Dynamic Programming, Optimal Control and Model Predictive Control

  • Lars GrüneEmail author
Part of the Control Engineering book series (CONTRENGIN)


In this chapter, we give a survey of recent results on approximate optimality and stability of closed loop trajectories generated by model predictive control (MPC). Both stabilizing and economic MPC are considered and both schemes with and without terminal conditions are analyzed. A particular focus of the chapter is to highlight the role dynamic programming plays in this analysis. As we will see, dynamic programming arguments are ubiquitous in the analysis of MPC schemes.


  1. 1.
    Amrit, R., Rawlings, J.B., Angeli, D.: Economic optimization using model predictive control with a terminal cost. Annu. Rev. Control 35, 178–186 (2011)CrossRefGoogle Scholar
  2. 2.
    Angeli, D., Rawlings, J.B.: Receding horizon cost optimization and control for nonlinear plants. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems – NOLCOS 2010, pp. 1217–1223. Bologna, Italy (2010)Google Scholar
  3. 3.
    Angeli, D., Amrit, R., Rawlings, J.B.: On average performance and stability of economic model predictive control. IEEE Trans. Autom. Control 57(7), 1615–1626 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bellman, R.: Dynamic programming. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (2010). Reprint of the 1957 editionGoogle Scholar
  5. 5.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control, vols. 1 and 2. Athena Scientific, Belmont (1995)Google Scholar
  6. 6.
    Camacho, E.F., Bordons, C.: Model Predictive Control, 2nd edn. Springer, London (2004)zbMATHGoogle Scholar
  7. 7.
    Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34(10), 1205–1217 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    de Nicolao, G., Magni, L., Scattolini, R.: Stabilizing receding-horizon control of nonlinear time-varying systems. IEEE Trans. Autom. Control 43, 1030–1036 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Diehl, M., Amrit, R., Rawlings, J.B.: A Lyapunov function for economic optimizing model predictive control. IEEE Trans. Autom. Control 56, 703–707 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Faulwasser, T., Bonvin, D.: On the design of economic NMPC based on approximate turnpike properties. In: Proceedings of the 54th IEEE Conference on Decision and Control — CDC 2015, pp. 4964–4970 (2015)Google Scholar
  11. 11.
    Forbes, M.G., Patwardhan, R.S., Hamadah, H., Gopaluni, R.B.: Model predictive control in industry: challenges and opportunities. In: Proceedings of the 9th IFAC Symposium on Advanced Control of Chemical Processes — ADCHEM 2015, IFAC-PapersOnLine, vol. 48, pp. 531–538. Whistler, Canada (2015)Google Scholar
  12. 12.
    Grüne, L.: Economic receding horizon control without terminal constraints. Automatica 49(3), 725–734 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Grüne, L.: Approximation properties of receding horizon optimal control. Jahresber. DMV 118(1), 3–37 (2016)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Grüne, L., Panin, A.: On non-averaged performance of economic MPC with terminal conditions. In: Proceedings of the 54th IEEE Conference on Decision and Control — CDC 2015, pp. 4332–4337. Osaka, Japan (2015)Google Scholar
  15. 15.
    Grüne, L., Pannek, J.: Nonlinear Model Predictive Control. Theory and Algorithms, 2nd edn. Springer, London (2017)Google Scholar
  16. 16.
    Grüne, L., Pirkelmann, S.: Closed-loop performance analysis for economic model predictive control of time-varying systems. In: Proceedings of the 56th IEEE Conference on Decision and Control — CDC 2017, pp. 5563–5569. Melbourne, Australia (2017)Google Scholar
  17. 17.
    Grüne, L., Semmler, W.: Using dynamic programming with adaptive grid scheme for optimal control problems in economics. J. Econ. Dyn. Control 28, 2427–2456 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Grüne, L., Stieler, M.: Asymptotic stability and transient optimality of economic MPC without terminal conditions. J. Proc. Control 24(8), 1187–1196 (2014)CrossRefGoogle Scholar
  19. 19.
    Grüne, L., Pannek, J., Seehafer, M., Worthmann, K.: Analysis of unconstrained nonlinear MPC schemes with time varying control horizon. SIAM J. Control Optim. 48, 4938–4962 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Keerthi, S.S., Gilbert, E.G.: Optimal infinite horizon feedback laws for a general class of constrained discrete-time systems: stability and moving horizon approximations. J. Optim. Theory Appl. 57, 265–293 (1988)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kerrigan, E.C.: Robust constraint satisfaction: invariant sets and predictive control. Ph.D. thesis, University of Cambridge (2000)Google Scholar
  22. 22.
    Lincoln, B., Rantzer, A.: Relaxing dynamic programming. IEEE Trans. Autom. Control 51, 1249–1260 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Magni, L., Sepulchre, R.: Stability margins of nonlinear receding-horizon control via inverse optimality. Syst. Control Lett. 32(4), 241–245 (1997)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36, 789–814 (2000)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Müller, M.A., Grüne, L.: Economic model predictive control without terminal constraints for optimal periodic behavior. Automatica 70, 128–139 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Olanrewaju, O.I., Maciejowski, J.M.: Implications of dissipativity on stability of economic model predictive control—the indefinite linear quadratic case. Syst. Control Lett. 100, 43–50 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Primbs, J.A., Nevistić, V.: Feasibility and stability of constrained finite receding horizon control. Automatica 36(7), 965–971 (2000)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison (2009)Google Scholar
  29. 29.
    Tuna, S.E., Messina, M.J., Teel, A.R.: Shorter horizons for model predictive control. In: Proceedings of the 2006 American Control Conference, Minneapolis, pp. 863–868 (2006)Google Scholar
  30. 30.
    Worthmann, K.: Stability analysis of unconstrained receding horizon control schemes. Ph.D. thesis, Universität Bayreuth (2011)Google Scholar
  31. 31.
    Zanon, M., Grüne, L., Diehl, M.: Periodic optimal control, dissipativity and MPC. IEEE Trans. Autom. Control 62(6), 2943–2949 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of BayreuthBayreuthGermany

Personalised recommendations