Advertisement

Mapping Chess Aesthetics onto Procedurally Generated Chess-Like Games

  • Jakub Kowalski
  • Antonios Liapis
  • Łukasz Żarczyński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10784)

Abstract

Variants of chess have been generated in many forms and for several reasons, such as testbeds for artificial intelligence research in general game playing. This paper uses the visual properties of chess pieces as inspiration to generate new shapes for other chess-like games, targeting specific visual properties which allude to the pieces’ in-game function. The proposed method uses similarity measures in terms of pieces’ strategic role and movement in a game to identify the new pieces’ closest representatives in chess. Evolution then attempts to minimize the distance from chess pieces’ visual properties, resulting in new shapes which combine one or more chess pieces’ visual identities. While experiments in this paper focus on two chess-like games from previous publications, the method can be used for broader generation of game visuals based on functional similarities of components to known, popular games.

Keywords

Procedural content generation Chess variants Digital aesthetics Evolutionary algorithms Simplified Boardgames 

References

  1. 1.
    Shaker, N., Togelius, J., Nelson, M.J.: Procedural Content Generation in Games: A Textbook and an Overview of Current Research. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42716-4 CrossRefGoogle Scholar
  2. 2.
    Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games. Springer, New York (2018).  https://doi.org/10.1007/978-1-4419-8188-2. http://gameaibook.org CrossRefGoogle Scholar
  3. 3.
    Perez, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S., Couëtoux, A., Lee, J., Lim, C., Thompson, T.: The 2014 general video game playing competition. IEEE Trans. Comput. Intell. AI Games 8(3), 229–243 (2015)CrossRefGoogle Scholar
  4. 4.
    Smith, A.M., Mateas, M.: Variations forever: Flexibly generating rulesets from a sculptable design space of mini-games. In: IEEE Conference on Computational Intelligence and Games (2010)Google Scholar
  5. 5.
    Smith, G., Whitehead, J., Mateas, M.: Tanagra: reactive planning and constraint solving for mixed-initiative level design. IEEE Trans. Comput. Intell. AI Games 3(3), 201–215 (2011)CrossRefGoogle Scholar
  6. 6.
    Genesereth, M., Love, N., Pell, B.: General game playing: overview of the AAAI competition. AI Mag. 26, 62–72 (2005)Google Scholar
  7. 7.
    Genesereth, M., Björnsson, Y.: The international general game playing competition. AI Mag. 34(2), 107–111 (2013)CrossRefGoogle Scholar
  8. 8.
    Nielsen, T.S., Barros, G.A.B., Togelius, J., Nelson, M.J.: Towards generating arcade game rules with VGDL. In: IEEE Conference on Computational Intelligence and Games, pp. 185–192 (2015)Google Scholar
  9. 9.
    Khalifa, A., Perez, D., Lucas, S., Togelius, J.: General video game level generation. In: Genetic and Evolutionary Computation Conference, pp. 253–259 (2016)Google Scholar
  10. 10.
    Khalifa, A., Green, M., Perez, D., Togelius, J.: General video game rule generation. In: IEEE Conference on Computational Intelligence and Games (2017)Google Scholar
  11. 11.
    Pitrat, J.: Realization of a general game-playing program. In: IFIP Congress, pp. 1570–1574 (1968)Google Scholar
  12. 12.
    Pell, B.: Metagame in symmetric chess-like games. In: Heuristic Programming in Artificial Intelligence: The Third Computer Olympiad (1992)Google Scholar
  13. 13.
    Björnsson, Y.: Learning rules of simplified boardgames by observing. In: European Conference on Artificial Intelligence, FAIA, vol. 242, pp. 175–180 (2012)Google Scholar
  14. 14.
    Kowalski, J., Szykuła, M.: Evolving chess-like games using relative algorithm performance profiles. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016, Part I. LNCS, vol. 9597, pp. 574–589. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31204-0_37 CrossRefGoogle Scholar
  15. 15.
    Lopes, P., Liapis, A., Yannakakis, G.N.: Targeting horror via level and soundscape generation. In: AAAI Artificial Intelligence for Interactive Digital Entertainment Conference (2015)Google Scholar
  16. 16.
    Karavolos, D., Liapis, A., Yannakakis, G.N.: Learning the patterns of balance in a multi-player shooter game. In: FDG workshop on Procedural Content Generation in Games (2017)Google Scholar
