoles. The dielectric response becomes nonlinear for a sufficiently strong electric field gaining a dielectric decrement proportional, in the lowest order, to the squared field magnitude. The alteration of the dielectric response with the electric field is governed by a combination of binary and three- and four-particle dipolar correlations and thus provides new structural information absent in the linear response. Similar higher order correlations between the molecular dipoles enter the temperature derivative of the linear dielectric constant. Mean-field models, often applied to construct theories of linear dielectric response, fail to account for these multi-particle correlations and do not provide an adequate description of the nonlinear dielectric effect. Perturbation theories of polar liquids offer a potential resolution. They have shown promise in describing the elevation of the glass transition temperature by an external electric field. The application of such models reveals a fundamental distinction in polarization of low-temperature glass formers close to the glass transition and high-temperature, low-viscous liquids. The dielectric response of the former is close to the prescription of Maxwell’s electrostatics where surface charge is created at any dielectric interface. On the contrary, rotations of interfacial dipoles are allowed in high-temperature liquids, and they effectively average the surface charge out to zero. Models capturing this essential physics will be required for the theoretical description of the nonlinear dielectric effect in these two types of polar materials.

Notes

Acknowledgements

This research was supported by the National Science Foundation (CHE-1800243). The author is grateful to Ranko Richert for many fruitful discussions.

References

  1. 1.
    G. Adam, J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965)CrossRefGoogle Scholar
  2. 2.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1996)Google Scholar
  3. 3.
    C.A. Angell, Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995)CrossRefPubMedGoogle Scholar
  4. 4.
    C.J.F. Böttcher, Theory of Electric Polarization, vol. 1 (Elsevier, Amsterdam, 1973)Google Scholar
  5. 5.
    D.M. Burland, R.D. Miller, C.A. Walsh, Second-order nonlinearity in poled-polymer systems. Chem. Rev. 94, 31–75 (1994)CrossRefGoogle Scholar
  6. 6.
    D.Y.C. Chan, D.J. Mitchell, B.W. Ninham, A model of solvent structure around ions. J. Chem. Phys. 70(6), 2946–2957 (1979)CrossRefGoogle Scholar
  7. 7.
    A. Chełkowski, Dielectric Physics (Elsevier Scientific Pub. Co., Amsterdam, 1980)Google Scholar
  8. 8.
    Y. Chen, H.I. Okur, N. Gomopoulos, C. Macias-Romero, P.S. Cremer, P.B. Petersen, G. Tocci, D.M. Wilkins, C. Liang, M. Ceriotti, S. Roke, Electrolytes induce long-range orientational order and free energy changes in the H-bond network of bulk water. Sci. Adv. 2(4), e1501891 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    T. Christensen, N.B. Olsen, Determination of the frequency-dependent bulk modulus of glycerol using a piezoelectric spherical-shell. Phys. Rev. B 49(21), 15396–15399 (1994)CrossRefGoogle Scholar
  10. 10.
    K. Clays, A. Persoons, Hyper-Rayleigh scattering in solution. Phys. Rev. Lett. 66, 2980–2983 (1991)CrossRefPubMedGoogle Scholar
  11. 11.
    L. Comez, D. Fioretto, F. Scarponi, G. Monaco, Density fluctuations in the intermediate glass-former glycerol: a Brillouin light scattering study. J. Chem. Phys. 119(12), 6032 (2003)CrossRefGoogle Scholar
  12. 12.
    P. Debye, Dielektrische Sättigung und Behinderung der freien Rotation in Flüssigheiten. Z. Phys. Chem. 36, 193–194 (1935)Google Scholar
  13. 13.
    J.L. Déjardin, Y.P. Kalmykov, Nonlinear dielectric relaxation of polar molecules in a strong ac electric field: steady state response. Phys. Rev. E 61(2), 1211–1217 (2000).CrossRefGoogle Scholar
  14. 14.
    G.I. Egorov, D.M. Makarov, Volumetric properties of binary liquid-phase mixture of (water+glycerol) at temperatures of (278.15 to 323.15) K and pressures of (0.1 to 100) MPa. J. Chem. Thermodyn. 79, 135–158 (2014)CrossRefGoogle Scholar
  15. 15.
    R.P. Feynman, Statistical Mechanics (Westview Press, Boulder, CO, 1998)Google Scholar
  16. 16.
    H.S. Frank, Thermodynamics of a fluid substance in the electrostatic field. J. Chem. Phys. 23(11), 2023–2032 (1955)CrossRefGoogle Scholar
  17. 17.
    H. Fröhlich, Theory of Dielectrics (Oxford University Press, Oxford, 1958)Google Scholar
  18. 18.
    R.L. Fulton, On the theory of nonlinear dielectrics. J. Chem. Phys. 78(11), 6865–6876 (1983)CrossRefGoogle Scholar
  19. 19.
    R.L. Fulton, The nonlinear dielectric behavior of water: comparisons of various approaches to the nonlinear dielectric increment. J. Chem. Phys. 130(20), 204503 (2009)CrossRefPubMedGoogle Scholar
  20. 20.
    R.L. Fulton, Linear and nonlinear dielectric theory for a slab: the connections between the phenomenological coefficients and the susceptibilities. J. Chem. Phys. 145(8), 084105 (2016)CrossRefPubMedGoogle Scholar
  21. 21.
    C.W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1997)Google Scholar
  22. 22.
    C.G. Gray, K.E. Gubbins, Theory of Molecular Liquids (Clarendon Press, Oxford, 1984)Google Scholar
  23. 23.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 4th edn. (Academic Press, Amsterdam, 2013)Google Scholar
  24. 24.
    J.S. Høye, G. Stell, Statistical mechanics of polar systems. II. J. Chem. Phys. 64(5), 1952–1966 (1976)CrossRefGoogle Scholar
  25. 25.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)Google Scholar
  26. 26.
    G.P. Johari, Effects of electric field on the entropy, viscosity, relaxation time, and glass-formation. J. Chem. Phys. 138(15), 154503 (2013)CrossRefPubMedGoogle Scholar
  27. 27.
    J.G. Kirkwood, The dielectric polarization of polar liquids. J. Chem. Phys. 7(10), 911–919 (1939)CrossRefGoogle Scholar
  28. 28.
    R. Kubo, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)CrossRefGoogle Scholar
  29. 29.
    P.G. Kusalik, Computer simulation study of a highly polar fluid under the influence of static electric fields. Mol. Phys. 81(1), 199–216 (1994)CrossRefGoogle Scholar
  30. 30.
    D.P. Landau, K. Binder, Monte Carlo simulations in statistical physics (Cambridge University Press, Cambridge, 2000)Google Scholar
  31. 31.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984)Google Scholar
  32. 32.
    B. Larsen, J.C. Rasaiah, G. Stell, Thermodynamic perturbation theory for multipolar and ionic liquids. Mol. Phys. 33, 987 (1977)CrossRefGoogle Scholar
  33. 33.
    P. Linse, G. Karlström, Dipolar order in molecular fluids: II. Molecular influence. J. Stat. Phys. 145(2), 418–440 (2011)CrossRefGoogle Scholar
  34. 34.
    P. Lunkenheimer, M. Michl, T. Bauer, A. Loidl, Investigation of nonlinear effects in glassy matter using dielectric methods. Eur. Phys. J. Special Topics 226(14), 3157–3183 (2017)CrossRefGoogle Scholar
  35. 35.
    P. Madden, D. Kivelson, A consistent molecular treatment of dielectric phenomena. Adv. Chem. Phys. 56, 467–566 (1984)Google Scholar
  36. 36.
    Y. Marcus, Electrostriction in electrolyte solutions. Chem. Rev. 111(4), 2761–2783 (2011)CrossRefPubMedGoogle Scholar
