Revolve: A Versatile Simulator for Online Robot Evolution

  • Elte Hupkes
  • Milan JelisavcicEmail author
  • A. E. Eiben
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10784)


Developing robotic systems that can evolve in real-time and real-space is a long term objective with technological as well as algorithmic milestones on the road. Technological prerequisites include advanced 3D-printing, automated assembly, and robust sensors and actuators. The necessary evolutionary mechanisms need not wait for these, they can be developed and investigated in simulations. In this paper, we present a system to simulate online evolution of constructible robots, where (1) the population members (robots) concurrently exist and evolve their morphologies and controllers, (2) all robots can be physically constructed. Experiments with this simulator provide us with insights into differences of using online and offline evolutionary setups.


Evolutionary algorithms Reality gap Online learning Offline learning Modular robots 



The choice of modular robots used for this research is based on the design of Josh Aurebach’s RoboGen project—a flexible and scalable modular robot design.


  1. 1.
    Eiben, A., Smith, J.: From evolutionary computation to the evolution of things. Nature 521(7553), 476–482 (2015)CrossRefGoogle Scholar
  2. 2.
    Eiben, A., Bredeche, N., Hoogendoorn, M., Stradner, J., Timmis, J., Tyrrell, A., Winfield, A.: The triangle of life: evolving robots in real-time and real-space. In: Liò, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Advances in Artificial Life, ECAL 2013, pp. 1056–1063. MIT Press, Cambridge (2013)CrossRefGoogle Scholar
  3. 3.
    Auerbach, J., Aydin, D., Maesani, A., Kornatowski, P., Cieslewski, T., Heitz, G., Fernando, P., Loshchilov, I., Daler, L., Floreano, D.: RoboGen: robot generation through artificial evolution. In: Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, pp. 136–137. The MIT Press, New York, July 2014.
  4. 4.
    Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4), 353–372 (1994)CrossRefGoogle Scholar
  5. 5.
    Auerbach, J.E., Bongard, J.C.: Environmental influence on the evolution of morphological complexity in machines. PLoS Comput. Biol. 10(1), e1003399 (2014)CrossRefGoogle Scholar
  6. 6.
    Bongard, J.C., Pfeifer, R.: Evolving complete agents using artificial ontogeny. In: Hara, F., Pfeifer, R. (eds.) Morpho-functional Machines: The New Species, pp. 237–258. Springer, Tokyo (2003)CrossRefGoogle Scholar
  7. 7.
    Komosinski, M.: The Framsticks system: versatile simulator of 3D agents and their evolution. Kybernetes 32(1/2), 156–173 (2003)CrossRefGoogle Scholar
  8. 8.
    Bongard, J., Lipson, H.: Evolved machines shed light on robustness and resilience. Proc. IEEE 102(5), 899–914 (2014)CrossRefGoogle Scholar
  9. 9.
    Lipson, H., Pollack, J.B.: Automatic Design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)CrossRefGoogle Scholar
  10. 10.
    Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). CrossRefGoogle Scholar
  11. 11.
    Koos, S., Mouret, J.B., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17(1), 122–145 (2013)CrossRefGoogle Scholar
  12. 12.
    Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314(5802), 1118–1121 (2006)CrossRefGoogle Scholar
  13. 13.
    Eiben, A.E., Smith, J.E.: Evolutionary Robotics. Introduction to Evolutionary Computing. In: NCS, pp. 245–258. Springer, Heidelberg (2015).
  14. 14.
    Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521(7553), 503–507 (2015). CrossRefGoogle Scholar
  15. 15.
    Caluwaerts, K., Despraz, J., Işçen, A., Sabelhaus, A.P., Bruce, J., Schrauwen, B., SunSpiral, V.: Design and control of compliant tensegrity robots through simulation and hardware validation. J. Roy. Soc. Interface 11(98), 20140520 (2014)CrossRefGoogle Scholar
  16. 16.
    Nogueira, L.: Comparative analysis between Gazebo and V-REP robotic simulators. Seminario Interno de Cognicao Artificial-SICA 2014, 5 (2014)Google Scholar
  17. 17.
    Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Weel, B., Crosato, E., Heinerman, J., Haasdijk, E., Eiben, A.E.: A robotic ecosystem with evolvable minds and bodies. In: 2014 IEEE International Conference on Evolvable Systems, pp. 165–172 (2014)Google Scholar
  19. 19.
    Jelisavcic, M., De Carlo, M., Hupkes, E., Eustratiadis, P., Orlowski, J., Haasdijk, E., Auerbach, J.E., Eiben, A.E.: Real-world evolution of robot morphologies: a proof of concept. Artif. Life 23(2), 206–235 (2017). pMID: 28513201CrossRefGoogle Scholar
  20. 20.
    Jelisavcic, M., De Carlo, M., Haasdijk, E., Eiben, A.E.: Improving RL power for on-line evolution of gaits in modular robots. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2016)Google Scholar
  21. 21.
    Jelisavcic, M., Kiesel, R., Glette, K., Haasdijk, E., Eiben, A.E.: Analysis of Lamarckian evolution in morphologically evolving robots. In: Proceedings of the European Conference on Artificial Life 2017, ECAL 2017, pp. 214–221. MIT Press, September 2017Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations