Advertisement

Multipole Approach for Homogenization of Metamaterials: “Classical” Metamaterials

  • Arkadi Chipouline
  • Franko Küppers
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 211)

Abstract

Now the multipole expansion developed in Chap.  3 is applied to describe the widely used double-wire geometry [Shalaev et al. in Opt. Lett. 30, 3356, 2005, 1]. In what follows we assume again the geometry shown in Fig.  3.2 with the electric field \( \vec {E}_{x} \) polarized along the long axis of the wires and propagation along the y axis \( (0,\,\vec {k}_{y} ,\,0) \). Our goal is to elaborate a dispersion relation as a function of the particular parameters of the MAs using the general expressions obtained in chapter ( 3.61). In order to find the relations for the dipole, quadrupole, and magnetic dipole moments ( 3.57) it is necessary to express charge dynamics in the MAs as the functions of the averaged fields. As it was mentioned above, the microscopic interaction between charges and the electromagnetic wave is determined by the interaction with the electric field.

References

  1. 1.
    V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, A. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Wegener, Extreme Nonlinear Optics (Springer, Berlin, 2005)Google Scholar
  3. 3.
    G. Sun, J.B. Khurgin, C.C. Yang, APL 95, 171103 (2009)Google Scholar
  4. 4.
    T. Kalkbrenner, U. Hakanson, V. Sandoghdar, Nano Lett. 4, 2309 (2004)CrossRefGoogle Scholar
  5. 5.
    C. Kittel, Introduction to Solid State Physics (Wiley, New, York, 1986)Google Scholar
  6. 6.
    J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Multipole approach to metamaterials. Phys. Rev. B 78, 043811 (2008)CrossRefGoogle Scholar
  7. 7.
    E. Pshenay-Severin, A. Chipouline, J. Petschulat, U. Huebner, A. Tuennermann, T. Pertsch, Optical properties of metamaterials based on asymmetric double-wire structures. Opt. Express 19, 6269 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, Boston, 2003)Google Scholar
  9. 9.
    C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, F. Lederer, Opt. Express 15, 8871 (2007)CrossRefGoogle Scholar
  10. 10.
    B. Lee, H. Kim, Hwi Kim (Autor) › Entdecken Sie Hwi Kim bei Amazon Finden Sie alle Bücher, Informationen zum Autor und mehr. Suchergebnisse für diesen Autor Sind Sie ein Autor? Erfahren Sie mehr über Author CentralGoogle Scholar
  11. 11.
    D.R. Smith, D.C. Vier, Th Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005)CrossRefGoogle Scholar
  12. 12.
    C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, T. Zentgraf, T. Meyrath, H. Giessen, Phys. Rev. B 77, 035126 (2008)CrossRefGoogle Scholar
  13. 13.
    V.V. Klimov, Nanoplasmonika. ISBN 978-5-9221-1205-5 (2010) (in Russian)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Microwave Engineering and PhotonicsTechnical University of DarmstadtDarmstadtGermany
  2. 2.Department of Electrical Engineering and Information TechnologiesTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations