Adapting Product-Service System Methods for the Digital Era: Requirements for Smart PSS Engineering

  • Simon HagenEmail author
  • Friedemann Kammler
  • Oliver Thomas
Conference paper
Part of the Springer Proceedings in Business and Economics book series (SPBE)


In the past a lot of work has been spent on creating and improving methods to develop integrated systems consisting of products and services, named product-service systems (PSS). Due to the different disciplines involved in creating and maintaining these systems, e.g. service engineering, product and production engineering or information systems, the interfaces between the stakeholders have to be defined to integrate them and to make them work seamlessly. However, in recent years the concept of PSS shifted, influenced by the still growing impact of smartness and intelligence in the domain of information and communication technology (ICT). The rise of smart products and services led to the enhancement of “smart” product-service systems (smart PSS). This paper identifies, based on recent work and a literature review, methods developed for designing PSS. The main characteristics of the methods found are then analysed with regard to the affects smartness has on them. Knowledge about the smartness aspect is taken from descriptions of smart PSS. The findings are used to derive evidence about the transferability of PSS to smart PSS development methods.


Product-service system PSS Smart PSS Smart engineering Smart product Smart service 



This research was conducted in the scope of the research project “SmartHybrid – Service Engineering” (ID: ZW 6-85003236), which is partly funded by the European Regional Development Fund (ERDF) and the State of Lower Saxony (Investitions- und Förderbank Niedersachsen – NBank). We like to thank them for their support.


  1. 1.
    Abramovici, M., Göbel, J.C., Neges, M.: Smart engineering as enabler for the 4th industrial revolution. In: Fathi, M. (ed.) Integrated Systems: Innovations and Applications, pp. 163–170. Springer International Publishing, Cham (2015). Google Scholar
  2. 2.
    Acatech: Abschlussbericht “Smart Service Welt,” Berlin. (2015)Google Scholar
  3. 3.
    Anderl, R., Picard, A., Albrecht, K.: Smart engineering for smart products. In: Abramovici, M., Stark, R. (eds.) Smart Product Engineering: Proceedings of the 23rd CIRP Design Conference, pp. 1–10. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). Google Scholar
  4. 4.
    Aurich, J.C., Schweitzer, E., Siener, M., et al.: Life cycle management investiver PSS. WT Werkstattstechnik Online. 97(7/8), 579–585 (2007)Google Scholar
  5. 5.
    Aurich, J.C., Schweitzer, E., Fuchs, C.: Life cycle management of industrial product-service systems. In: Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses, pp. 171–176 (2007)CrossRefGoogle Scholar
  6. 6.
    Aurich, J.C., Schweitzer, E., Mannweiler, C.: Integrated design of industrial product-service systems. In: Manufacturing Systems and Technologies for the New Frontier, pp. 543–546 (2008)CrossRefGoogle Scholar
  7. 7.
    Beverungen, D., Lüttenberg, H., Wolf, V.: Recombinant service system engineering. In: 13th International Conference on Wirtschaftsinformatik, pp. 136–150 (2017)Google Scholar
  8. 8.
    Botta, C.: Rahmenkonzept zur Entwicklung von Product-Service Systems : Product-Service Systems Engineering. Universität des Saarlandes (2005)Google Scholar
  9. 9.
    Boucher, X., Medini, K., Fill, H.: Product-Service-System Modeling Method. Domain-Specific Conceptual Modeling, pp. 455–482. Springer International Publishing, Cham (2016). CrossRefGoogle Scholar
  10. 10.
    Boughnim, N., Yannou, B.: Using blueprinting method for developing product-service systems. International conference of Engineering Design (ICED), pp.1–16 (2005)Google Scholar
  11. 11.
    Cavalieri, S., Pezzotta, G.: Product–service systems engineering: state of the art and research challenges. Comput. Ind. 63(4), 278–288 (2012)CrossRefGoogle Scholar
  12. 12.
    Clayton, R.J., Backhouse, C.J., Dani, S.: Evaluating existing approaches to product-service system design. J. Manuf. Technol. Manag. 23(3), 272–298 (2012). CrossRefGoogle Scholar
  13. 13.
    Fellmann, M., Zasada, A.: State-of-the-Art of Business Process Compliance Approaches: a Survey. ECIS 2014 Proceedings.(2014)Google Scholar
  14. 14.
    Goedkoop, M.J., et al.: Product Service systems, Ecological and Economic Basics (1999)Google Scholar
  15. 15.
    Gräßle, M., Thomas, O., Dollmann, T.: Vorgehensmodelle des Product-Service Systems Engineering. In: Thomas, O., Loos, P., Nüttgens, M. (eds.) Hybride Wertschöpfung, pp. 82–129. Springer Berlin Heidelberg, Berlin/Heidelberg (2010). CrossRefGoogle Scholar
  16. 16.
    Isaksson, O., Larsson, T.C., Rönnbäck, A.Ö.: Development of product-service systems: challenges and opportunities for the manufacturing firm. J. Eng. Des. 20(4), 329–348 (2009). CrossRefGoogle Scholar
  17. 17.
    Kim, S., et al.: Development of an innovation model based on a Service-Oriented Product Service System (PSS). Sustainability. 7(11), 14427–14449 (2015). CrossRefGoogle Scholar
  18. 18.
    Kumar, A., Zope, N., Lokku, D.S.: An approach to architect digital product service systems. INCOSE Inter. Symp. 26(s1), 40–54 (2016). CrossRefGoogle Scholar
  19. 19.
    Langer, P., et al.: Vorgehensmodelle für die Entwicklung hybrider Produkte-eine Vergleichsanalyse. Multikonferenz Wirtschaftsinformatik. 2010, 2043–2056 (2010)Google Scholar
  20. 20.
    Lee, S.W., Kim, Y.S.: A Product-Service Systems Design Method Integrating Service Function and Service Activity and Case Studies. In: Proceedings of the 2nd CIRP international conference on industrial product service systems, pp.275–282 (2010)Google Scholar
  21. 21.
    Levitt, T.: Production-line approach to service. Harv. Bus. Rev. 50(5), 41 (1972)Google Scholar
  22. 22.
    Lindahl, M., Sundin, E., Sakao, T., et al.: An interactive design methodology for service engineering of functional sales concepts: a potential design for environment methodology. In: 13th CIRP International Conference on Life Cycle Engineering, pp.589–594 (2006)Google Scholar
  23. 23.
    Lindahl, M., Sundin, E., Rönnbäck, A., et al.: Integrated product and service engineering–the IPSE project. Workshop of Sustainable Consumption Research Exchange (SCORE!), Copenhagen, Denmark, pp.20–21 (2006)Google Scholar
  24. 24.
    Lindahl, M., et al.: Integrated product and service engineering versus design for environment – a comparison and evaluation of advantages and disadvantages. In: Takata, S., Umeda, Y. (eds.) Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses, pp. 137–142. Springer London, London (2007). CrossRefGoogle Scholar
  25. 25.
    Lindahl, M. et al.: Learning networks: a method for Integrated Product and Service Engineering — experience from the IPSE project. In: Manufacturing Systems and Technologies for the New Frontier, pp. 495–500. Springer: London (2008)Google Scholar
  26. 26.
    Maussang, N., et al.: A model for designing product-service systems using functional analysis and agent based model. International conference of Engineering Design (ICED), (August), pp.1–11 (2007)Google Scholar
  27. 27.
    McAloone, T.C.: Teaching and Implementation Models for Sustainable PSS Development: Motivations, Activities and Experiences. In: Proceedings of Sustainable Consumption and Production: Opportunities and Threats, Book 4, pp.119–130 (2006.)Google Scholar
  28. 28.
    McAloone, T.C., Andreasen, M.M.: Design for utility, sustainability and societal virtues: developing product service systems. Inter. Design Conf. Design. 2004, 1–8 (2004)Google Scholar
  29. 29.
    Mengoni, M., Peruzzini, M.: How to support the design of user-oriented product-related services. Third Inter. Conf. DAPI. 2015, 103–110 (2016). Google Scholar
