Advertisement

Learning-Based Fast Nonlinear Model Predictive Control for Custom-Made 3D Printed Ground and Aerial Robots

  • Mohit Mehndiratta
  • Erkan KayacanEmail author
  • Siddharth Patel
  • Erdal Kayacan
  • Girish Chowdhary
Chapter
Part of the Control Engineering book series (CONTRENGIN)

Abstract

In this work, our goal is to use an online learning-based nonlinear model predictive control (NMPC) for systems with uncertain and/or time-varying parameters. We have deployed it for two robotic applications in real-time: an agricultural off-road ground vehicle and an aerial robotic system, namely a tilt-rotor tricopter unmanned aerial vehicle. Nonlinear moving horizon estimation (NMHE) is used to estimate the traction parameters in the former and the mass parameter in the latter. Thanks to its learning capability, NMHE makes the proposed framework adaptive – and therefore robust – to time-varying operational conditions. The experimental results for the trajectory tracking problem of the unmanned ground and aerial vehicles demonstrate a robust learning controller that provides an accurate tracking. The experimental results also show that the proposed framework provides a fast and computationally efficient methodology which can easily be implemented in ground and aerial robotic applications with reasonable computation power, where working conditions are time-varying and the modeling of the system is tedious.

Notes

Acknowledgements

This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Medium-Sized Centre funding scheme. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000598.

References

  1. 1.
    Allgöwer, F., Badgwell, T.A., Qin, J.S., Rawlings, J.B., Wright, S.J.: Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview. Springer, London (1999). https://doi.org/10.1007/978-1-4471-0853-5_19
  2. 2.
    Ariens, D., Houska, B., Ferreau, H., Logist, F.: ACADO: toolkit for automatic control and dynamic optimization. Optimization in Engineering Center (OPTEC), 1.0beta edn. (2010). http://www.acadotoolkit.org/
  3. 3.
    Bouabdallah, S.: Design and Control of Quadrotors with Application to Autonomous Flying, p. 155. EPFL, Lausanne (2007)Google Scholar
  4. 4.
    Bouffard, P., Aswani, A., Tomlin, C.: Learning-based model predictive control on a quadrotor: onboard implementation and experimental results. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 279–284 (2012). https://doi.org/10.1109/ICRA.2012.6225035
  5. 5.
    Chowdhary, G., Mühlegg, M., How, J.P., Holzapfel, F.: Concurrent Learning Adaptive Model Predictive Control, pp. 29–47. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-38253-6_3
  6. 6.
    Chowdhary, G., Mühlegg, M., How, J.P., Holzapfel, F.: A concurrent learning adaptive-optimal control architecture for nonlinear systems. In: 52nd IEEE Conference on Decision and Control, pp. 868–873 (2013). https://doi.org/10.1109/CDC.2013.6759991
  7. 7.
    Eren, U., Prach, A., Koçer, B.B., Raković, S.V., Kayacan, E., Açıkmeşe, B.: Model predictive control in aerospace systems: current state and opportunities. J. Guid. Control. Dyn. 40(7), 1541–1566 (2017). https://doi.org/10.2514/1.G002507 CrossRefGoogle Scholar
  8. 8.
    Fum, W.Z.: Implementation of simulink controller design on Iris+ quadrotor. Ph.D. thesis, Monterey, California, Naval Postgraduate School (2015)Google Scholar
  9. 9.
    Garimella, G., Sheckells, M., Kobilarov, M.: Robust obstacle avoidance for aerial platforms using adaptive model predictive control. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5876–5882 (2017). https://doi.org/10.1109/ICRA.2017.7989692
  10. 10.
    Grúne, L.: NMPC without terminal constraints. IFAC Proc. Vol. 45(17), 1–13 (2012)CrossRefGoogle Scholar
  11. 11.
    Havoutis, I., Calinon, S.: Supervisory teleoperation with online learning and optimal control. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1534–1540 (2017)Google Scholar
  12. 12.
    Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Quadrotor helicopter flight dynamics and control: theory and experiment. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, vol. 2, p. 4 (2007)Google Scholar
  13. 13.
    Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Distributed nonlinear model predictive control of an autonomous tractor-trailer system. Mechatronics 24(8), 926–933 (2014)CrossRefGoogle Scholar
  14. 14.
    Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Nonlinear modeling and identification of an autonomous tractor-trailer system. Comput. Electron. Agric. 106, 1–10 (2014). https://doi.org/10.1016/j.compag.2014.05.002 CrossRefGoogle Scholar
  15. 15.
    Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Learning in centralized nonlinear model predictive control: application to an autonomous tractor-trailer system. IEEE Trans. Control Syst. Technol. 23(1), 197–205 (2015)CrossRefGoogle Scholar
  16. 16.
    Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Robust tube-based decentralized nonlinear model predictive control of an autonomous tractor-trailer system. IEEE/ASME Trans. Mechatron. 20(1), 447–456 (2015)CrossRefGoogle Scholar
  17. 17.
    Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Towards agrobots: Identification of the yaw dynamics and trajectory tracking of an autonomous tractor. Comput. Electron. Agric. 115, 78–87 (2015)CrossRefGoogle Scholar
  18. 18.
    Kayacan, E., Peschel, J.M., Kayacan, E.: Centralized, decentralized and distributed nonlinear model predictive control of a tractor-trailer system: a comparative study. In: 2016 American Control Conference (ACC), pp. 4403–4408 (2016). https://doi.org/10.1109/ACC.2016.7525615
  19. 19.
    Kraus, T., Ferreau, H., Kayacan, E., Ramon, H., Baerdemaeker, J.D., Diehl, M., Saeys, W.: Moving horizon estimation and nonlinear model predictive control for autonomous agricultural vehicles. Comput. Electron. Agric. 98, 25–33 (2013)CrossRefGoogle Scholar
  20. 20.
    Kühl, P., Diehl, M., Kraus, T., Schlöder, J.P., Bock, H.G.: A real-time algorithm for moving horizon state and parameter estimation. Comput. Chem. Eng. 35(1), 71–83 (2011)CrossRefGoogle Scholar
  21. 21.
    Liu, Y., Rajappa, S., Montenbruck, J.M., Stegagno, P., Bülthoff, H., Allgöwer, F., Zell, A.: Robust nonlinear control approach to nontrivial maneuvers and obstacle avoidance for quadrotor UAV under disturbances. Robot. Auton. Syst. 98, 317–332 (2017). https://doi.org/10.1016/j.robot.2017.08.011 CrossRefGoogle Scholar
  22. 22.
    López-Negrete, R., Biegler, L.T.: A moving horizon estimator for processes with multi-rate measurements: a nonlinear programming sensitivity approach. J. Process Control 22(4), 677–688 (2012)CrossRefGoogle Scholar
  23. 23.
    Mehndiratta, M., Kayacan, E.: Receding horizon control of a 3 DOF helicopter using online estimation of aerodynamic parameters. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. (2017). https://doi.org/10.1177/0954410017703414
  24. 24.
    Morari, M., Lee, J.H.: Model predictive control: past, present and future. Comput. Chem. Eng. 23(4), 667–682 (1999). https://doi.org/10.1016/S0098-1354(98)00301-9 CrossRefGoogle Scholar
  25. 25.
    Nicolao, G.D., Magni, L., Scattolini, R.: Stabilizing receding-horizon control of nonlinear time-varying systems. IEEE Trans. Autom. Control 43(7), 1030–1036 (1998)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ostafew, C.J., Schoellig, A.P., Barfoot, T.D.: Robust constrained learning-based NMPC enabling reliable mobile robot path tracking. Int. J. Robot. Res. 35(13), 1547–1563 (2016). https://doi.org/10.1177/0278364916645661 CrossRefGoogle Scholar
  27. 27.
    Prach, A., Kayacan, E.: An MPC-based position controller for a tilt-rotor tricopter VTOL UAV. Optim. Control Appl. Methods https://doi.org/10.1002/oca.2350
  28. 28.
    Rao, C.V., Rawlings, J.B., Mayne, D.Q.: Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Trans. Autom. Control 48(2), 246–258 (2003). https://doi.org/10.1109/TAC.2002.808470 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Robertson, D.G., Lee, J.H., Rawlings, J.B.: A moving horizon-based approach for least-squares estimation. AIChE J. 42(8), 2209–2224 (1996)CrossRefGoogle Scholar
  30. 30.
    Shin, J., Kim, H.J., Park, S., Kim, Y.: Model predictive flight control using adaptive support vector regression. Neurocomputing 73(4), 1031–1037 (2010). https://doi.org/10.1016/j.neucom.2009.10.002 CrossRefGoogle Scholar
  31. 31.
    Vukov, M., Gros, S., Horn, G., Frison, G., Geebelen, K., Jørgensen, J., Swevers, J., Diehl, M.: Real-time nonlinear MPC and MHE for a large-scale mechatronic application. Control Eng. Pract. 45, 64–78 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Mohit Mehndiratta
    • 1
  • Erkan Kayacan
    • 2
    Email author
  • Siddharth Patel
    • 1
  • Erdal Kayacan
    • 3
  • Girish Chowdhary
    • 4
  1. 1.Nanyang Technological University50 Nanyang AvenueSingapore
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.Aarhus UniversityDepartment of EngineeringAarhus CDenmark
  4. 4.University of Illinois at Urbana–ChampaignChampaignUSA

Personalised recommendations