Advertisement

Hypoglycemic Brain Damage

  • Roland N. Auer
Chapter

Abstract

Hypoglycemic brain damage is a different global brain insult from cardiac arrest encephalopathy. We here follow the path of glucose from blood to the brain interstitial space, into the cell, through glycolysis into the Krebs cycle, including the consequent new homeostasis in amino acid metabolism that gives rise to increased aspartic acid within cells. Leakage of aspartate massively floods the extracellular space to kill neurons, while continued turning of a truncated form of the Krebs cycle keeps most brain cells alive. Endogenous substrates are utilized, chiefly phospholipids and fatty acids. The duration of tolerable insult is much longer for hypoglycemia than ischemia, which also releases more glutamate than aspartate into the brain interstitium. The neuropathology in humans is not always distinguishable, but if there is dentate gyrus destruction, a very late event in global ischemia, the distinction of hypoglycemic from ischemic damage can be made. Hypoglycemic brain damage occurs in hospitals, attempted suicide and homicide.

Keywords

Hypoglycemia Clinical Experimental Glucose EEG Cortex Hippocampus Electron Microscopy 

References

  1. Abdul-Rahman A, Siesjö BK (1980) Local cerebral glucose consumption during insulin-induced hypoglycemia, and in the recovery period following glucose administration. Acta Physiol Scand 110:149–159CrossRefPubMedGoogle Scholar
  2. Abdul-Rahman A, Agardh C-D, Siesjö BK (1980) Local cerebral blood flow in the rat during severe hypoglycemia and in the recovery period following glucose injection. Acta Physiol Scand 109:307–314CrossRefPubMedGoogle Scholar
  3. Abi-Saab WM, Maggs DG, Jones T, Jacob R, Srihari V, Thompson J, Kerr D, Leone P, Krystal JH, Spencer DD, During MJ, Sherwin RS (2002) Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab 22:271–279CrossRefPubMedGoogle Scholar
  4. Agardh C-D, Folbergrová J, Siesjö BK (1978) Cerebral metabolic changes in profound insulin-induced hypoglycemia, and in the recovery period following glucose administration. J Neurochem 31:1135–1142CrossRefPubMedGoogle Scholar
  5. Agardh C-D, Chapman AG, Nilsson B, Siesjö BK (1981) Endogenous substrates utilized by rat brain in severe insulin-induced hypoglycemia. J Neurochem 36:490–500CrossRefPubMedGoogle Scholar
  6. Anonymous (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 329:977–986CrossRefGoogle Scholar
  7. Arzamendi AE, Rajamani U, Jialal I (2014) Pseudoinsulinoma in a white man with autoimmune hypoglycemia due to anti-insulin antibodies: value of the free C-Peptide assay. Am J Clin Pathol 142:689–693CrossRefPubMedGoogle Scholar
  8. Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with biofeedback modifiers. Biochemistry 7:4030–4034CrossRefPubMedGoogle Scholar
  9. Auer RN (1986) Progress review: hypoglycemic brain damage. Stroke 17:699–708CrossRefPubMedGoogle Scholar
  10. Auer RN (2004) Hypoglycemic brain damage. Forensic Sci Int 146:105–110CrossRefPubMedGoogle Scholar
  11. Auer RN, Siesjö BK (1988) Biological differences between ischemia, hypoglycemia, and epilepsy. Ann Neurol 24:699–707CrossRefPubMedGoogle Scholar
  12. Auer RN, Siesjö BK (1993) Hypoglycaemia: brain neurochemistry and neuropathology. Baillières Clin Endocrinol Metab 7:611–625CrossRefPubMedGoogle Scholar
  13. Auer RN, Wieloch T, Olsson Y, Siesjö BK (1984a) The distribution of hypoglycemic brain damage. Acta Neuropathol 64:177–191CrossRefPubMedGoogle Scholar
  14. Auer RN, Olsson Y, Siesjö BK (1984b) Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: a quantitative study. Diabetes 33:1090–1098CrossRefPubMedGoogle Scholar
  15. Auer RN, Kalimo H, Olsson Y, Siesjö BK (1985a) The temporal evolution of hypoglycemic brain damage. I. Light- and electron-microscopic findings in the rat cerebral cortex. Acta Neuropathol 67:13–24CrossRefPubMedGoogle Scholar
  16. Auer RN, Kalimo H, Olsson Y, Siesjö BK (1985b) The temporal evolution of hypoglycemic brain damage. II. Light- and electron-microscopic findings in the hippocampal gyrus and subiculum of the rat. Acta Neuropathol 67:25–36CrossRefPubMedGoogle Scholar