  17. 17.
    Kowalski, J., Żarczyński, Ł., Kisielewicz, A.: Evaluating chess-like games using generated natural language descriptions. In: Winands, M.H.M., van den Herik, H.J., Kosters, W.A. (eds.) ACG 2017. LNCS, vol. 10664, pp. 127–139. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71649-7_11 CrossRefGoogle Scholar
  18. 18.
    Liapis, A., Yannakakis, G.N., Togelius, J.: Towards a generic method of evaluating game levels. In: AAAI Artificial Intelligence for Interactive Digital Entertainment Conference (2013)Google Scholar
  19. 19.
    Summerville, A.J., Mateas, M.: Sampling hyrule: multi-technique probabilistic level generation for action role playing games. In: AIIDE Workshop on Experimental AI in Games (2015)Google Scholar
  20. 20.
    Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural content generation: a taxonomy and survey. IEEE Trans. Comput. Intell. AI Games 3(3), 172–186 (2011)CrossRefGoogle Scholar
  21. 21.
    Liapis, A., Yannakakis, G.N., Togelius, J.: Computational game creativity. In: International Conference on Computational Creativity (2014)Google Scholar
  22. 22.
    Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: IEEE Symposium on Computational Intelligence and Games (2008)Google Scholar
  23. 23.
    Cook, M., Colton, S., Raad, A., Gow, J.: Mechanic miner: reflection-driven game mechanic discovery and level design. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 284–293. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37192-9_29 CrossRefGoogle Scholar
  24. 24.
    Browne, C., Maire, F.: Evolutionary game design. IEEE Trans. Comput. Intell. AI Games 2(1), 1–16 (2010)CrossRefGoogle Scholar
  25. 25.
    Nielsen, T.S., Barros, G.A.B., Togelius, J., Nelson, M.J.: General video game evaluation using relative algorithm performance profiles. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 369–380. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16549-3_30 Google Scholar
  26. 26.
    Howlett, A., Colton, S., Browne, C.: Evolving pixel shaders for the prototype video game subversion. In: Proceedings of AISB 2010 (2010)Google Scholar
  27. 27.
    Hastings, E.J., Guha, R.K., Stanley, K.O.: Automatic content generation in the galactic arms race video game. IEEE Trans. Comput. Intell. AI Games 1(4), 245–263 (2009)CrossRefGoogle Scholar
  28. 28.
    Hoover, A.K., Cachia, W., Liapis, A., Yannakakis, G.N.: AudioInSpace: exploring the creative fusion of generative audio, visuals and gameplay. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 101–112. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16498-4_10 Google Scholar
  29. 29.
    Risi, S., Lehman, J., D’Ambrosio, D., Hall, R., Stanley, K.: Petalz: search-based procedural content generation for the casual gamer. IEEE Trans. Comput. Intell. Games 8(3), 244–255 (2015)CrossRefGoogle Scholar
  30. 30.
    Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 9, 1275–1296 (2001)CrossRefGoogle Scholar
  31. 31.
    Liapis, A., Martínez, H.P., Togelius, J., Yannakakis, G.N.: Transforming exploratory creativity with DeLeNoX. In: International Conference on Computational Creativity (2013)Google Scholar
  32. 32.
    Soule, T., Heck, S., Haynes, T.E., Wood, N., Robison, B.D.: Darwin’s Demons: does evolution improve the game? In: Squillero, G., Sim, K. (eds.) EvoApplications 2017, Part I. LNCS, vol. 10199, pp. 435–451. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55849-3_29 CrossRefGoogle Scholar
  33. 33.
    Liapis, A., Yannakakis, G.N., Togelius, J.: Adapting models of visual aesthetics for personalized content creation. IEEE Trans. Comput. Intell. AI Games 4(3), 213–228 (2012)CrossRefGoogle Scholar
  34. 34.
    Liapis, A.: Exploring the visual styles of arcade game assets. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) EvoMUSART 2016. LNCS, vol. 9596, pp. 92–109. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31008-4_7 CrossRefGoogle Scholar
  35. 35.
    Kowalski, J., Sutowicz, J., Szykuła, M.: Simplified Boardgames. arXiv:1606.02645 (2016). [cs.AI]
  36. 36.
    Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jakub Kowalski
    • 1
  • Antonios Liapis
    • 2
  • Łukasz Żarczyński
    • 1
  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland
  2. 2.Institute of Digital GamesUniversity of MaltaMsidaMalta

Personalised recommendations