Advertisement

Model Predictive Control for Power Electronics Applications

  • Daniel E. QuevedoEmail author
  • Ricardo P. Aguilera
  • Tobias Geyer
Chapter
Part of the Control Engineering book series (CONTRENGIN)

Abstract

Power electronics converters use switching elements to manipulate voltage and current waveforms. This enables the interconnection of components having different requirements, e.g., when incorporating renewable energy sources into the grid. The use of switching elements may lead to high energy efficiency. However, switching dynamical systems are difficult to analyse and design. In this chapter, we outline how model predictive control concepts can be used in power electronics and electrical drives. Special emphasis is given on the finite-set nature of manipulated variables and associated stability and optimization issues. For particular classes of system models, we discuss practical algorithms, which make long-horizon predictive control suitable for power electronics applications.

References

  1. 1.
    Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE Trans. Inf. Theory 48(8), 2201–2214 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aguilera, R.P., Quevedo, D.E.: Capacitor voltage estimation for predictive control algorithm of flying capacitor converters. In: IEEE International Conference on Industrial Technology, Melbourne (2009)Google Scholar
  3. 3.
    Aguilera, R.P., Quevedo, D.E.: Stability analysis of quadratic MPC with a discrete input alphabet. IEEE Trans. Autom. Control 58(12), 3190–3196 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aguilera, R.P., Quevedo, D.E.: Predictive control of power converters: designs with guaranteed performance. IEEE Trans. Ind. Inf. 11(1), 53–63 (2015)CrossRefGoogle Scholar
  5. 5.
    Baidya, R., Aguilera, R.P., Acuna, P., Vazquez, S., Mouton, H.D.: Multistep model predictive control for cascaded h-bridge inverters: formulation and analysis. IEEE Trans. Power Electron. PP(99), 1–1 (2017). https://doi.org/10.1109/TPEL.2017.2670567
  6. 6.
    Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bolognani, S., Bolognani, S., Peretti, L., Zigliotto, M.: Design and implementation of model predictive control for electrical motor drives. IEEE Trans. Ind. Electron. 56(6), 1925–1936 (2009)CrossRefGoogle Scholar
  8. 8.
    Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., Galván, E., Guisado, R.C.P., Prats, A.M., León, J.I., Moreno-Alfonso, N.: Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans. Ind. Electron. 53(4), 1002–1016 (2006)CrossRefGoogle Scholar
  9. 9.
    Cortés, P., Kazmierkowski, M.P., Kennel, R.M., Quevedo, D.E., Rodríguez, J.: Predictive control in power electronics and drives. IEEE Trans. Ind. Electron. 55(12), 4312–4324 (2008)CrossRefGoogle Scholar
  10. 10.
    Cortés, P., Rodríguez, J., Quevedo, D.E., Silva, C.: Predictive current control strategy with imposed load current spectrum. IEEE Trans. Power Electron. 23(2), 612–618 (2008)CrossRefGoogle Scholar
  11. 11.
    Cychowski, M., Szabat, K., Orlowska-Kowalska, T.: Constrained model predictive control of the drive system with mechanical elasticity. IEEE Trans. Ind. Electron. 56(6), 1963–1973 (2009)CrossRefGoogle Scholar
  12. 12.
    De Doná, J.A., Goodwin, G.C., Serón, M.M.: Anti-windup and model predictive control: reflections and connections. Eur. J. Control 6(5), 467–477 (2000)CrossRefGoogle Scholar
  13. 13.
    De Doncker, R.W., Meyer, C., Lenke, R.U., Mura, F.: Power electronics for future utility applications. In: Proceedings of IEEE International Conference on Power Electronics and Drive Systems, Bangkok (2007)Google Scholar
  14. 14.
    Emadi, A., Lee, Y.J., Rajashekara, K.: Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans. Ind. Electron. 55(6), 2237–2245 (2008)CrossRefGoogle Scholar
  15. 15.
    Finch, J.W., Giaouris, D.: Controlled AC electrical drives. IEEE Trans. Ind. Electron. 55(2), 481–491 (2008)CrossRefGoogle Scholar
  16. 16.
    Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44(170), 463–471 (1985)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fuentes, E.J., Silva, C.A., Yuz, J.I.: Predictive speed control of a two-mass system driven by a permanent magnet synchronous motor. IEEE Trans. Ind. Electron. 59(7), 2840–2848 (2012)CrossRefGoogle Scholar
  18. 18.
    Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic, Boston (1992)CrossRefGoogle Scholar
  19. 19.
    Geyer, T.: Computationally efficient model predictive direct torque control. IEEE Trans. Power Electron. 26(10), 2804–2816 (2011)CrossRefGoogle Scholar
  20. 20.
    Geyer, T.: Model Predictive Control of High Power Converters and Industrial Drives. Wiley, London (2016)CrossRefGoogle Scholar
  21. 21.
    Geyer, T., Quevedo, D.E.: Multistep finite control set model predictive control for power electronics. IEEE Trans. Power Electron. 29(12), 6836–6846 (2014)CrossRefGoogle Scholar
  22. 22.
    Geyer, T., Quevedo, D.E.: Performance of multistep finite control set model predictive control for power performance. IEEE Trans. Power Electron. 30(3), 1633–1644 (2015)CrossRefGoogle Scholar
  23. 23.
    Geyer, T., Papafotiou, G., Morari, M.: Model predictive control in power electronics: a hybrid systems approach. In: Proceedings of IEEE Conference on Decision and Control, Seville (2005)Google Scholar
  24. 24.
    Geyer, T., Torrisi, F., Morari, M.: Optimal complexity reduction of polyhedral piecewise affine systems. Automatica 44(7), 1728–1740 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Geyer, T., Papafotiou, G., Morari, M.: Hybrid model predictive control of the step-down DC-DC converter. IEEE Trans. Control Syst. Technol. 16(6), 1112–1124 (2008)CrossRefGoogle Scholar
  26. 26.
    Goodwin, G.C., Mayne, D.Q., Chen, K., Coates, C., Mirzaeva, G., Quevedo, D.E.: An introduction to the control of switching electronic systems. Annu. Rev. Control. 34(2), 209–220 (2010)CrossRefGoogle Scholar
  27. 27.
    Grüne, L., Rantzer, A.: On the infinite horizon performance of receding horizon controllers. IEEE Trans. Autom. Control 53(9), 2100–2111 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hassibi, B., Vikalo, H.: On the sphere-decoding algorithm I. Expected complexity. IEEE Trans. Signal Process. 53(8), 2806–2818 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Holmes, D.G., Lipo, T.A.: Pulse width Modulation for Power Converters: Principles and Practice. IEEE Press, New York (2003)CrossRefGoogle Scholar
  30. 30.
    Holtz, J.: Power electronics—a continuing challenge. IEEE Ind. Electron. Mag. 5(2), 6–15 (2011)CrossRefGoogle Scholar
  31. 31.
    Kouro, S., Cortés, P., Vargas, R., Ammann, U., Rodríguez, J.: Model predictive control—a simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 56(6), 1826–1838 (2009)CrossRefGoogle Scholar
  32. 32.
    Krause, P.C., Wasynczuk, O., Sudhoff, S.D.: Analysis of Electric Machinery and Drive Systems, 2nd edn. Wiley, London (2002)CrossRefGoogle Scholar
  33. 33.
    Kvasnica, M., Grieder, P., Baotić, M., Morari, M.: Multi parametric toolbox (MPT). In: Alur, R., Pappas, G. (eds.) Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, vol. 2993, pp. 448–462. Springer, Philadelphia (2004). http://control.ee.ethz.ch/~mpt Google Scholar
  34. 34.
    Lawler, E.L., Wood, D.E.: Branch and bound methods: a survey. Oper. Res. 14(4), 699–719 (1966)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Lehman, B., Bass, R.M.: Extensions of averaging theory for power electronic systems. IEEE Trans. Power Electron. 11(4), 542–553 (1996)CrossRefGoogle Scholar
  36. 36.
    Lesnicar, A., Marquardt, R.: An innovative modular multilevel converter topology suitable for a wide power range. In: Proceedings of IEEE Power Tech Conference, Bologna (2003)Google Scholar
  37. 37.
    Lezana, P., Aguilera, R.P., Quevedo, D.E.: Model predictive control of an asymmetric flying capacitor converter. IEEE Trans. Ind. Electron. 56(6), 1839–1846 (2009)CrossRefGoogle Scholar
  38. 38.
    Linder, A., Kennel, R.: Model predictive control for electrical drives. In: Proceedings of IEEE Power Electronics Specialists Conference (PESC), Recife, Brazil, pp. 1793–1799 (2005)Google Scholar
  39. 39.
    Mariéthoz, S., Morari, M.: Explicit model predictive control of a PWM inverter with an LCL filter. IEEE Trans. Ind. Electron. 56(2), 389–399 (2009)CrossRefGoogle Scholar
  40. 40.
    Mariethoz, S., Beccuti, A., Papafotiou, G., Morari, M.: Sensorless explicit model predictive control of the DC-DC buck converter with inductor current limitation. In: Applied Power Electronics Conference and Exposition, pp. 1710–1715 (2008)Google Scholar
  41. 41.
    Mariéthoz, S., Domahidi, A., Morari, M.: High-bandwidth explicit model predictive control of electrical drives. IEEE Trans. Ind. Appl. 48(6), 1980–1992 (2012)CrossRefGoogle Scholar
  42. 42.
    Markets and markets: power electronics market—global forecast to 2022. Tech. rep. (2017)Google Scholar
  43. 43.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: optimality and stability. Automatica 36(6), 789–814 (2000)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Mitten, L.G.: Branch–and–bound methods: general formulation and properties. Oper. Res. 18(1), 24–34 (1970)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Müller, C., Quevedo, D.E., Goodwin, G.C.: How good is quantized model predictive control with horizon one? IEEE Trans. Autom. Control 56(11), 2623–2638 (2011)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Quevedo, D.E., Goodwin, G.C.: Control of EMI from switch-mode power supplies via multi-step optimization. In: Proceedings of American Control Conference, Boston, MA, vol. 1, pp. 390–395 (2004)Google Scholar
  47. 47.
    Quevedo, D.E., Goodwin, G.C., De Doná, J.A.: Finite constraint set receding horizon quadratic control. Int. J. Robust Nonlinear Control 14(4), 355–377 (2004)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Quevedo, D.E., Aguilera, R.P., Pérez, M.A., Cortés, P., Lizana, R.: Model predictive control of an AFE rectifier with dynamic references. IEEE Trans. Power Electron. 27(7), 3128–3136 (2012)CrossRefGoogle Scholar
  49. 49.
    Rawlings, J., Mayne, D.: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison (2009)Google Scholar
  50. 50.
    Rodríguez, J., Cortés, P.: Predictive Control of Power Converters and Electrical Drives, 1st edn. Wiley-IEEE Press, Chichester (2012)CrossRefGoogle Scholar
  51. 51.
    Rodríguez, J., Pontt, J., Silva, C., Correa, P., Lezana, P., Cortés, P., Ammann, U.: Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 54(1), 495–503 (2007)CrossRefGoogle Scholar
  52. 52.
    Rodríguez, J., Kazmierkowski, M.P., Espinoza, J., Zanchetta, P., Abu-Rub, H., Young, H.A., Rojas, C.A.: State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inf. 9(2), 1003–1016 (2013)CrossRefGoogle Scholar
  53. 53.
    Senesky, M., Eirea, G., Koo, T.J.: Hybrid modelling and control of power electronics. In: Pnueli, A., Maler, O. (eds.) Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, vol. 2623, pp. 450–465. Springer, Berlin (2003)zbMATHGoogle Scholar
  54. 54.
    Vazquez, S., Rodríguez, J., Rivera, M., Franquelo, L.G., Norambuena, M.: Model predictive control for power converters and drives: advances and trends. IEEE Trans. Ind. Electron. PP(99), 1 (2016)Google Scholar
  55. 55.
    López, A.M., Quevedo, D.E., Aguilera, R.P., Geyer, T., Oikonomou, N.: Limitations and accuracy of a continuous reduced-order model for modular multilevel converters. IEEE Trans. Power Electron. 33, 6292–6303 (2018)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Daniel E. Quevedo
    • 1
    Email author
  • Ricardo P. Aguilera
    • 2
  • Tobias Geyer
    • 3
  1. 1.Chair for Automatic Control (EIM-E)Paderborn UniversityPaderbornGermany
  2. 2.School of Electrical and Data EngineeringUniversity of Technology SydneySydneyAustralia
  3. 3.ABB Corporate Research, ABB Switzerland LtdPower Electronic SystemsSegelhofstrasse 1 KSwitzerland

Personalised recommendations