  30. 30.
    Metzger, D., Niemöller, C., Thomas, O.: Design and demonstration of an engineering method for service support systems. ISEB. 1–35 (2016).
  31. 31.
    Mont, O.K.: Introducing and developing a Product-Service System (PSS) concept in Sweden. IIIEE Reports. 1–150 (2001).
  32. 32.
    Mont, O.K.: Product-Service Systems: Panacea or Myth? Lund University (2004)Google Scholar
  33. 33.
    National Science Foundation: Partnerships for Innovation: Building Innovation Capacity (PFI:BIC), pp.1–12 (2014)Google Scholar
  34. 34.
    Niemöller, C. et al.: Sind Smart Glasses die Zukunft der Digitalisierung von Arbeitsprozessen? Explorative Fallstudien zukünftiger Einsatzszenarien in der Logistik. In: 13th International Conference on Wirtschaftsinformatik (WI), (2017), pp.410–424 (2017)Google Scholar
  35. 35.
    Niemöller, C. et al.: Towards a Design Science-Driven Product-Service System Engineering Methodology. In: International Conference on Design Science Research in Information Systems (DESRIST 2014), pp. 180–193 (2014). Available at: CrossRefGoogle Scholar
  36. 36.
    Özcan, D., Kammler, F., Thomas, O.: Integrationsansatz zum konzeptionellen Design von Product-Service Systems. In: Thomas, O., Nüttgens, M. (eds.) Dienstleistungsmodellierung 2014, pp. 54–75. Springer Fachmedien Wiesbaden, Wiesbaden (2014). Google Scholar
  37. 37.
    Pezzotta, G., et al.: A Service Engineering framework to design and assess an integrated product-service. Mechatronics. 31, 169–179 (2015). CrossRefGoogle Scholar
  38. 38.
    Pezzotta, G., et al.: Towards a methodology to engineer industrial product-service system - Evidence from power and automation industry. CIRP J. Manuf. Sci. Technol. 15, 19–32 (2016). CrossRefGoogle Scholar
  39. 39.
    Porter, M.E., Heppelmann, J.E.: How smart, connected products are transforming companies. Harv. Bus. Rev. 93(10), 96–114 (2015.) Available at: Google Scholar
  40. 40.
    Rexfelt, O., Af Ornäs, V.H.: Consumer acceptance of product-service systems – Designing for relative advantages and uncertainty reductions R. Roy, ed. J. Manuf. Technol. Manag., 20(5). 674–699(2009). Available at:
  41. 41.
    Rijsdijk, S.A., Hultink, E.J.: How today’s consumers perceive tomorrow’s smart products. J. Prod. Innov. Manag. 26(1), 24–42 (2009)CrossRefGoogle Scholar
  42. 42.
    Song, W., Sakao, T.: A customization-oriented framework for design of sustainable product/service system. J. Clean. Prod. 140, 1672–1685 (2017). CrossRefGoogle Scholar
  43. 43.
    Spath, D., Demuß, L.: Entwicklung hybrider Produkte – Gestaltung materieller und immaterieller Leistungsbündel. In: Bullinger, H.J., Scheer, A.W. (eds.) Service Engineering - Entwicklung und Gestaltung innovativer Dienstleistungen, pp. 463–502. Springer Berlin Heidelberg, Berlin, Heidelberg (2006). Google Scholar
  44. 44.
    Steinbach, M., Botta, C., Weber, C.: Integrierte Entwicklung von Product-Service Systems. WT Werkstattstechnik Online. 95(7/8), 546–553 (2005)Google Scholar
  45. 45.
    Tan, A.R., MCaloone, T.C., Andreasen, M.M.: What Happens To Integrated Product Development Models With Product/Service-System Approaches? In: Proceedings of the 6th Integrated Product Development Workshop, pp.18–20 (2006)Google Scholar
  46. 46.
    Thomas, O., et al.: Konstruktion und Anwendung einer Entwicklungsmethodik für Product-Service-Systems. In: Thomas, O., Loos, P., Nüttgens, M. (eds.) Hybride Wertschöpfung: Mobile Anwendungssysteme für effiziente Dienstleistungsprozesse im technischen Kundendienst, pp. 61–81. Springer Berlin Heidelberg, Heidelberg (2010).\%5Cn CrossRefGoogle Scholar
  47. 47.
    Thomas, O., Walter, P., Loos, P.: Design and usage of an engineering methodology for product-service systems. J. Design Res. 7(2), 177 (2008)CrossRefGoogle Scholar
  48. 48.
    Tran, T., Park, J.Y.: Development of a novel co-creative framework for redesigning product service systems. Sustainability (Switzerland). 8(5), (2016)CrossRefGoogle Scholar
  49. 49.
    Vajna, S., et al.: CAx für Ingenieure – Eine praxisbezogene Einführung. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). Google Scholar
  50. 50.
    Valencia, A., et al.: Challenges in the design of smart product-service systems (PSSs): Experiences from practitioners. In: Proceedings of the 19th DMI: Academic Design Management Conference, 19 (2014)Google Scholar
  51. 51.
    Valencia, A., et al.: The design of smart product-service systems (PSSs): an exploration of design characteristics. Inter. J. Design. 9(1), 13–28 (2015)CrossRefGoogle Scholar
  52. 52.
    Weber, C., Steinbach, M., Botta, C., et al.: Modelling of Product-Service Systems (PSS) Based on the PDD Approach. Proceedings of DESIGN 2004, Proceeding, pp.1–8 (2004)Google Scholar
  53. 53.
    Weber, C., Steinbach, M. & Botta, C.: Properties and characteristics of Product-Service Systems – An integrated view. In: Proceedings of Norddesign 2004: Product Development in Changing Environment, (August), pp.260–269 (2004)Google Scholar
  54. 54.
    Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Q. 26(2), 13–23 (2002). Google Scholar
  55. 55.
    Wellsandt, S., Anke, J., Thoben, D.: Modellierung der Lebenszyklen von Smart Services. In: Thomas, O., Nüttgens, M., Fellmann, M., (eds.) Smart Service Engineering: Konzepte und Anwendungsszenarien für die digitale Transformation, pp. 233–256, Wiesbaden, Springer Fachmedien Wiesbaden (2017). Available at: Google Scholar
  56. 56.
    Zine, P.U., et al.: A conceptual framework for product service system design for machine tools. Benchmark. Inter. J. 23(5), 1227–1248 (2016). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Simon Hagen
    • 1
    Email author
  • Friedemann Kammler
    • 1
  • Oliver Thomas
    • 1
  1. 1.University of Osnabrueck, Chair of Information Management and Information SystemsOsnabrueckGermany

Personalised recommendations