  37. 37.
    Y. Marcus, Ions in Solution and their Solvation (Wiley, New Jersey, 2015)CrossRefGoogle Scholar
  38. 38.
    Y. Marcus, G. Hefter, On the pressure and electric field dependencies of the relative permittivity of liquids. J. Sol. Chem. 28(5), 575–592 (1999)CrossRefGoogle Scholar
  39. 39.
    D.R. Martin, A.D. Friesen, D.V. Matyushov, Electric field inside a “Rossky cavity” in uniformly polarized water. J. Chem. Phys. 135, 084514 (2011)CrossRefPubMedGoogle Scholar
  40. 40.
    D.R. Martin, D.V. Matyushov, Microscopic fields in liquid dielectrics. J. Chem. Phys. 129, 174508 (2008)CrossRefPubMedGoogle Scholar
  41. 41.
    D.R. Martin, D.V. Matyushov, Terahertz absorption of lysozyme in solution. J. Chem. Phys. 146, 084502 (2017)CrossRefGoogle Scholar
  42. 42.
    L.M. Martinez, C.A. Angell, A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663 (2001)CrossRefPubMedGoogle Scholar
  43. 43.
    D.V. Matyushov, Electrostatics of liquid interfaces. J. Chem. Phys. 140, 224506 (2014)CrossRefPubMedGoogle Scholar
  44. 44.
    D.V. Matyushov, Nonlinear dielectric response of polar liquids. J. Chem. Phys. 142, 244502 (2015)CrossRefPubMedGoogle Scholar
  45. 45.
    D.V. Matyushov, Configurational entropy of polar glass formers and the effect of electric field on glass transition. J. Chem. Phys. 145, 034504 (2016)CrossRefPubMedGoogle Scholar
  46. 46.
    D.V. Matyushov, Response to “Comment on ‘Nonlinear dielectric response of polar liquids”’ [J. Chem. Phys. 144, 087101 (2016)]. J. Chem. Phys. 144, 087102 (2016)Google Scholar
  47. 47.
    D.V. Matyushov, R. Richert, Communication: temperature derivative of the dielectric constant gives access to multipoint correlations in polar liquids. J. Chem. Phys. 144, 041102 (2016)CrossRefPubMedGoogle Scholar
  48. 48.
    J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1. Dover Publications, New York (1954, sec. 63)Google Scholar
  49. 49.
    M. Neumann, Computer simulation and the dielectric constant at fimite wavelength. Mol. Phys. 57, 97 (1986)CrossRefGoogle Scholar
  50. 50.
    F. Novelli, S. Ostovar Pour, J. Tollerud, A. Roozbeh, D.R.T. Appadoo, E.W. Blanch, J.A. Davis, Time-domain THz spectroscopy reveals coupled protein-hydration dielectric response in solutions of native and fibrils of human lysozyme. J. Phys. Chem. B 121, 4810–4816 (2017)CrossRefPubMedGoogle Scholar
  51. 51.
    H. Nyquist, Thermal agitation of electric charge in conductors. Phys. Rev. 32(1), 110–113 (1928)CrossRefGoogle Scholar
  52. 52.
    L. Onsager, Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486–1493 (1936)CrossRefGoogle Scholar
  53. 53.
    F.O. Raineri, H. Resat, H.L. Friedman, Static longitudinal dielectric function of model molecular fluids. J. Chem. Phys. 96, 3068 (1992)CrossRefGoogle Scholar
  54. 54.
    J.D. Ramshaw, Exsistence of the dielectric constant in regid-dipole fluids: the direct correlation function. J. Chem. Phys. 57, 2684 (1972)CrossRefGoogle Scholar
  55. 55.
    R. Richert, Supercooled liquids and glasses by dielectric relaxation spectroscopy. Adv. Chem. Phys. 156, 101–195 (2015)Google Scholar
  56. 56.
    R. Richert, Nonlinear dielectric effects in liquids: a guided tour. J. Phys.: Cond. Matter 29(36), 363001–363025 (2017)Google Scholar
  57. 57.
    R. Richert, A.C. Angell, Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configuration entropy. J. Chem. Phys. 108, 9016 (1998)CrossRefGoogle Scholar
  58. 58.
    S. Samanta, R. Richert, Electrorheological source of nonlinear dielectric effects in molecular glass-forming liquids. J. Phys. Chem. B 120(31), 7737–7744 (2016)CrossRefPubMedGoogle Scholar
  59. 59.
    R. Schmid, D.V. Matyushov, Entropy of attractive forces and molecular nonsphericity in real liquids: a measure of structural ordering. J. Phys. Chem. 99, 2393 (1995)CrossRefGoogle Scholar
  60. 60.
    S. Seyedi, D.R. Martin, D.V. Matyushov (unpublished)Google Scholar
  61. 61.
    L.P. Singh, R. Richert, Watching hydrogen-bonded structures in an alcohol convert from rings to chains. Phys. Rev. Lett. 109(16), 167802 (2012)CrossRefPubMedGoogle Scholar
  62. 62.
    G. Stell, Fluids with long-range forces: toward a simple analytic theory, in Statistical Mechanics. Part A: Equilibrium Techniques, ed. by B.J. Berne (Plenum, New York, 1977)CrossRefGoogle Scholar
  63. 63.
    G. Stell, G.N. Patey, J.S. Høye, Dielectric constants of fluid models: statistical mechanical theory and its quantitative implementation. Adv. Chem. Phys. 48, 183–328 (1981)Google Scholar
  64. 64.
    J.H. van Vleck, On the role of dipole-dipole coupling in dielectric media. J. Chem. Phys. 5(7), 556–568 (1937)CrossRefGoogle Scholar
  65. 65.
    M.S. Wertheim, Theory of polar fluids: V. Thermodynamics and thermodynamic perturbation theory. Mol. Phys. 37(1), 83–94 (1979)CrossRefGoogle Scholar
  66. 66.
    A.R. Young-Gonzales, K. Adrjanowicz, M. Paluch, R. Richert, Nonlinear dielectric features of highly polar glass formers: derivatives of propylene carbonate. J. Chem. Phys. 147(22), 224501–224511 (2017)CrossRefPubMedGoogle Scholar
  67. 67.
    C. Zhang, G. Galli, Dipolar correlations in liquid water. J. Chem. Phys. 141(8), 084504–084506 (2014)CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and School of Molecular SciencesArizona State UniversityTempeUSA

Personalised recommendations