Advertisement

The Principle of Virtual Power (PVP): Application to Complex Media, Extension to Gauge and Scale Invariances, and Fundamental Aspects

  • Laurent HirsingerEmail author
  • Naoum Daher
  • Michel Devel
  • Gautier Lecoutre
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 90)

Abstract

This work, relative to the principle of virtual power, is composed of three distinct but nevertheless complementary parts. The first part follows the line of thought developed by professor Maugin and his students on complex continuous media subject to the objectivity requirement (translational and rotational invariances). The second part shows that this principle is extensible to other types of invariance such as gauge and scale invariances. Gauge invariance allows to express Maxwell equations, usually derived through a vector approach, by use of a scalar principle having the same formal structure as the principle of virtual power. As to scale invariance, it allows to deal, in a general and unified way whatever the underlying physics, with the passage from a continuous medium to a discontinuous one (singular surfaces, lines or points). The third part concerns the foundations of dynamics where the principle of virtual power appears as a theorem, like other analytical principles, each corresponding to one point of view, deductible from a general intrinsic (viewpoint independent) dynamical framework. The attention will be focused on the origin of the duality notion, at the basis of the principle of virtual power.

Notes

Acknowledgements

This study relative to the principle of virtual power, based on the notions of duality and invariance, owes much to the scientific formation that one of us received directly, in Paris, from Professor Maugin and his first students and collaborators, mainly B. Collet and J. Pouget. As for its extension to gauge and scale invariances and the search for a more solid conceptual basis likely to go back to the origin of the notion of duality, they would not have been possible without the contributions, remarks and criticism of the members (epistemologists, physicists and mathematicians) of the “Epiphymaths” group (an interdisciplinary seminar held weekly at Besançon), especially, J. Merker who presented, in the nineties of the last century, recent studies concerning an autonomous dynamical framework, dealt with through group theory, and C. A. Risset who, later on, accompanied this research over the years, bringing different suggestions and improvements.

References

  1. 1.
    Daher, N., Maugin, G.A.: Deformable semiconductors with interfaces: basic continuum equations. Int. J. Eng. Sci. 25, 1093–1129 (1987).  https://doi.org/10.1016/0020-7225(87)90076-0MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Maugin, G.: The method of virtual power in continuum mechanics: application to coupled fields. Acta Mech. 35, 1–70 (1980)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lecoutre, G., Daher, N., Devel, M., Hirsinger, L.: Principle of virtual power applied to deformable semiconductors with strain, polarization, and magnetization gradients. Acta Mech. 228, 1681–1710 (2017).  https://doi.org/10.1007/s00707-016-1787-yMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus. Première partie: Théorie du second gradient. J. Mécanique 12, 236–274 (1973)zbMATHGoogle Scholar
  5. 5.
    Germain, P.: The Method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)CrossRefGoogle Scholar
  6. 6.
    Maugin, G.A.: Continuum mechanics of electromagnetic solids. North-Holland (1988)Google Scholar
  7. 7.
    Maugin, G.A., Pouget, J.: Electroacoustic equations for one-domain ferroelectric bodies. J. Acoust. Soc. Am. 68, 575–587 (1980).  https://doi.org/10.1121/1.384770CrossRefzbMATHGoogle Scholar
  8. 8.
    Daher, N., Maugin, G.A.: Virtual power and thermodynamics for electromagnetic continua with interfaces. J. Math. Phys. 27, 3022–3035 (1986).  https://doi.org/10.1063/1.527231MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Collet, B.: Higher order surface couplings in elastic ferromagnets. Int. J. Eng. Sci. 16, 349–364 (1978).  https://doi.org/10.1016/0020-7225(78)90025-3MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Collet, B., Maugin, G.A.: Sur l’électrodynamique des milieux continus avec interactions. C r À Académie Sci t. 279, 379–382 (1974)Google Scholar
  11. 11.
    Collet, B., Maugin, G.A.: Thermodynamique des milieux continus électromagnétiques avec interactions. C r À Académie Sci t. 279, 439–442 (1974)Google Scholar
  12. 12.
    Collet, B.: Sur une théorie des premier et second gradients des milieux continus électromagnétiques. Ph.d. Thesis, Pierre et Maire Curie (1976)Google Scholar
  13. 13.
    Maugin, G.A.: A continuum theory of deformable ferrimagnetic bodies. I. Field equations. J. Math. Phys. 17, 1727–1738 (1976).  https://doi.org/10.1063/1.523101CrossRefzbMATHGoogle Scholar
  14. 14.
    Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua I: Foundations and Solid Media (1990)Google Scholar
  15. 15.
    Maugin, G.A.: The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool. Contin. Mech. Thermodyn. 25, 127–146 (2011).  https://doi.org/10.1007/s00161-011-0196-7MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fousek, J., Cross, L.E., Litvin, D.B.: Possible piezoelectric composites based on the flexoelectric effect. Mater. Lett. 39, 287–291 (1999).  https://doi.org/10.1016/S0167-577X(99)00020-8CrossRefGoogle Scholar
  17. 17.
    Cross, L.E.: Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006).  https://doi.org/10.1007/s10853-005-5916-6CrossRefGoogle Scholar
  18. 18.
    Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008)CrossRefGoogle Scholar
  19. 19.
    Maugin, G.A., Eringen, A.C.: On the equations of the electrodynamics of deformable bodies of finite extent. J. Mécanique 16, 101–147 (1977)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Eringen, A.C.: Mechanics of Continua, 2nd edn. Krieger Pub Co, Huntington, N.Y. (1980)zbMATHGoogle Scholar
  21. 21.
    Daher, N.: On a general non integrable, multiple scale continuum energy formulation. Application to acoustic, optics and coupled effects. Curr. Top. Acoust. Res. (1994)Google Scholar
  22. 22.
    Daher, N.: Leibniz-D’Alembert energy formulation, application to piezoelctric media with interfaces. In: Proceedings Vol II Poster Contributions (1994)Google Scholar
  23. 23.
    Daher, N.: Energy formulation for electronic, optical and acoustical applications including interfacial properties and irreversible processes. Synth. Met. 67, 287–291 (1994).  https://doi.org/10.1016/0379-6779(94)90058-2CrossRefGoogle Scholar
  24. 24.
    Daher, N.: Electromagnetomechanical media including irreversible processes and interfacial properties. Synth. Met. 76, 327–330 (1996).  https://doi.org/10.1016/0379-6779(95)03482-YCrossRefGoogle Scholar
  25. 25.
    Daher, N.: Approche multi-échelle de la mécanique. 20ème Congrès Fr. Mécanique 28 Août2 Sept 2011-25044 Besançon Fr. FR (2011)Google Scholar
  26. 26.
    Daher, N.: Objectivité, Rationalité et Relativité Scientifiques Le cas de la Dynamique. In: Ann. Fr. Microtech. Chronométrie. Société française des microtechniques et de chronométrie, pp. 78–95 (2009)Google Scholar
  27. 27.
    Daher, N.: D’une Esthétique Analytique vers une Ethique Architectonique au service des Fondements de la Physique, X International Leibniz Congress, Hannover (Germany), July 18–23, 2016Google Scholar
  28. 28.
    Daher, N.: Leibniz’s intrinsic dynamics: from principles to theorems. In: XVII International Congress on Mathematical Physics (ICPM12). Aalborg, Denmark, Aug 6–11, 2012Google Scholar
  29. 29.
    Barbour, J.B.: The Discovery of Dynamics: A Study from a Machian Point of View of the Discovery and the Structure of Dynamical Theories, Oxford University Press (2001)Google Scholar
  30. 30.
    Landau, B.V., Sampanthar, S.: A new derivation of the Lorentz transformation. Am. J. Phys. 40, 599–602 (1972).  https://doi.org/10.1119/1.1988057CrossRefGoogle Scholar
  31. 31.
    Lévy-Leblond, J.-M., Provost, J.-P.: Additivity, rapidity, relativity. Am. J. Phys. 47, 1045–1049 (1979)CrossRefGoogle Scholar
  32. 32.
    Lévy-Leblond, J.-M.: Speed (s). Am. J. Phys. 48, 345–347 (1980)CrossRefGoogle Scholar
  33. 33.
    Comte, C.: Leibniz aurait-il pu découvrir la relativité. Eur. J. Phys. 7, 225–235 (1986)CrossRefGoogle Scholar
  34. 34.
    Comte, C.: Langevin et la dynamique relativiste. ln Epistémologiques, V 01.2, 1-2. EDP Sci Paris, pp. 225–235 (2002)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Laurent Hirsinger
    • 1
    Email author
  • Naoum Daher
    • 1
  • Michel Devel
    • 1
  • Gautier Lecoutre
    • 1
  1. 1.Institut FEMTO-ST (UBFC/CNRS/UTBM)BesançonFrance

Personalised recommendations