  17. Auer R, Kalimo H, Olsson Y, Wieloch T (1985c) The dentate gyrus in hypoglycemia: pathology implicating excitotoxin-mediated neuronal necrosis. Acta Neuropathol 67:279–288CrossRefPubMedGoogle Scholar
  18. Auer RN, Hugh J, Cosgrove E, Curry B (1989) Neuropathologic findings in three cases of profound hypoglycemia. Clin Neuropathol 8:63–68PubMedGoogle Scholar
  19. Brierley JB, Brown AW, Meldrum BS (1971) The nature and time course of the neuronal alterations resulting from oligaemia and hypoglycemia in the brain of Macaca mulatta. Brain Res 25:483–499CrossRefPubMedGoogle Scholar
  20. Cornford EM, Hyman S, Pardridge WM (1993) An electron microscopic immunogold analysis of developmental up-regulation of the blood-brain barrier GLUT1 glucose transporter. J Cereb Blood Flow Metab 13:841–854CrossRefPubMedGoogle Scholar
  21. Crane PD, Pardridge WM, Braun LD, Oldendorf WH (1985) Two-day starvation does not alter the kinetics of blood–brain barrier transport and phosphorylation of glucose in rat brain. J Cereb Blood Flow Metab 5:40–46CrossRefPubMedGoogle Scholar
  22. Cravioto RO, Massieu H, Izquierdo JJ (1951) Free amino acids in rat brain during insulin shock. Proc Soc Exp Biol Med 78:856–858CrossRefPubMedGoogle Scholar
  23. Feise G, Kogure K, Busto R, Scheinberg P, Reinmuth O (1976) Effect of insulin hypoglycemia upon cerebral energy metabolism and EEG activity in the rat. Brain Res 126:263–280CrossRefGoogle Scholar
  24. Fischer KF, Lees JA, Newman JH (1986) Hypoglycemia in hospitalized patients. Causes and outcomes. N Engl J Med 315:1245–1250CrossRefPubMedGoogle Scholar
  25. Gjedde A, Hansen AJ, Siemkowicz E (1980) Rapid simultaneous determination of regional blood flow and blood brain glucose transfer in brain of rat. Acta Physiol Scand 108:321–330CrossRefPubMedGoogle Scholar
  26. Hakim AM (1984) The induction and reversibility of cerebral acidosis in thiamine deficiency. Ann Neurol 16:673–679CrossRefPubMedGoogle Scholar
  27. Kalimo H, Olsson Y (1980) Effect of severe hypoglycemia on the human brain. Acta Neurol Scand 62:345–356CrossRefPubMedGoogle Scholar
  28. Kalimo H, Auer RN, Siesjö BK (1985) The temporal evolution of hypoglycemic brain damage. III. Light and electron microscopic findings in the rat caudoputamen. Acta Neuropathol 67:37–50CrossRefPubMedGoogle Scholar
  29. Kety SS, Woodford RB, Harmel MH, Freyhan FA, Appel KE, Schmidt CF (1948) Cerebral blood flow and metabolism in schizophrenia. The effect of barbiturate semi-narcosis, insulin coma and electroshock. Am J Psychiat 104:765–770CrossRefPubMedGoogle Scholar
  30. Kiessling M, Auer RN, Kleihues P, Siesjö BK (1986) Cerebral protein synthesis during long-term recovery from severe hypoglycemia. J Cereb Blood Flow Metab 6:42–51CrossRefPubMedGoogle Scholar
  31. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69CrossRefPubMedGoogle Scholar
  32. LaManna JC, Harik SI (1985) Regional comparisons of brain glucose influx. Brain Res 326:299–305CrossRefPubMedGoogle Scholar
  33. Lawson EA, Zhang X, Crocker JT, Wang WL, Klibanski A (2009) Hypoglycemia from IGF2 overexpression associated with activation of fetal promoters and loss of imprinting in a metastatic hemangiopericytoma. J Clin Endocrinol Metab 94:2226–2231CrossRefPubMedGoogle Scholar
  34. Lewis LD, Ljunggren B, Norberg K, Siesjö BK (1974) Changes in carbohydrate substrates, amino acids and ammonia in the brain during insulin-induced hypoglycemia. J Neurochem 23:659–671CrossRefPubMedGoogle Scholar
  35. Lloyd KP, Ojelabi OA, De Zutter JK, Carruthers A (2017) Reconciling contradictory findings: Glucose transporter 1 (GLUT1) functions as an oligomer of allosteric, alternating access transporters. J Biol Chem 292:21035–21046CrossRefPubMedGoogle Scholar
  36. Mayer-Gross W (1951) Insulin coma therapy of schizophrenia: some critical remarks on Dr. Sakel’s report. J Ment Sci 97:132–135CrossRefPubMedGoogle Scholar
  37. Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HF (1985) Sequence and structure of a human glucose transporter. Science 229:941–945CrossRefPubMedGoogle Scholar
  38. Nemoto EM, Hoff JT, Severinghaus JW (1974) Lactate uptake and metabolism by brain during hyperlactatemia and hypoglycemia. Stroke 5:48–53CrossRefPubMedGoogle Scholar
  39. Nevander G, Ingvar M, Auer R, Siesjö BK (1985) Status epilepticus in well-oxygenated rats causes neuronal necrosis. Ann Neurol 18:281–290CrossRefPubMedGoogle Scholar
  40. Ng T, Graham DI, Adams JH, Ford I (1989) Changes in the hippocampus and the cerebellum resulting from hypoxic insults: frequency and distribution. Acta Neuropathol 78:438–443CrossRefPubMedGoogle Scholar
  41. Olney JW (1969a) Glutamate-induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesions. J Neuropathol Exp Neurol 28:455–474CrossRefPubMedGoogle Scholar
  42. Olney JW (1969b) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721CrossRefPubMedGoogle Scholar
  43. Olney JW (1971) Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. J Neuropathol Exp Neurol 30:75–90CrossRefPubMedGoogle Scholar
  44. Patti ME, McMahon G, Mun EC, Bitton A, Holst JJ, Goldsmith J, Hanto DW, Callery M, Arky R, Nose V, Bonner-Weir S, Goldfine AB (2005) Severe hypoglycaemia post-gastric bypass requiring partial pancreatectomy: evidence for inappropriate insulin secretion and pancreatic islet hyperplasia. Diabetologia 48:2236–2240CrossRefPubMedGoogle Scholar
  45. Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20:291–299CrossRefPubMedGoogle Scholar
  46. Pelligrino D, Almquist L-O, Siesjö BK (1981) Effects of insulin-induced hypoglycemia on intracellular pH and impedance in the cerebral cortex of the rat. Brain Res 221:129–147CrossRefPubMedGoogle Scholar
  47. Sakel M (1937) The methodical use of hypoglycemia in the treatment of psychoses. Am J Psychiatr 94:111–129CrossRefGoogle Scholar
  48. Sandberg M, Butcher SP, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47:178–184CrossRefPubMedGoogle Scholar
  49. Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ (2008) The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295:E242–E253CrossRefPubMedPubMedCentralGoogle Scholar
  50. Smith ML, Auer RN, Siesjö BK (1984) The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia. Acta Neuropathol 64:319–332CrossRefPubMedGoogle Scholar
  51. Suh SW, Aoyama K, Matsumori Y, Liu J, Swanson RA (2005) Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment. Diabetes 54:1452–1458CrossRefPubMedGoogle Scholar
  52. Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA (2007) Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther 321:45–50CrossRefPubMedGoogle Scholar
  53. Sutherland GR, Tyson RL, Auer RN (2008) Truncation of the Krebs cycle during hypoglycemic coma. Med Chem 4:379–385CrossRefPubMedGoogle Scholar
  54. Tews JK, Carter SH, Stone WE (1965) Chemical changes in the brain during insulin hypoglycemia and recovery. J Neurochem 12:679–683CrossRefPubMedGoogle Scholar
  55. Trump BF, Berezesky IK, Chang SH, Phelps PC (1997) The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol 25:82–88CrossRefPubMedGoogle Scholar
  56. Urion D, Vreman HJ, Weiner MW (1979) Effect of acetate on hypoglycemic seizures in mice. Diabetes 28:1022–1026CrossRefPubMedGoogle Scholar
  57. Wang D, Pascual JM, Yang H, Engelstad K, Jhung S, Sun RP, De Vivo DC (2005) Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol 57:111–118CrossRefPubMedGoogle Scholar
  58. Weil A, Liebert E, Heilbrunn G (1938) Histopathologic changes in the brain in experimental hyperinsulinism. Arch Neurol Psychiat (Chic) 39:467–481CrossRefGoogle Scholar
  59. Wieloch T (1985) Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science 230:681–683CrossRefPubMedGoogle Scholar
  60. Won SJ, Jang BG, Yoo BH, Sohn M, Lee MW, Choi BY, Kim JH, Song HK, Suh SW (2012) Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration. J Cereb Blood Flow Metab 32:1086–1096CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhou P, Kudo M, Chung H, Minami Y, Ogawa C, Sakaguchi Y, Kitano M, Kawasaki T, Maekawa K (2005) Multiple metastases from a meningeal hemangiopericytoma associated with severe hypoglycemia. J Med Ultrason (2001) 32:187–190CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Roland N. Auer
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations