Advertisement

Introduction to Optical Metamaterials: Motivation and Goals

  • Arkadi Chipouline
  • Franko Küppers
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 211)

Abstract

It is necessary to reconstruct the textbooks and change some pedagogical methods in lecturing of electrodynamics… It turned out to be necessarily to elaborate the electrodynamics from fundamental principles taking into account possible magnetic effects.

References

  1. 1.
    V. Veselago, Sov. Phys. Usp. 10, 509 (1968)CrossRefGoogle Scholar
  2. 2.
    H. Lamb, Negative phase velocity and its consequence in hydrodynamics: “On group velocity”. Proc. Lond. Math. Soc. 1, 473–479 (1904)CrossRefGoogle Scholar
  3. 3.
    A. Schuster, Negative Phase Velocity and Its Consequence in Optics: An Introduction to the Theory of Optics (Edward Arnold, 1904)Google Scholar
  4. 4.
    L. Mandelshtam, Optical properties of the left-handed media: the 4th lecture of L. I. Mandel’shtam given at Moscow State University (05/05/1944). Nauka 5, 461 (1994)Google Scholar
  5. 5.
    N.A. Khizhnyak, Anomalously large effective dielectric and magnetic constants for the resonant regimes of elementary scatterers: artificial anisotropic dielectrics formed from two-dimensional lattices of infinite bars and rods. Sov. Phys. Technol. Phys. 29, 604–614 (1959)Google Scholar
  6. 6.
    R. Shelby, D. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)CrossRefGoogle Scholar
  7. 7.
    A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, J. Petrovic, Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005)CrossRefGoogle Scholar
  8. 8.
    V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, A. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356 (2005)CrossRefGoogle Scholar
  9. 9.
    H.-K. Yuan, W. Cai, S. Xiao, V. Drachev, V. Shalaev, Opt. Lett. 32, 1671 (2007)CrossRefGoogle Scholar
  10. 10.
    G. Dolling, M. Wegener, C. Soukoulis, Opt. Lett. 32, 53 (2007)CrossRefGoogle Scholar
  11. 11.
    J. Valentine, S. Zhang, T. Zentgraf, G. Ulin-Avila, D. Genov, X. Zhang, Nature 455, 376 (2008)CrossRefGoogle Scholar
  12. 12.
    J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, Nat. Mater. 8, 568 (2009)CrossRefGoogle Scholar
  13. 13.
    A. Alu, N. Engheta, Phys. Rev. Lett. 102, 1 (2009)CrossRefGoogle Scholar
  14. 14.
    Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, C.T. Chan, PRL 102, 1 (2009)Google Scholar
  15. 15.
    M. Farhat, S. Guenneau, S. Enoch, PRL 103, 1 (2009)CrossRefGoogle Scholar
  16. 16.
    B. Justice, S. Cummer, J. Pendry, A. Starr, Science 314, 977 (2006)CrossRefGoogle Scholar
  17. 17.
    U. Leonhardt, Science 312, 1777 (2006)CrossRefGoogle Scholar
  18. 18.
    E.E. Narimanov, A.V. Kildishev, APL 95, 041106 (2009)Google Scholar
  19. 19.
    S. Vukovic, I. Shadrivov, Y. Kivshar, Appl. Phys. Lett. 95, 041902 (2009)CrossRefGoogle Scholar
  20. 20.
    D.Ö. Göuney, D.A. Meyer, Phys. Rev. A 79, 1 (2009)Google Scholar
  21. 21.
    N. Papasimakis, V. Fedotov, N. Zheludev, PRL 101, 253903 (2008)CrossRefGoogle Scholar
  22. 22.
    N. Liu, L. Langguth, J.K.T. Weiss, M. Fleischhauer, T. Pfau, H. Giessen, Nat. Mater. 8, 758 (2009)CrossRefGoogle Scholar
  23. 23.
    C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E.B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, T. Pertsch, Opt. Lett. 34, 704 (2009)CrossRefGoogle Scholar
  24. 24.
    C. Garcia-Meca, R. Ortuno, F.J. Rodriguez-Fortuno, J. Marti, A. Martinez, Opt. Lett. 34, 1603 (2009)CrossRefGoogle Scholar
  25. 25.
