Advertisement

Neuroprotective Agents Target Molecular Mechanisms of Programmed Cell Death After Traumatic Brain Injury

  • Lu-Yang Tao
Chapter

Abstract

The review is to update the current state of knowledge in post-TBI pathophysiological mechanisms, including programmed cell death mechanisms and mechanism-based preclinical pharmacological intervention used in animal models. Their effects on cell death, inflammatory events, and prolonged motor and cognitive deficits will be summarized, and their potential success for clinical application will be evaluated. Many of the above-mentioned mechanisms may be important targets for limiting the consequences of TBI.

Keywords

Traumatic brain injury Cell death Neural protection Plasmalemma 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81530062), and Dr. Cheng-liang Luo did the mainly work of this chapter.

References

  1. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071PubMedCrossRefPubMedCentralGoogle Scholar
  2. Al Nimer F, Thelin E, Nystrom H, Dring AM, Svenningsson A, Piehl F, Nelson DW, Bellander BM (2015) Comparative assessment of the prognostic value of biomarkers in trau- matic brain injury reveals an independent role for serum levels of neurofilament light. PLoS One 10:e0132177PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bao H, Yang X, Zhuang Y, Huang Y, Wang T, Zhang M, Dai D, Wang S, Xiao H, Huang G, Kuai J, Tao L (2016) The effects of poloxamer 188 on the autophagy induced by traumatic brain injury. Neurosci Lett 634:7–12PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bao HJ, Wang T, Zhang MY, Liu R, Dai DK, Wang YQ, Wang L, Zhang L, Gao YZ, Qin ZH, Chen XP, Tao LY (2012) Poloxamer-188 attenuates TBI-induced blood-brain barrier damage leading to decreased brain edema and reduced cellular death. Neurochem Res 37(12):2856–2867PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bell BD, Leverrier S, Weist BM, Newton RH, Arechiga AF, Luhrs KA, Morrissette NS, Walsh CM (2008) FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc Natl Acad Sci U S A 105(43):16677–16682PubMedPubMedCentralCrossRefGoogle Scholar
  6. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M et al (2003) A role for tumor necrosis factor receptor-2 and receptorinteracting protein in programmed necrosis and antiviral responses. J Biol Chem 278:51613–51621PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chao CC, Hu S, Ehrlich L, Peterson PK (1995) Interleukin-1 and tumornecrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitricoxide and of N-methyl-D-aspartate receptors. Brain Behav Immun 9:355–365PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cheema ZF, Wade SB, Sata M, Walsh K, Sohrabji F, Miranda RC (1999) Fas/Apo [apoptosis]-1 and associated proteins in the differentiating cerebral cortex: induction of caspase-dependent cell death and activation of NF-kappaB. J Neurosci 19(5):1754–1770PubMedCrossRefPubMedCentralGoogle Scholar
  11. Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22(2):263–268PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chwieralski CE, Wehe T, Buhling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11:143–149PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cullen DK, Vernekar VN, LaPlaca MC (2011) Trauma-induced plasmalemma disruptions in three-dimensional neural cultures are dependent on strain modality and rate. J Neurotrauma 28:2219–2233PubMedPubMedCentralCrossRefGoogle Scholar
  14. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119PubMedPubMedCentralCrossRefGoogle Scholar
  15. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321PubMedPubMedCentralCrossRefGoogle Scholar
  16. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ellis RC, O’steen WA, Hayes RL, Nick HS, Wang KK, Anderson DK (2005) Cellular localization and enzymatic activity of cathepsin B after spinal cord injury in the rat. Exp Neurol 193:19–28PubMedCrossRefPubMedCentralGoogle Scholar
  18. Enokido Y, Suzuki E, Iwasawa K, Namekata K, Okazawa H, Kimura H (2005) Cystathionine betasynthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 19:1854–1856PubMedCrossRefPubMedCentralGoogle Scholar
  19. Erlich S, Shohami E, Pinkas-Kramarski R (2006) Neurodegeneration induces upregulation of beclin 1. Autophagy 2:49–51PubMedCrossRefPubMedCentralGoogle Scholar
  20. Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P (2007) RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ 14(3):400–410PubMedCrossRefPubMedCentralGoogle Scholar
  21. Frasdorf B, Radon C, Leimkuhler S (2014) Characterization and interaction studies of two isoforms of the dual localized 3-mercaptopyruvate sulfurtransferase TUM1 from humans. J Biol Chem 289:34543–34556PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gajavelli S, Sinha VK, Mazzeo AT, Spurlock MS, Lee SW, Ahmed AI, Yokobori S, Bullock RM (2015) Evidence to support mitochondrial neuroprotection, in severe traumatic brain injury. J Bioenerg Biomembr 47:133–148PubMedCrossRefPubMedCentralGoogle Scholar
  23. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death. Cell Death Differ 19(1):107–120PubMedPubMedCentralCrossRefGoogle Scholar
  24. Graham SH, Chen J, Clark RS (2000) Bcl-2 family gene products in cerebral ischemia and traumatic brain injury. J Neurotrauma 17(10):831–841PubMedCrossRefPubMedCentralGoogle Scholar
  25. Greenebaum B, Blossfield K, Hannig J, Carrillo CS, Beckett MA, Weichselbaum RR, Lee RC (2004) Poloxamer 188 prevents acute necrosis of adult skeletal muscle cells following high-dose irradiation. Burns 30:539–547PubMedCrossRefPubMedCentralGoogle Scholar
  26. Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890PubMedCrossRefPubMedCentralGoogle Scholar
  27. Halestrap AP, Doran E, Gillespie JP, O’Toole A (2000) Mitochondria and cell death. Biochem Soc Trans 278:170–177CrossRefGoogle Scholar
  28. Han J, Zhong CQ, Zhang DW (2011) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 12:1143–1149PubMedPubMedCentralCrossRefGoogle Scholar
  29. Han W, Xie J, Li L, Liu Z, Hu X (2009) Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis 14(5):674–686PubMedCrossRefGoogle Scholar
  30. Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, Nishimoto I (2001) Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun 283:460–468PubMedCrossRefGoogle Scholar
  31. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776PubMedCrossRefGoogle Scholar
  32. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847–22857PubMedCrossRefGoogle Scholar
  33. Jiang X, Wang X (2000) Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 275:159–163CrossRefGoogle Scholar
  34. Jin Y, Lin Y, Feng JF, Jia F, Gao G, Jiang JY (2015) Attenuation of cell death in injured cortex following post-traumatic brain injury moderate hypothermia: possible involvement of autophagy pathway. World Neurosurg 84:420–430PubMedCrossRefGoogle Scholar
  35. Jones NC, Prior MJ, Burden-The E, Marsden CA, Morris PG, Murphy S (2005) Antagonism of the interleukin-1 receptor following traumatic brain injury in the mouse reduces the number of nitric oxide synthase-2-positive cells and improves anatomical and functional outcomes. Eur J Neurosci 22:72–78PubMedCrossRefGoogle Scholar
  36. Kim R, Emi M, Tanabe K (2006) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57:545–553PubMedCrossRefGoogle Scholar
  37. Kim S, Dayani L, Rosenberg PA, Li J (2010) RIP1 kinase mediates arachidonic acid-induced oxidative death of oligodendrocyte precursors. Int J Physiol Pathophysiol Pharmacol 2(2):137–147PubMedPubMedCentralGoogle Scholar
  38. Kimura H (2010) Hydrogen sulfide: from brain to gut. Antioxid Redox Signal 12:1111–1123PubMedCrossRefPubMedCentralGoogle Scholar
  39. Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18PubMedPubMedCentralCrossRefGoogle Scholar
  40. Knott AB, Bossy-Wetzel E (2008) Impairing the mitochondrial fission and fusion balance: a new mechanism of neurode- generation. Ann N Y Acad Sci 1147:283–292PubMedPubMedCentralCrossRefGoogle Scholar
  41. Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584:1374–1378PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010PubMedPubMedCentralCrossRefGoogle Scholar
  43. Krysko DV, Vanden-Berghe T, Herdek D, Vandenabeele P (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44:205–221PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kulbe JR, Hill RL, Singh IN, Wang JA, Hall ED (2016) Synaptic mitochondria sustain more damage than non-synaptic mitochondria after traumatic brain injury and are protected by cyclosporine A. J Neurotrauma. [Epub ahead of print]Google Scholar
  45. Lackner LL, Nunnari JM (2009) The molecular mechanism and cellular functions of mitochondrial division. Biochim Bio- Phys Acta 1792:1138–1144CrossRefGoogle Scholar
  46. Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML, Chu CT, Kochanek PM, Dixon CE, Jenkins LW, Graham SH, Watkins SC, Clark RS (2008) Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab 28:540–550PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lenz A, Franklin GA, Cheadle WG (2007) Systemic inflammation after trauma. Injury 38:1336–1345PubMedCrossRefPubMedCentralGoogle Scholar
  48. Lenzlinger PM, Hans VH, Jo ller-Jemelka HI, Trentz O, Morganti-Kossmann MC, Kossmann T (2001) Markers for cell-mediated immune response are elevated in cerebrospinal fluid and serum after severe traumatic brain injury in humans. J Neurotrauma 18:479–489PubMedCrossRefGoogle Scholar
  49. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370:455–465PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lin KM, Hsiao G, Shih CM, Chou DS, Sheu JR (2009) Mechanism of resveratrol-induced platelet apoptosis. Cardiovasc Res 83:575–585PubMedCrossRefPubMedCentralGoogle Scholar
  51. Lin L, Baehrecke EH (2015) Autophagy cell death, and cancer. Mol Cell Oncol 2(3):e985913PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lipinski MM, Wu J, Faden AI, Sarkar C (2015) Function and mechanisms of autophagy in brain and spinal cord trauma. Antioxid Redox Signal 23(6):565–577PubMedPubMedCentralCrossRefGoogle Scholar
  53. Liu CL, Chen S, Dietrich D, Hu BR (2008) Changes in autophagy after traumatic brain injury. J Cereb Blood Flow Metab 28:674–683PubMedCrossRefPubMedCentralGoogle Scholar
  54. Liu Y, Shoji-Kawata S, Sumpter RM Jr, Wei Y, Ginet V, Zhang L, Posner B, Tran KA, Green DR, Xavier RJ et al (2013) Autosis is a NaC, KC-ATPase-regulated form of cell death triggered by autophagyinducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci U S A 110:20364–20371PubMedPubMedCentralCrossRefGoogle Scholar
  55. Luo CL, Chen XP, Li LL, Li QQ, Li BX, Xue AM, Xu HF, Dai DK, Shen YW, LY T, ZQ Z (2013a) Poloxamer 188 attenuates in vitro traumatic brain injury-induced mitochondrial and lysosomal membrane permeabilization damage in cultured primary neurons. J Neurotrauma 30:597–607PubMedCrossRefPubMedCentralGoogle Scholar
  56. Luo CL, Li QQ, Chen XP, Zhang XM, Li LL, Li BX, Zhao ZQ, Tao LY (2013b) Lipoxin A4 attenuates brain damage and downregulates the production of pro-inflammatory cytokines and phosphorylated mitogen-activated protein kinases in a mouse model of traumatic brain injury. Brain Res 1502:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  57. Luo CL, Chen XP, Ni H, Li QQ, Yang R, Sun YX, Tao LY, Zhu GY (2010a) Comparison of labeling methods and time course of traumatic brain injury-induced cell death in mice. Neural Regen Res 5(9):706–709Google Scholar
  58. Luo CL, Chen XP, Yang R, Sun YX, Li QQ, Bao HJ, Cao QQ, Ni H, Qin ZH, Tao LY (2010b) Cathepsin B contributes to traumatic brain injury-induced cell death through a mitochondria-mediated apoptotic pathway. J Neurosci Res 88:2847–2858PubMedPubMedCentralGoogle Scholar
  59. Luo CL, Li BX, Li QQ, Chen XP, Sun YX, Bao HJ, Dai DK, Shen YW, Xu HF, Ni H, Wan L, Qin ZH, Tao LY, Zhao ZQ (2011) Autophagy is involved in traumatic brain injury-induced cell death and partially contributes to functional outcome deficits in mice. Neuroscience 184:54–63. See comment in PubMed commons below.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Martelli A, Testai L, Breschi MC, Blandizzi C, Virdis A et al (2012) Hydrogen sulphide: novel opportunity for drug discovery. Med Res Rev 32:1093–1130PubMedCrossRefPubMedCentralGoogle Scholar
  61. Meloni BP, Meade AJ, Kitikomolsuk D, Knuckey NW (2011) Characterisation of neuronal cell death in acute and delayed in vitro ischemia (oxygen-glucose deprivation) models. J Neurosci Methods 195(1):67–74CrossRefPubMedGoogle Scholar
  62. Messer JS (2016) The cellular autophagy/apoptosis checkpoint during inflammation. Cell Mol Life Sci. [Epub ahead of print]Google Scholar
  63. Moquin DM, McQuade T, Chan FK-M, Harhaj EW (2013) CYLD Deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One 8(10):e76841PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mustafa AG, Singh IN, Wang J, Carrico KM, Hall ED (2010) Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 114:271–280PubMedPubMedCentralGoogle Scholar
  65. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121:2012–2022PubMedCrossRefPubMedCentralGoogle Scholar
  66. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145PubMedCrossRefPubMedCentralGoogle Scholar
  67. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998PubMedCrossRefPubMedCentralGoogle Scholar
  68. Pozuelo-Rubio M (2011) 14-3-3_ binds class III phosphatidylinositol-3-kinase and inhibits autophagy. Autophagy 7:240–242PubMedCrossRefPubMedCentralGoogle Scholar
  69. Purnell PR, Fox HS (2013) Autophagy-mediated turnover ofdynamin-related protein 1. BMC Neurosci 14:86PubMedPubMedCentralCrossRefGoogle Scholar
  70. Qi X, Qvit N, Su YC, Mochly-Rosen D (2013) A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neu- rotoxicity. J Cell Sci 126:789–802PubMedPubMedCentralCrossRefGoogle Scholar
  71. Sadasivan S, Dunn WA Jr, Hayes RL, Wang KK (2008) Changes in autophagy proteins in a rat model of controlled cortical impact induced brain injury. Biochem Biophys Res Commun 373:478–481PubMedCrossRefPubMedCentralGoogle Scholar
  72. Santopietro J, Yeomans JA, Niemeier JP, White JK, Coughlin CM (2015) Traumatic brain injury and behavioral health: the state of treatment and policy. N C Med J 76:96–100PubMedPubMedCentralGoogle Scholar
  73. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM (2014) Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10(12):2208–2222PubMedCrossRefPubMedCentralGoogle Scholar
  74. Sanz O, Acarin L, Gonza’lez B, Castellano B (2002) NF-jB and IjBa expression following traumatic brain injury to the immature rat brain. J Neurosci Res 67:772–780PubMedCrossRefPubMedCentralGoogle Scholar
  75. Serbest G, Horwitz J, Barbee K (2005) The effect of poloxamer-188 on neuronal cell recovery from mechanical injury. J Neurotrauma 22:119–132PubMedCrossRefPubMedCentralGoogle Scholar
  76. Sharp WW, Beiser DG, Fang YH, Han M, Piao L, Varughese J, Archer SL (2015) Inhibition of the mitochondrial fission protein dynamin-related protein 1 improves survival in a murine cardiac arrest model. Crit Care Med 43:e38–e47PubMedPubMedCentralCrossRefGoogle Scholar
  77. Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714PubMedCrossRefPubMedCentralGoogle Scholar
  78. Shohami E, Gallily R, Mechoulam R, Bass R, Ben-Hur T (1997) Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-alpha inhibitor and an effective neuroprotectant. J Neuroimmunol 72:169–177PubMedCrossRefPubMedCentralGoogle Scholar
  79. Siegel RM, Chan FK, Chun HJ, Lenardo MJ (2000) The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 1:469–474PubMedCrossRefPubMedCentralGoogle Scholar
  80. Song B, Zhou T, Yang WL, Liu J, Shao LQ (2016) Programmed cell death in periodontitis: recent advances and future perspectives. Oral Dis. https://doi.org/10.1111/odi.12574. [Epub ahead of print]
  81. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241PubMedPubMedCentralCrossRefGoogle Scholar
  82. Tehranian R, Rose ME, Vagni V, Pickrell AM, Griffith RP, Liu H, Clark RS, Dixon CE, Kochanek PM, Graham SH (2008) Disruption of Bax protein prevents neuronal cell death but produces cognitive impairment in mice following traumatic brain injury. J Neurotrauma 25:755–767PubMedPubMedCentralCrossRefGoogle Scholar
  83. Tsuchiya K, Kohda Y, Yoshida M, Zhao L, Ueno T, Yamashita J, Yoshioka T, Kominami E, Yamashima T (1999) Postictal blockade of ischemic hippocampal neuronal death in primates using selective cathepsin inhibitors. Exp Neurol 155:187–194PubMedCrossRefPubMedCentralGoogle Scholar
  84. Uchiyama Y, Koike M, Shibata M (2008) Autophagic neuron death in neonatal brain ischemia/hypoxia. Autophagy 4:404–408PubMedCrossRefPubMedCentralGoogle Scholar
  85. Vanden Berghe T, Kaiser WJ, Bertrand MJ, Vandenabeele P (2015) Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol 2(4):e975093CrossRefGoogle Scholar
  86. Uryu K, Laurer H, McIntosh T, Pratic OD, Martinez D, Leight S, Lee VM, Trojanowski JQ (2002) Repetitive mild brain trauma accelerates A beta deposition, lipid peroxidation, and cognitive impairment in a transgenicmouse model of Alzheimer amyloidosis. J Neurosci 22:446–454PubMedCrossRefPubMedCentralGoogle Scholar
  87. Wang DB, Garden GA, Kinoshita C, Wyles C, Babazadeh N, Sopher B, Kinoshita Y, Morrison RS (2013a) Declines in Drp1 and parkin expression underlie DNA damage-induced changes in mitochondrial length and neuronal death. J Neurosci 33:1357–1365PubMedPubMedCentralCrossRefGoogle Scholar
  88. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–56PubMedCrossRefPubMedCentralGoogle Scholar
  89. Wang T, Zhang L, Zhang M, Bao H, Liu W, Wang Y, Wang L, Dai D, Chang P, Dong W, Chen X, Tao L (2013b) [Gly14]-Humanin reduces histopathology and improves functional outcome after traumatic brain injury in mice. Neuroscience 231:70–81PubMedCrossRefPubMedCentralGoogle Scholar
  90. Wang Y, Han R, Liang ZQ, Wu JC, Zhang XD, Gu ZL, Qin ZH (2008) An autophagic mechanism is involved in apoptotic death of rat striatal neurons induced by the non-N-methyl-D-aspartate receptor agonist kainic acid. Autophagy 4:1–13Google Scholar
  91. Wang YQ, Wang L, Zhang MY, Wang T, Bao HJ, Liu WL, Dai DK, Zhang L, Chang P, Dong WW, Chen XP, Tao LY (2012 Sep) Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem Res 37(9):1849–1858PubMedCrossRefPubMedCentralGoogle Scholar
  92. Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9PubMedCrossRefPubMedCentralGoogle Scholar
  93. Wesselborg S, Stork B (2015) Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 72:4721–4757PubMedPubMedCentralCrossRefGoogle Scholar
  94. Winter CD, Iannotti F, Pringle AK, Trikkas C, Clough GF, Church MK (2002) A microdialysismethod for the recovery of IL-1beta, IL-6 and nerve growth factor from human brain in vivo. J Neurosci Methods 119:45–50PubMedCrossRefPubMedCentralGoogle Scholar
  95. Wu Q, Xia SX, Li QQ, Gao Y, Shen X, Ma L, Zhang MY, Wang T, Li YS, Wang ZF, Luo CL, Tao LY (2016) Mitochondrial division inhibitor 1 (Mdivi-1) offers neuroprotection through diminishing cell death and improving functional outcome in a mouse model of traumatic brain injury. Brain Res 1630:134–143PubMedCrossRefPubMedCentralGoogle Scholar
  96. Xue L, Fletcher GC, Tolkovsky AM (2001) Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr Biol 11:361–365PubMedCrossRefPubMedCentralGoogle Scholar
  97. Xu X, Chua KW, Chua CC, Liu CF, Hamdy RC, Chua BH (2010a) Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Res 1355:189–194PubMedPubMedCentralCrossRefGoogle Scholar
  98. Xu X, Chua CC, Zhang M, Geng D, Liu CF, Hamdy RC, Chua BH (2010b) The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. Brain Res 1343:206–212PubMedCrossRefPubMedCentralGoogle Scholar
  99. Xu X, Chua CC, Gao J, Chua KW, Wang H, Hamdy RC, Chua BH (2008) Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway. Brain Res 1227:12–18PubMedPubMedCentralCrossRefGoogle Scholar
  100. Xu X, Chua CC, Kong J, Kostrzewa RM, Kumaraguru U, Hamdy RC, Chua BH (2007) Necrostatin-1 protects against glutamateinduced glutathione depletion and caspase-independent cell death in HT-22 cells. J Neurochem 103(5):2004–2014PubMedCrossRefPubMedCentralGoogle Scholar
  101. Yamashima T, Kohda Y, Tsuchiya K, Ueno T, Yamashita J, Yoshioka T, Kominami E (1998) Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on “calpain-cathepsin hypothesis”. Eur J Neurosci 10:1723–1733PubMedPubMedCentralCrossRefGoogle Scholar
  102. You Z, Savitz SI, Yang J, Degterev A, Yuan J, Cuny GD, Moskowitz MA, Whalen MJ (2008) Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 28(9):1564–1573PubMedPubMedCentralCrossRefGoogle Scholar
  103. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304(5676):1500–1502PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhang H, Zhong C, Shi L, Guo Y, Fan Z (2009) Granulysin induces cathepsin B release from lysosomes of target tumor cells to attack mitochondria through processing of bid leading to necroptosis. J Immunol 182:6993–7000PubMedCrossRefPubMedCentralGoogle Scholar
  105. Zhang M, Shan H, Wang T, Liu W, Wang Y, Wang L, Zhang L, Chang P, Dong W, Chen X, Tao L (2013a) Dynamic change of hydrogen sulfide after traumatic brain injury and its effect in mice. Neurochem Res 38(4):714–725PubMedCrossRefPubMedCentralGoogle Scholar
  106. Zhang M, Shan H, Wang Y, Wang T, Liu W, Wang L, Zhang L, Chang P, Dong W, Chen X, Tao L (2013b) The expression changes of cystathionine-β-synthase in brain cortex after traumatic brain injury. J Mol Neurosci 51(1):57–67PubMedCrossRefPubMedCentralGoogle Scholar
  107. Zhang M, Shan H, Chang P, Wang T, Dong W, Chen X, Tao L (2014) Hydrogen sulfide offers neuroprotection on traumatic brain injury in parallel with reduced apoptosis and autophagy in mice. PLoS One 9(1):e87241PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zhang M, Shan H, Chang P, Ma L, Chu Y, Shen X, Wu Q, Wang Z, Luo C, Wang T, Chen X, Tao L (2016) Upregulation of 3-MST relates to neuronal autophagy after traumatic brain injury in mice. Cell Mol Neurobiol. [Epub ahead of print]PubMedCrossRefPubMedCentralGoogle Scholar
  109. Zhang N, Chen Y, Jiang R, Li E, Chen X, Xi Z, Guo Y, Liu X, Zhou Y, Che Y, Jiang X (2011) PARP and RIP 1 are required for autophagy induced by 110-deoxyverticillin A, which precedes caspase-dependent apoptosis. Autophagy 7(6):598–612PubMedCrossRefPubMedCentralGoogle Scholar
  110. Zhang N, Wang S, Li Y, Che L, Zhao Q (2013c) A selective inhibitor of Drp1, Mdivi-1, acts against cerebral ischemia/ reperfusion injury via an anti-apoptotic pathway in rats. Neurosci Lett 535:104–109PubMedCrossRefPubMedCentralGoogle Scholar
  111. Zhang YB, Li SX, Chen XP, Yang L, Zhang YG, Liu R, Tao LY (2008) Autophagy is activated and might protect neurons from degeneration after traumatic brain injury. Neurosci Bull 24(3):143–149PubMedPubMedCentralCrossRefGoogle Scholar
  112. Zhao ST, Huang XT, Zhang C, Ke Y (2011) Humanin protects cortical neurons from ischemia and reperfusion injury by the increased activity of superoxide dismutase. Neurochem Res 37:153–160PubMedCrossRefPubMedCentralGoogle Scholar
  113. Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183:5909–5916PubMedCrossRefPubMedCentralGoogle Scholar
  114. Zhou W, Yuan J (2014) SnapShot: Necroptosis. Cell 158:464–440PubMedCrossRefPubMedCentralGoogle Scholar
  115. Zhu S, Zhang Y, Bai G, Li H (2011) Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington’s disease. Cell Death Dis 2:e115PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90(3):405–413PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Forensic MedicineSoochow UniversitySuzhouChina

Personalised recommendations