    M. Thiel, G. von Freymann, S. Linden, M. Wegener, Opt. Lett. 34, 19 (2009)CrossRefGoogle Scholar
  26. 26.
    B. Bai, Y. Svirko, J. Turunen, T. Vallius, Phys. Rev. A 76, 023811 (2007)CrossRefGoogle Scholar
  27. 27.
    L. Arnaut, J. Electromagn. Waves Appl. 11, 1459 (1997)CrossRefGoogle Scholar
  28. 28.
    J. Reyes, A. Lakhtakia, Opt. Commun. 266, 565 (2006)CrossRefGoogle Scholar
  29. 29.
    S. Prosvirnin, N. Zheludev, J. Opt. A: Pure Appl. Opt. 11, 074002 (2009)CrossRefGoogle Scholar
  30. 30.
    S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, C. Simovski, J. Electromagn. Waves Appl. 17, 695 (2003)CrossRefGoogle Scholar
  31. 31.
    V. Fedotov, P. Mladyonov, S. Prosvirnin, A.V. Rogacheva, Y. Chen, N. Zheludev, PRL 97, 167401 (2006)CrossRefGoogle Scholar
  32. 32.
    S. Zhukovsky, A. Novitsky, V. Galynsky, Opt. Lett. 34, 1988 (2009)CrossRefGoogle Scholar
  33. 33.
    J. Pendry, Science 306, 1353 (2004)CrossRefGoogle Scholar
  34. 34.
    S. Tretyakov, A. Sihvola, L. Jylhä, Photonics Nanostruct. Fundam. Appl. 3, 107 (2005)CrossRefGoogle Scholar
  35. 35.
    J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. Soukoulis, Phys. Rev. B 79, 1 (2009)Google Scholar
  36. 36.
    K. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966)CrossRefGoogle Scholar
  37. 37.
    A. Taflove, S.C. Hagness, Computational Electrodynamics, 3rd edn. (Artech House, Boston, 2005)Google Scholar
  38. 38.
    L. Li, J. Opt. Soc. Am. A 14, 2758 (1997)CrossRefGoogle Scholar
  39. 39.
    C. Rockstuhl, M.G. Salt, H.P. Herzig, JOSA A 20, 1969 (2003)CrossRefGoogle Scholar
  40. 40.
    B.T. Draine, P.J. Flatau, JOSA A 11, 1491 (1994)CrossRefGoogle Scholar
  41. 41.
    C. Hafner, The Generalized Multipole Technique for Computational, Electromagnetics (Artech House, Boston, 1990)Google Scholar
  42. 42.
    V. Podolskiy, A. Sarychev, E. Narimanov, V. Shalaev, J. Opt. A: Pure Appl. Opt. 7, 32 (2005)CrossRefGoogle Scholar
  43. 43.
    A. Podolskiy, A. Sarychev, V. Shalaev, Opt. Express 11, 735 (2003)CrossRefGoogle Scholar
  44. 44.
    A. Sarychev, G. Shvets, V. Shalaev, Phys. Rev. E 73, 036609 (2006)CrossRefGoogle Scholar
  45. 45.
    A.N. Lagarkov, A.K. Sarychev, Phys. Rev. B 53, 6318 (1996)CrossRefGoogle Scholar
  46. 46.
    L. Panina, A. Grigorenko, D. Makhnovskiy, Phys. Rev. B 66, 155411 (2002)CrossRefGoogle Scholar
  47. 47.
    T.P. Meyrath, T. Zentgraf, H. Giessen, Phys. Rev. B 75, 205102 (2007)CrossRefGoogle Scholar
  48. 48.
    N. Zheludev, The road ahead for metamaterials. Science 328, 582 (2010)CrossRefGoogle Scholar
  49. 49.
    N. Zheludev, A roadmap for metamaterials. OPN Opt. Photonics News 31 (2011)Google Scholar
  50. 50.
    M. Stockman, Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029 (2011)CrossRefGoogle Scholar
  51. 51.
    C. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011)CrossRefGoogle Scholar
  52. 52.
    N. Lindquist, P. Nagpal, K. McPeak, D. Norris, S.-H. Oh, Engineering metallic nanostructures for plasmonics and nanophotonics. Rep. Prog. Phys. 75, 036501 (2012)CrossRefGoogle Scholar
  53. 53.
    M. Stockman, Spaser explained. Nat. Photonics 2, 327 (2008)CrossRefGoogle Scholar
  54. 54.
    C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, C. Soukoulis, Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. PRL 107, 043901 (2011)CrossRefGoogle Scholar
  55. 55.
    T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, N.I. Zheludev, Science 330, 1510 (2010)CrossRefGoogle Scholar
  56. 56.
    G. Afanasiev, Vector solutions of the Laplace equation and the influence of helicity on Aharonov-Bohm scattering. J. Phys. A: Math. Gen. 27, 2143 (1994)CrossRefGoogle Scholar
  57. 57.
    K. Marinov, A.D. Boardman, V.A. Fedotov, N. Zheludev, Toroidal metamaterial. New J. Phys. 9, 324 (2007)CrossRefGoogle Scholar
  58. 58.
    V.A. Fedotov, A. Rogacheva, V. Savinov, D. Tsai, N.I. Zheludev, Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. Sci. Rep. 3, 2967 (2013)CrossRefGoogle Scholar
  59. 59.
    B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, P.A. van Aken, Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett. 12, 5239 (2012)CrossRefGoogle Scholar
  60. 60.
    I.B. Zeldovich, Electromagnetic interaction with parity violation. JETP 33, 1531 (1957)Google Scholar
  61. 61.
    G. Afanasiev, Simplest source of electromagnetic fields as a tool for testing the reciprocity-like theorems. J. Phys. D: Appl. Phys. 34, 539 (2001)CrossRefGoogle Scholar
  62. 62.
    A. Miroshnichenko, A. Evlyukhin, Y.F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, Y. Kivshar, Observation of an anapole with dielectric nanoparticles. Nat. Commun. 6, 8069 (2015)CrossRefGoogle Scholar
  63. 63.
    V. Agranovich, V. Ginzburg, Kristallooptika s Uchetom Prostranstvennoi Dispersii i Teoriya Eksitonov (Crystal Optics with Spatial Dispersion, and Excitons) (Nauka, Moscow, 1965) [Translated into English (Springer, Berlin, 1984)]Google Scholar
  64. 64.
    V. Agranovich, Yu. Gartstein, Electrodynamics of metamaterials and the Landau-Lifshitz approach to the magnetic permeability. Metamaterials 3, 1 (2009)CrossRefGoogle Scholar
  65. 65.
    V. Agranovich, Yu. Gartstein, Spatial dispersion and negative refraction of light. Phys. Usp. 49(10), 1029 (2006)CrossRefGoogle Scholar
  66. 66.
    A. Andryieuski, S. Ha, A. Sukhorukov, Y. Kivshar, A. Lavrinenko, Bloch-mode analysis for retrieving effective parameters of metamaterials. Phys. Rev. B 86, 035127 (2012)CrossRefGoogle Scholar
  67. 67.
    C. Simovski, On electromagnetic characterization and homogenization of nanostructured metamaterials. J. Opt. 13, 013001 (2011)CrossRefGoogle Scholar
  68. 68.
    S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, Boston, 2003)Google Scholar
  69. 69.
    A. Vinogradov, Electrodynamics of Compound Media (Scientific and Educational Literature Publisher, Russian Federation, 2001). ISBN 5-8360-0283-5 (in Russian)Google Scholar
  70. 70.
    P. Mazur, B. Nijboer, On the statistical mechanics of matter in an electromagnetic field. I. Physica XIX, 971 (1953)CrossRefGoogle Scholar
  71. 71.
    N. Papasimakis, V. Fedotov, K. Marinov, N. Zheludev, Gyrotropy of a metamolecule: wire on a torus. PRL 103, 093901 (2009)CrossRefGoogle Scholar
  72. 72.
    A. Vinogradov, A. Merzlikin, Comment on “Basics of averaging of the Maxwell equations for bulk materials”. Metamaterials 6, 121 (2012)CrossRefGoogle Scholar
  73. 73.
    C. Simovski, Material parameters of metamaterials (a review). Opt. Spectrosc. 107, 726 (2009)CrossRefGoogle Scholar
  74. 74.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)Google Scholar
  75. 75.
    C. Simovski, Weak Spatial Dispersion in Composite Media (Polytechnika, St. Petersburg, 2003) (in Russian)Google Scholar
  76. 76.
    E.M. Purcell, Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Microwave Engineering and PhotonicsTechnical University of DarmstadtDarmstadtGermany
  2. 2.Department of Electrical Engineering and Information TechnologiesTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations