Ion Channels in Cancer

  • Mohammad Ashrafuzzaman
Chapter

Abstract

Ion channels in a cell are responsible for most of the cellular transport mechanisms. They play crucial roles in determination of cell membrane structure and cell function. In cancer condition, different ion channels play various kinds of critical roles in regard to cell proliferation, malignant angiogenesis, migration, and metastasis. The perturbed physiology of the cancer cell may regulate ion channel structures, energetics, and functions.

References

  1. Carl D. Bortner, John A. Cidlowski. Ion channels and apoptosis in cancer. Philosophical Transactions B. Edited by Mustafa B. A. Djamgoz, R. Charles Coombes and Albrecht Schwab. The Royal Society Publishing. 2014. Volume: 369 Issue: 1638.Google Scholar
  2. Bortner CD, Cidlowski JA. 2007 Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch. Biochem. Biophys. 462, 176–188.Google Scholar
  3. Bortner CD, Cidlowski JA. 2011 Life and death of lymphocytes: a volume regulation affair. Cell. Physiol. Biochem. 28, 1079–1088.Google Scholar
  4. Lang F, Foller M, Lang K, Lang P, Ritter M, Vereninov A, Szabo I, Huber SM, Gulbins E. 2007 Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol. 428, 209–225.Google Scholar
  5. Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y. 2000 Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl Acad. Sci. USA 97, 9487–9492.Google Scholar
  6. Cain K, Langlais C, Sun XM, Brown DG, Cohen GM. 2001 Physiological concentrations of K + inhibit cytochrome c-dependent formation of the apoptosome. J. Biol. Chem. 276, 41 985–41 990.Google Scholar
  7. Thompson GJ, Langlais C, Cain K, Conley EC, Cohen GM. 2001 Elevated extracellular (K +) inhibits death-receptor and chemical-mediated apoptosis prior to caspase activation and cytochrome c release. Biochem. J. 357, 137–145.Google Scholar
  8. Bortner CD, Hughes FM Jr., Cidlowski JA. 1997 A primary role for K + and Na + efflux in the activation of apoptosis. J. Biol. Chem. 272, 32 436–32 442.Google Scholar
  9. Hughes FM Jr., Bortner CD, Purdy GD, Cidlowski JA. 1997 Intracellular K + suppresses the activation of apoptosis in lymphocytes. J. Biol. Chem. 272, 30 567–30 576.Google Scholar
  10. Lang F, Foller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM. 2005 Ion channels in cell proliferation and apoptotic cell death. J. Membr. Biol. 205, 147–157.Google Scholar
  11. Gantner F, Uhlig S, Wendel A. 1995 Quinine inhibits release of tumor necrosis factor, apoptosis, necrosis and mortality in a murine model of septic liver failure. Eur. J. Pharmacol. 294, 353–355.Google Scholar
  12. Wang X, Xiao AY, Ichinose T, Yu SP. 2000 Effects of tetraethylammonium analogs on apoptosis and membrane currents in cultured cortical neurons. J. Pharmacol. Exp. Ther. 295, 524–530.Google Scholar
  13. Heimlich G, Bortner CD, Cidlowski JA. 2004 Apoptosis and cell volume regulation: the importance of ions and ion channels. Adv. Exp. Med. Biol. 559, 189–203.Google Scholar
  14. Bortner CD, Cidlowski JA. 2003 Uncoupling cell shrinkage from apoptosis reveals that Na + influx is required for volume loss during programmed cell death. J. Biol. Chem. 278, 39 176–39 184.Google Scholar
  15. Yurinskaya VA, et al. 2005 Potassium and sodium balance in U937 cells during apoptosis with and without cell shrinkage. Cell. Physiol. Biochem. 16, 155–162.Google Scholar
  16. Franco R, Bortner CD, Cidlowski JA. 2006 Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis. J. Membr. Biol. 209, 43–58.Google Scholar
  17. Bortner CD, Sifre MI, Cidlowski JA. 2008 Cationic gradient reversal and cytoskeleton-independent volume regulatory pathways define an early stage of apoptosis. J. Biol. Chem. 283, 7219–7229.Google Scholar
  18. Okada Y, Maeno E, Shimizu T, Manabe K, Mori S, Nabekura T. 2004 Dual roles of plasmalemmal chloride channels in induction of cell death. Pflugers Arch. 448, 287–295.Google Scholar
  19. Okada Y, Shimizu T, Maeno E, Tanabe S, Wang X, Takahashi N. 2006 Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J. Membr. Biol. 209, 21–29.Google Scholar
  20. Heimlich G, Cidlowski JA. 2006 Selective role of intracellular chloride in the regulation of the intrinsic but not extrinsic pathway of apoptosis in Jurkat T-cells. J. Biol. Chem. 281, 2232–2241.Google Scholar
  21. Wang X, Takahashi N, Uramoto H, Okada Y. 2005 Chloride channel inhibition prevents ROS-dependent apoptosis induced by ischemia-reperfusion in mouse cardiomyocytes. Cell. Physiol. Biochem. 16, 147–154.Google Scholar
  22. Karl Kunzelmann. Ion Channels and Cancer. The Journal of Membrane Biology, 2005, Volume 205, Issue 3, pp 159–173.Google Scholar
  23. Sten Orrenius, Boris Zhivotovsky, Pierluigi Nicotera. Regulation of cell death: the calcium–apoptosis link. Nature Reviews Molecular Cell Biology 4, 552–565 (July 2003).Google Scholar
  24. Amith SR1, Fliegel L. Regulation of the Na +/H + Exchanger (NHE1) in Breast Cancer Metastasis. Cancer Res. 2013 Feb 15;73(4):1259–64.  https://doi.org/10.1158/0008-5472.can-12-4031. Epub 2013 Feb 7.
  25. Cardone RA, Casavola V, Reshkin SJ. The role of disturbed pH dynamics and the Na +/H + exchanger in metastasis. Nat Rev 2005;5: 786–95.Google Scholar
  26. Malo ME, Fliegel L. Physiological role and regulation of the Na +/H + exchanger. Can J Physiol Pharmacol 2006;84:1081–95.Google Scholar
  27. Ashrafuzzaman M, Andersen OS, McElhaney RN. (2008) The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels. Biochim. Biophys. Acta.; 1778: 2814–22.Google Scholar
  28. BL Kagan, RL Baldwin, D Munoz, BJ Wisnieski. Formation of ion-permeable channels by tumor necrosis factor-alpha. Science 13 March 1992, Vol. 255 no. 5050 pp. 1427–1430.Google Scholar
  29. M Ismail, S Bokaee, R Morgan, J Davies, K J Harrington, and H Pandha. Inhibition of the aquaporin 3 water channel increases the sensitivity of prostate cancer cells to cryotherapy. Br J Cancer. 2009 Jun 16; 100(12): 1889–1895. (Corrected later: Br J Cancer. 2009 Aug 4; 101(3): 549.Google Scholar
  30. Minghua Li, Zhi-Gang Xiong. Ion channels as targets for cancer therapy. Int J Physiol Pathophysiol Pharmacol 2011;3(2):156–166.Google Scholar
  31. Vidhya R. Rao, Mathew Perez-Neut, Simon Kaja, and Saverio Gentile. Voltage-Gated Ion Channels in Cancer Cell Proliferation. Cancers (Basel). 2015 Jun; 7(2): 849–875.Google Scholar
  32. Enrico Pierluigi Spugninia, Pierre Sonveauxb, Christian Stockc, Mario Perez-Sayansd, Angelo De Militoe, Sofia Avnetf, Abel Garcìa Garcìad, Salvador Harguindeyg, Stefano Faisa. Proton channels and exchangers in cancer. Biochimica et Biophysica Acta (BBA)—Biomembranes 1848, Issue 10, Part B, October 2015, Pages 2715–2726 (Special issue: Membrane Channels and Transporters in Cancers).Google Scholar
  33. Diochot S., Loret E., Bruhn T., Beress L., Lazdunski M. APETx1, a new toxin from the sea anemone Anthopleura elegantissima, blocks voltage-gated human ether-a-go-go-related gene potassium channels. Mol. Pharmacol. 2003;64:59–69.Google Scholar
  34. A. Garcia-Garcia, M. Perez-Sayans Garcia, M.J. Rodriguez, J. Antunez-Lopez, F. Barros Angueira, M. Somoza-Martin, et al., Immunohistochemical localization of C1 subunit of V ATPase (ATPase C1) in oral squamous cell cancer and normal oral mucosa, Biotech. Histochem. 87 (2) (Feb 2012) 133–139.Google Scholar
  35. Weber C, Mello DQ, Downie BR, Suckow A, Stuhmer W, Pardo LA. Silencing the activity and proliferative properties of the human EagI Potassium Channel by RNA Interference. J.Biol Chem. 2006;281:13030–13037.Google Scholar
  36. Restano-Cassulini R., Korolkova Y.V., Diochot S., Gurrola G., Guasti L., Possani L.D., Lazdunski M., Grishin E.V., Arcangeli A., Wanke E. Species diversity and peptide toxins blocking selectivity of ether-a-go-go-related gene subfamily K + channels in the central nervous system. Mol. Pharmacol. 2006;69:1673–1683.Google Scholar
  37. Gomez-Varela D, Zwick-Wallasch E, Knotgen H, Sanchez A, Hettmann T, Ossipov D et al. Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res 2007; 67: 7343–7349.Google Scholar
  38. Zhao J., Wei X.L., Jia Y.S., Zheng J.Q. Silencing of herg gene by shRNA inhibits SH-SY5Y cell growth in vitro and in vivo. Eur. J. Pharmacol. 2008;579:50–57.Google Scholar
  39. Fiore A., Carraresi L., Morabito A., Polvani S., Fortunato A., Lastraioli E., Femia A.P., De Lorenzo E., Caderni G., Arcangeli A. Characterization of hERG1 channel role in mouse colorectal carcinogenesis. Cancer Med. 2013;2:583–594.Google Scholar
  40. Lansu K., Gentile S. Potassium channel activation inhibits proliferation of breast cancer cells by activating a senescence program. Cell. Death Dis. 2013;4:e652.Google Scholar
  41. Perez-Neut M., Rao V.R., Gentile S. hERG1/Kv11.1 activation stimulates transcription of p 21waf/cip in breast cancer cells via a calcineurin-dependent mechanism. Oncotarget. 2015 in press.Google Scholar
  42. Das A., Pushparaj C., Bahi N., Sorolla A., Herreros J., Pamplona R., Vilella R., Matias-Guiu X., Marti R.M., Canti C. Functional expression of voltage-gated calcium channels in human melanoma. Pigment. Cell. Melanoma Res. 2012;25:200–212.Google Scholar
  43. Yu W., Wang P., Ma H., Zhang G., Yulin Z., Lu B., Wang H., Dong M. Suppression of T-type Ca2 + channels inhibited human laryngeal squamous cell carcinoma cell proliferation running title: roles of T-type Ca2 + channels in LSCC cell proliferation. Clin. Lab. 2014;60:621–628.Google Scholar
  44. Cheng Y., Zhao J., Qiao W., Chen K. Recent advances in diagnosis and treatment of gliomas using chlorotoxin-based bioconjugates. Am. J. Nucl. Med. Mol. Imaging. 2014;4:385–405.Google Scholar
  45. Sikes R.A., Walls A.M., Brennen W.N., Anderson J.D., Choudhury-Mukherjee I., Schenck H.A., Brown M.L. Therapeutic approaches targeting prostate cancer progression using novel voltage-gated ion channel blockers. Clin. Prostate Cancer. 2003;2:181–187.Google Scholar
  46. Fraser S.P., Ozerlat-Gunduz I., Brackenbury W.J., Fitzgerald E.M., Campbell T.M., Coombes R.C., Djamgoz M.B. Philos. Regulation of voltage-gated sodium channel expression in cancer: Hormones, growth factors and auto-regulation. Trans. R Soc. Lond. B Biol. Sci. 2014;369.Google Scholar
  47. Nelson M., Yang M., Dowle A.A., Thomas J.R., Brackenbury W.J. The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis. Mol. Cancer. 2015;14:13.Google Scholar
  48. Zhang J.J., Jacob T.J., Valverde M.A., Hardy S.P., Mintenig G.M., Sepulveda F.V., Gill D.R., Hyde S.C., Trezise A.E., Higgins C.F. Tamoxifen blocks chloride channels. A possible mechanism for cataract formation. J. Clin. Invest. 1994;94:1690–1697.Google Scholar
  49. Deshane J., Garner C.C., Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J. Biol. Chem. 2003;278:4135–4144.Google Scholar
  50. Li X, Link JM, Stekhova S, Yagle KJ, Smith C, Krohn KA and Tait JF. (2008).. Site specific labeling of annexin V with F-18 for apoptosis imaging. Bioconjug Chem. 19:1684–1688.Google Scholar
  51. Sontheimer H. An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med (Maywood) 2008;233:779–791.Google Scholar
  52. Zhu L., Yang H., Zuo W., Yang L., Zhang H., Ye W., Mao J., Chen L., Wang L. Differential expression and roles of volume-activated chloride channels in control of growth of normal and cancerous nasopharyngeal epithelial cells. Biochem. Pharmacol. 2012;83:324–334.Google Scholar
  53. Liu J., Zhang D., Li Y., Chen W., Ruan Z., Deng L., Wang L., Tian H., Yiu A., Fan C. Discovery of bufadienolides as a novel class of ClC-3 chloride channel activators with antitumor activities. J. Med. Chem. 2013;56:5734–5743.Google Scholar
  54. Dardevet L., Rani D., Aziz T.A., Bazin I., Sabatier J.M., Fadl M., Brambilla E., de Waard M. Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins (Basel) 2015;7:1079–1101.Google Scholar
  55. Ashrafuzzaman, Md, Tuszynski, J. Membrane Biophysics. Springer-Verlag, 2012. ISBN: 978–3-642-16104-9 (Print), 978-3-642-16105-6. (Online).Google Scholar
  56. Fiske JL, Fomin VP, Brown ML, Duncan RL, Sikes RA. Voltage-sensitive ion channels and cancer. Cancer Metastasis Rev. 2006 Sep; 25(3):493–500.Google Scholar
  57. Lehmann-Horn F, Jurkat-Rott K. Voltage-gated ion channels and hereditary disease. Physiol Rev. 1999 Oct; 79(4):1317–72.Google Scholar
  58. Garcia-Ferreiro R.E., Kerschensteiner D., Major F., Monje F., Stuhmer W., Pardo L.A. Mechanism of block of hEag1 K + channels by imipramine and astemizole. J. Gen. Physiol. 2004;124:301–317.Google Scholar
  59. Pardo LA. Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda) 2004;19:285–292. (PubMed).Google Scholar
  60. Stuhmer W, Alves F, Hartung F, Zientkowska M, Pardo LA. Potassium channels as tumour markers. FEBS Lett. 2006;580:2850–2852. (PubMed).Google Scholar
  61. Hemmerlein B, Weseloh RM, Mello DQ, Knotgen H, Sanchez A, Rubio ME, Martin S, Schliephacke T, Jenke M, Heinz JR, Stuhmer W, Pardo LA. Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer. 2006;5:41. (PMC free article), (PubMed).Google Scholar
  62. Mello DQ, Suarez-Kurtz G, Stuhmer W, Pardo LA. Ether a go-go potassium channel expression in soft tissue sarcoma patients. Mol Cancer. 2006;5:42.Google Scholar
  63. Ouadid-Ahidouch H. and Ahidouch, AK + channel expression in human breast cancer cells: involvement in cell cycle regulation and carcinogenesis. J Membr Biol. 2008;221:1–6.Google Scholar
  64. Suzuki T, Takimoto K. Selective expression of HERG and Kv2 channels influences proliferation of uterine cancer cells. Int J Oncol. 2004;25:153–159.Google Scholar
  65. Jang SH, Kang KS, Ryu PD, Lee SY. Kv1.3 voltage-gated K(+) channel subunit as a potential diagnostic marker and therapeutic target for breast cancer. BMB Rep. 2009;42:535–539.Google Scholar
  66. Khaitan D, Sankpal UT, Weksler B, Meister EA, Romero IA, Couraud PO, Ningaraj NS. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain. BMC Cancer. 2009;9:258.Google Scholar
  67. Jang SH, Choi C, Hong SG, Yarishkin OV, Bae YM, Kim JG, O’Grady SM, Yoon KA, Kang KS, Ryu PD, Lee SY. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells. Biochem Biophys Res Commun. 2009a;384:180–186.Google Scholar
  68. Black KL, Yin D, Konda BM, Wang X, Hu J, Ko MK, Bayan JA, Sacapano MR, Espinoza AJ, Ong JM, Irvin D, Shu Y. Different effects of KCa and KATP agonists on brain tumor permeability between syngeneic and allogeneic rat models. Brain Res. 2008;1227:198–206. (PMC free article).Google Scholar
  69. Park SH, Ramachandran S, Kwon SH, Cha SD, Seo EW, Bae I, Cho C, Song DK. Upregulation of ATP-sensitive potassium channels for estrogen-mediated cell proliferation in human uterine leiomyoma cells. Gynecol Endocrinol. 2008;24:250–256.Google Scholar
  70. Brevet M, Ahidouch A, Sevestre H, Merviel P, El Hiani Y, Robbe M, Ouadid-Ahidouch H. Expression of K + channels in normal and cancerous human breast. Histol Histopathol. 2008;23:965–972.Google Scholar
  71. Li H, Liu L, Guo L, Zhang J, Du W, Li X, Liu W, Chen X, Huang S. HERG K + channel expression in CD34 +/CD38-/CD123(high) cells and primary leukemia cells and analysis of its regulation in leukemia cells. Int J Hematol. 2008;87:387–392.Google Scholar
  72. Shao XD, Wu KC, Guo XZ, Xie MJ, Zhang J, Fan DM. Expression and significance of HERG protein in gastric cancer. Cancer Biol Ther. 2008;7:45–50.Google Scholar
  73. Wonderlin WF. and Strobl JS. Potassium channels, proliferation and G1 progression. J Membr Biol. 1996;154:91–107.Google Scholar
  74. Ransom CB, Liu X, Sontheimer H. BK channels in human glioma cells have enhanced calcium sensitivity. Glia. 2002;38:81–291.Google Scholar
  75. Han X, Xi L, Wang H, Huang X, Ma X, Han Z, Wu P, Ma X, Lu Y, Wang G, Zhou J, Ma D. The potassium ion channel opener NS1619 inhibits proliferation and induces apoptosis in A2780 ovarian cancer cells. Biochem Biophys Res Commun. 2008;375:205–209.Google Scholar
  76. Sontheimer H. An unexpected role for ion channels in brain tumor metastasis. Exp. Biol. Med. (Maywood) 2008;233:779–791.  https://doi.org/10.3181/0711-mr-308. (PMC free article).
  77. Cambien B, Rezzonico R, Vitale S, Rouzaire-Dubois B, Dubois JM, Barthel R, Karimdjee BS, Mograbi B, Schmid-Alliana A, Schmid-Antomarchi H. Silencing of hSlo potassium channels in human osteosarcoma cells promotes tumorigenesis. Int J Cancer. 2008;123:365–371.Google Scholar
  78. Gessner G, Schonherr K, Soom M, Hansel A, Asim M, Baniahmad A, Derst C, Hoshi T, Heinemann SH. BKCa channels activating at resting potential without calcium in LNCaP prostate cancer cells. J Membr Biol. 2005;208:229–240.Google Scholar
  79. Chou CC, Lunn CA, Murgolo NJ. (KCa3.1: target and marker for cancer, autoimmune disorder and vascular inflammation? Expert Rev Mol Diagn. 2008;8:179–187.Google Scholar
  80. De Marchi U, Sassi N, Fioretti B, Catacuzzeno L, Cereghetti GM, Szabo I, Zoratti M. Intermediate conductance Ca2 + -activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium. 2009;45:509–516.Google Scholar
  81. Voloshyna I, Besana A, Castillo M, Matos T, Weinstein IB, Mansukhani M, Robinson RB, Cordon-Cardo C, Feinmark SJ. TREK-1 is a novel molecular target in prostate cancer. Cancer Res. 2008;68:1197–1203.Google Scholar
  82. Meuth SG, Herrmann AM, Ip CW, Kanyshkova T, Bittner S, Weishaupt A, Budde T, Wiendl H. The two-pore domain potassium channel TASK3 functionally impacts glioma cell death. J Neurooncol. 2008;87:263–270.Google Scholar
  83. Tan G, Sun SQ, Yuan DL. Expression of Kir 4.1 in human astrocytic tumors: correlation with pathologic grade. Biochem Biophys Res Commun. 2008;367:743–747.Google Scholar
  84. Warth A, Mittelbronn M, Wolburg H. Redistribution of the water channel protein aquaporin-4 and the K + channel protein Kir4.1 differs in low- and high-grade human brain tumors. Acta Neuropathol. 2005;109:418–426.Google Scholar
  85. S.I. Ramsey, M. Delling, D.E. Clapham. An introduction to TRP channels. Annu. Rev. Physiol., 68 (2006), pp. 18.1–18.29.Google Scholar
  86. B. Nilius, G. Owsianik, T. Voets, J.A. Peters. Transient receptor cation channels in disease. Physiol. Rev., 87 (2007), pp. 165–217.Google Scholar
  87. Natalia Prevarskaya, Lei Zhang, Greg Barritt. TRP channels in cancer. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. V1772, 2007, 937–946.Google Scholar
  88. Alessandra Fiorio Pla and Dimitra Gkika. Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Front. Physiol. 2013. V4, Art. 311.Google Scholar
  89. L.M. Duncan, J. Deeds, J. Hunter, J. Shao, L.M. Holmgren, E.A. Woolf, R.I. Tepper, A.W. Shyjan Down regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res., 58 (1998), pp. 1515–1520.Google Scholar
  90. L. Tsavaler, M.H. Shapero, S. Morkowski, R. Laus. Trp-p 8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res., 61 (2001), pp. 3760–3769.Google Scholar
  91. S. Fuessel, D. Sickert, A. Meye, U. Klenk, U. Schmidt, M. Schmitz, et al. Multiple tumour marker analyses (PSA, hK2, PSCA, trp-p 8) in primary prostate cancers using quantitative RT-PCR. Int. J. Oncol., 23 (2003), pp. 221–228.Google Scholar
  92. T. Fixemer, U. Wissenbach, V. Flockerzi, H. Bonkhoff. Expression of the Ca2 + -selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumour progression. Oncogene, 22 (2003), pp. 7858–7861.Google Scholar
  93. M. Bodding. TRP proteins and cancer. Cell. Signal., 19 (2007), pp. 617–624.Google Scholar
  94. L. Menendez, L. Juarez, E. Garcia, O. Garcia-Suarez, A. Hidalgo, A. Baamonde. Analgesic effects of capsazepine and resiniferatoxin on bone cancer pain in mice. Neurosci. Lett., 393 (2006), pp. 70–73.Google Scholar
  95. J.R. Ghilardi, H. Rohrich, T.H. Lindsay, M.A. Sevcik, M.J. Schwei, K. Kubota, K.G. Halvorson, J. Poblete, S.R. Chaplan, A.E. Dubin, N.I. Carruthers, D. Swanson, M. Kuskowski, C.M. Flores, D. Julius, P.W. Mantyh. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J. Neurosci., 25 (2005), pp. 3126–3131.Google Scholar
  96. Clapham DE. TRP channels as cellular sensors Nature. 2003;426:517–524.Google Scholar
  97. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell. 2002;9:229–231.Google Scholar
  98. Clapham DE, Montell C, Schultz G, Julius D. International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol Rev. 2003;55:591–596.Google Scholar
  99. Li M, Yu Y, Yang J. Structural biology of TRP channels. Adv Exp Med Biol. 2011;704:1–23.Google Scholar
  100. Means AR. Calcium, calmodulin and cell cycle regulation. FEBS Lett. 1994;347:1–4.Google Scholar
  101. D. Fang, V. Setaluri. Expression and up-regulation of alternatively spliced transcripts of melastatin, a melanoma metastasis-related gene, in human melanoma cells. Biochem. Biophys. Res. Commun., 279 (2000), pp. 53–61.Google Scholar
  102. J. Deeds, F. Cronin, L.M. Duncan. Patterns of melastatin mRNA expression in melanocytic tumors. Hum. Pathol., 31 (2000), pp. 1346–1356.Google Scholar
  103. L.M. Duncan, J. Deeds, F.E. Cronin, M. Donovan, A.J. Sober, M. Kauffman, J.J. McCarthy. Melastatin expression and prognosis in cutaneous malignant melanoma. J. Clin. Oncol., 19 (2001), pp. 568–576.Google Scholar
  104. Hyun Soo Park, Chansik Hong, Byung Joo Kim, and Insuk So. The Pathophysiologic Roles of TRPM7 Channel. Korean J Physiol Pharmacol. 2014 Feb; 18(1): 15–23.Google Scholar
  105. Zeng B, Yuan C, Yang X, Atkin SL, Xu SZ. TRPC channels and their splice variants are essential for promoting human ovarian cancer cell proliferation and tumorigenesis. Curr Cancer Drug Targets. 2013 Jan;13(1):103–16.Google Scholar
  106. Yu, P., Gu, S., Bu, J., and Du, J. (2010). TRPC1 is essential for in vivo angiogenesis in zebrafish. Circ. Res. 106, 1221–1232. https://doi.org/10.1161/circresaha.109.207670.
  107. Bomben, V. C., Turner, K. L., Barclay, T.-T. C., and Sontheimer, H. (2011). Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas. J. Cell. Physiol. 226, 1879–1888. https://doi.org/10.1002/jcp.22518.
  108. Antigny, F., Girardin, N., and Frieden, M. (2012). Transient receptor potential canonical channels are required for in vitro endothelial tube formation. J. Biol. Chem. 287, 5917–5927.Google Scholar
  109. Cuddapah, V. A., Turner, K. L., and Sontheimer, H. (2013). Calcium entry via TRPC1 channels activates chloride currents in human glioma cells. Cell Calcium 53, 187–194.Google Scholar
  110. Zhang, H., Zhou, L., Shi, W., Song, N., Yu, K., and Gu, Y. (2012). A mechanism underlying the effects of polyunsaturated fatty acids on breast cancer. Int. J. Mol. Med. 30, 487–494.Google Scholar
  111. Hamdollah Zadeh, M. A., Glass, C. A., Magnussen, A., Hancox, J. C., and Bates, D. O. (2008). VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation 15, 605–614.Google Scholar
  112. Ge, R., Tai, Y., Sun, Y., Zhou, K., Yang, S., Cheng, T., et al. (2009). Critical role of TRPC6 channels in VEGF-mediated angiogenesis. Cancer Lett. 283, 43–51.Google Scholar
  113. Chigurupati, S., Venkataraman, R., Barrera, D., Naganathan, A., Madan, M., Paul, L.,et al. (2010). Receptor channel TRPC6 is a key mediator of notch-driven glioblastoma growth and invasiveness. Cancer Res. 70, 418–427.Google Scholar
  114. Kini, V., Chavez, A., and Mehta, D. (2010). A new role for PTEN in regulating transient receptor potential canonical channel 6-mediated Ca2 + entry, endothelial permeability, and angiogenesis. J. Biol. Chem. 285, 33082–33091.Google Scholar
  115. Bernaldo de Quirós, S., Merlo, A., Secades, P., Zambrano, I., de Santa María, I. S., Ugidos, N., et al. (2013). Identification of TRPC6 as a possible candidate target gene within an amplicon at 11q21-q22.2 for migratory capacity in head and neck squamous cell carcinomas. BMC Cancer 13:116.Google Scholar
  116. Chaudhuri, P., Colles, S. M., Bhat, M., Van Wagoner, D. R., Birnbaumer, L., and Graham, L. M. (2008). Elucidation of a TRPC6-TRPC5 channel cascade that restricts endothelial cell movement. Mol. Biol. Cell 19, 3203–3211.Google Scholar
  117. Waning, J., Vriens, J., Owsianik, G., Stüwe, L., Mally, S., Fabian, A., et al. (2007). A novel function of capsaicin-sensitive TRPV1 channels: involvement in cell migration. Cell Calcium 42, 17–25.Google Scholar
  118. Ramer, R., and Hinz, B. (2008). Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J. Natl. Cancer Inst. 100, 59–69.Google Scholar
  119. Ramer, R., Merkord, J., Rohde, H., and Hinz, B. (2010). Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1. Biochem. Pharmacol. 79, 955–966.Google Scholar
  120. Caprodossi, S., Amantini, C., Nabissi, M., Morelli, M. B., Farfariello, V., Santoni, M., et al. (2011). Capsaicin promotes a more aggressive gene expression phenotype and invasiveness in null-TRPV1 urothelial cancer cells. Carcinogenesis 32, 686–694.Google Scholar
  121. Monet, M., Lehen’kyi, V., Gackiere, F., Firlej, V., Vandenberghe, M., Roudbaraki, M., et al. (2010). Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res. 70, 1225–1235.Google Scholar
  122. Oulidi, A., Bokhobza, A., Gkika, D., Vanden Abeele, F., Lehen’kyi, V., Ouafik, L., et al. (2013). TRPV2 Mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion. PLoS ONE 8:e64885.Google Scholar
  123. Thodeti, C. K., Matthews, B., Ravi, A., Mammoto, A., Ghosh, K., Bracha, A. L., et al. (2009). TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ. Res. 104, 1123–1130.Google Scholar
  124. Matthews, B. D., Thodeti, C. K., Tytell, J. D., Mammoto, A., Overby, D. R., and Ingber, D. E. (2010). Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr. Biol. (Camb). 2, 435–442.Google Scholar
  125. Fiorio Pla, A., Ong, H. L., Cheng, K. T., Brossa, A., Bussolati, B., Lockwich, T., et al. (2012b). TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. Oncogene 31, 200–212.Google Scholar
  126. Gao, H., Chen, X., Du, X., Guan, B., Liu, Y., and Zhang, H. (2011). EGF enhances the migration of cancer cells by up-regulation of TRPM7. Cell Calcium 50, 559–568.Google Scholar
  127. Middelbeek, J., Kuipers, A. J., Henneman, L., Visser, D., Eidhof, I., van Horssen, R., et al. (2012). TRPM7 is required for breast tumor cell metastasis. Cancer Res. 72, 4250–4261.Google Scholar
  128. Meng, X., Cai, C., Wu, J., Cai, S., Ye, C., Chen, H., et al. (2013). TRPM7 mediates breast cancer cell migration and invasion through the MAPK pathway. Cancer Lett. 333, 96–102.Google Scholar
  129. Wondergem, R., Ecay, T. W., Mahieu, F., Owsianik, G., and Nilius, B. (2008). HGF/SF and menthol increase human glioblastoma cell calcium and migration. Biochem. Biophys. Res. Commun. 372, 210–215.Google Scholar
  130. Yang, Z.-H., Wang, X.-H., Wang, H.-P., and Hu, L.-Q. (2009b). Effects of TRPM8 on the proliferation and motility of prostate cancer PC-3 cells. Asian J. Androl. 11, 157–165.Google Scholar
  131. Gkika, D., Flourakis, M., Lemonnier, L., and Prevarskaya, N. (2010). PSA reduces prostate cancer cell motility by stimulating TRPM8 activity and plasma membrane expression. Oncogene 29, 4611–4616.Google Scholar
  132. Zhu, G., Wang, X., Yang, Z., Cao, H., Meng, Z., Wang, Y., et al. (2011). Effects of TRPM8 on the proliferation and angiogenesis of prostate cancer PC-3 cells in vivo. Oncol. Lett. 2, 1213–1217.Google Scholar
  133. Okamoto, Y., Ohkubo, T., Ikebe, T., and Yamazaki, J. (2012). Blockade of TRPM8 activity reduces the invasion potential of oral squamous carcinoma cell lines. Int. J. Oncol. 40, 1431–1440.Google Scholar
  134. Valero, M. L., Mello de Queiroz, F., Stühmer, W., Viana, F., and Pardo, L. A. (2012). TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells. PLoS ONE 7:e51825.Google Scholar
  135. Abdullaev, I. F., Bisaillon, J. M., Potier, M., Gonzalez, J. C., Motiani, R. K., and Trebak, M. (2008). Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ. Res. 103, 1289–1299.Google Scholar
  136. Yang, S., Zhang, J. J., and Huang, X.-Y. (2009a). Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15, 124–134.Google Scholar
  137. Chen, Y.-F., Chiu, W.-T., Chen, Y.-T., Lin, P.-Y., Huang, H.-J., Chou, C.-Y., et al. (2011). Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc. Natl. Acad. Sci. U.S.A. 108, 15225–15230.Google Scholar
  138. Dragoni, S., Laforenza, U., Bonetti, E., Lodola, F., Bottino, C., Berra-Romani, R., et al. (2011). Vascular endothelial growth factor stimulates endothelial colony forming cells proliferation and tubulogenesis by inducing oscillations in intracellular Ca2 + concentration. Stem Cells 29, 1898–1907.Google Scholar
  139. Li, J., Cubbon, R. M., Wilson, L. A., Amer, M. S., McKeown, L., Hou, B., et al. (2011a). Orai1 and CRAC channel dependence of VEGF-activated Ca2 + entry and endothelial tube formation. Circ. Res. 108, 1190–1198.Google Scholar
  140. Beech, D. J. (2012). Orai1 calcium channels in the vasculature. Pflugers Arch. 463, 635–647.Google Scholar
  141. Stephan J. Reshkin, Rosa A. Cardone1 and Salvador Harguindey. Na + -H + Exchanger, pH Regulation and Cancer. Recent Patents on Anti-Cancer Drug Discovery, 2013, 8, 85–99 85.Google Scholar
  142. S. Feng, M. Cai, P. Liu, L. Wei, J. Wang, J. Qi, et al., Atp6v1c1 may regulate filament actin arrangement in breast cancer cells, PLoS One 9 (1) (Jan 15 2014) e84833.Google Scholar
  143. S. Feng, G. Zhu, M. McConnell, L.Deng, Q. Zhao,M.Wu, et al., Silencing of atp6v1c1 prevents breast cancer growth and bone metastasis, Int. J. Biol. Sci. 9 (8) (Sep 5 2013) 853–862.Google Scholar
  144. K. von Schwarzenberg, T. Lajtos, L. Simon, R. Muller, G. Vereb, A.M. Vollmar, V-ATPase inhibition overcomes trastuzumab resistance in breast cancer, Mol. Oncol. 8 (1) (Feb 2014) 9–19.Google Scholar
  145. H. You, J. Jin, H. Shu, B. Yu, A. De Milito, F. Lozupone, et al., Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells, Cancer Lett. 280 (1) (Jul 18 2009) 110–119.Google Scholar
  146. M. Perez-Sayans, J.M. Somoza-Martin, F. Barros-Angueira, P.G. Diz, J.M. Rey, A. Garcia-Garcia, Multidrug resistance in oral squamous cell carcinoma: the role of vacuolar ATPases, Cancer Lett. 295 (2) (Sep 28 2010) 135–143.Google Scholar
  147. M. Perez-Sayans, M.D. Reboiras-Lopez, J.M. Somoza-Martin, F. Barros-Angueira, P.G. Diz, J.M. Rey, et al., Measurement of ATP6V1C1 expression in brush cytology samples as a diagnostic and prognostic marker in oral squamous cell carcinoma, Cancer Biol. Ther. 9 (12) (Jun 15 2010a) 1057–1064.Google Scholar
  148. L. Huang, Q. Lu, Y. Han, Z. Li, Z. Zhang, X. Li, ABCG2/V-ATPase was associated with the drug resistance and tumor metastasis of esophageal squamous cancer cells, Diagn. Pathol. 7 (Dec 17 2012) 180 (ORJ-toolbar” src = ”./pubmed15_files/toolbar).Google Scholar
  149. J. Xu, R. Xie, X. Liu, G.Wen, H. Jin, Z. Yu, et al., Expression and functional role of vacuolar H(+)-ATPase in human hepatocellular carcinoma, Carcinogenesis 33 (12) (Dec 2012) 2432–2440.Google Scholar
  150. C. Chung, C.C. Mader, J.C. Schmitz, J. Atladottir, P. Fitchev, M.L. Cornwell, et al., The vacuolar-ATPase modulates matrix metalloproteinase isoforms in human pancreatic cancer, Lab. Invest. 91 (5) (May 2011) 732–743.Google Scholar
  151. Q. Lu, S. Lu, L. Huang, T.Wang, Y.Wan, C.X. Zhou, et al., The expression of V-ATPase is associated with drug resistance and pathology of non-small-cell lung cancer, Diagn. Pathol. 8 (Aug 28 2013) 145 (ORJ-toolbar” src = ”./pubmed18_files/toolbar).Google Scholar
  152. F. Perut, S. Avnet, C. Fotia, S.R. Baglio, M. Salerno, S. Hosogi, et al., V-ATPase as an effective therapeutic target for sarcomas, Exp. Cell Res. 320 (1) (Jan 1 2014) 21–32.Google Scholar
  153. S. Avnet, G. Di Pompo, S. Lemma, M. Salerno, F. Perut, G. Bonuccelli, et al., V-ATPase is a candidate therapeutic target for Ewing sarcoma, Biochim. Biophys. Acta 1832 (8) (Aug 2013) 1105–1116.Google Scholar
  154. M. Perez-Sayans, A. Garcia-Garcia, M.D. Reboiras-Lopez, P. Gandara-Vila, Role of V-ATPases in solid tumors: importance of the subunit C (review), Int. J. Oncol. 34 (6) (Jun 2009) 1513–1520.Google Scholar
  155. R.A. Cardone, A. Bellizzi, G. Busco, E.J.Weinman, M.E. Dell’Aquila, V. Casavola, et al., The NHERF1 PDZ2 domain regulates PKA-RhoA-p 38-mediated NHE1 activation and invasion in breast tumor cells, Mol. Biol. Cell 18 (5) (May 2007) 1768–1780.Google Scholar
  156. R.A. Cardone, V. Casavola, S.J. Reshkin, The role of disturbed pH dynamics and the Na +/H + exchanger in metastasis, Nat. Rev. Cancer 5 (10) (Oct 2005) 786–795.Google Scholar
  157. G. Lauritzen, C.M. Stock, J. Lemaire, S.F. Lund, M.F. Jensen, B. Damsgaard, et al., The Na +/H + exchanger NHE1, but not the Na + , HCO3(−) cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2, Cancer Lett. 317 (2) (Apr 28 2012) 172–183.Google Scholar
  158. A.K. Vahle, B. Domikowsky, C. Schwoppe, H. Krahling, S. Mally, M. Schafers, et al., Extracellular matrix composition and interstitial pH modulate NHE1-mediated melanoma cell motility, Int. J. Oncol. 44 (1) (Jan 2014) 78–90.Google Scholar
  159. L. Stuwe, M. Muller, A. Fabian, J.Waning, S. Mally, J. Noel, et al., pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution, J. Physiol. 585 (Pt 2) (Dec 1 2007) 351–360.Google Scholar
  160. F.T. Ludwig, A. Schwab, C. Stock, The Na +/H + -exchanger (NHE1) generates pH nanodomains at focal adhesions, J. Cell. Physiol. 228 (6) (Jun 2013) 1351–1358.Google Scholar
  161. J.J. Provost, D. Rastedt, J. Canine, T. Ngyuen, A. Haak, C. Kutz, et al., Urokinase plasminogen activator receptor induced non-small cell lung cancer invasion and metastasis requires NHE1 transporter expression and transport activity, Cell. Oncol. (Dordr.) (Jan 31 2012) (Epub ahead of print).Google Scholar
  162. W. Jin,Q. Li, J.Wang,G. Chang, Y. Lin, H. Li, et al., Na +/H + exchanger 1 inhibition contributes to K562 leukaemic cell differentiation, Cell Biol. Int. 36 (8) (Aug 1 2012) 739–745.Google Scholar
  163. M.L. Rentsch, C.G. Ossum, E.K. Hoffmann, S.F. Pedersen, Roles of Na +/H + exchange in regulation of p 38 mitogen-activated protein kinase activity and cell death after chemical anoxia in NIH3T3 fibroblasts, Pflugers Arch. 454 (4) (Jul 2007) 649–662.Google Scholar
  164. M. Busk, S. Walenta, W. Mueller-Klieser, T. Steiniche, S. Jakobsen, M.R. Horsman, et al., Inhibition of tumor lactate oxidation: consequences for the tumor microenvironment, Radiother. Oncol. 99 (3) (Jun 2011) 404–411.Google Scholar
  165. K.M. Kennedy, P.M. Scarbrough, A. Ribeiro, R. Richardson, H. Yuan, P. Sonveaux, et al., Catabolism of exogenous lactate reveals it as a legitimatemetabolic substrate in breast cancer, PLoS One 8 (9) (Sep 12 2013) e75154.Google Scholar
  166. J. Ho, M.B. deMoura, Y. Lin, G. Vincent, S. Thorne, L.M. Duncan, et al., Importance of glycolysis and oxidative phosphorylation in advanced melanoma, Mol. Cancer 11 (Oct 9 2012) 76 (4598–11-76).Google Scholar
  167. F. Guillaumond, J. Leca, O. Olivares, M.N. Lavaut, N. Vidal, P. Berthezene, et al., Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma, Proc. Natl. Acad. Sci. U. S. A. 110 (10) (Mar 5 2013) 3919–3924.Google Scholar
  168. A. Giatromanolaki, M.I. Koukourakis, E. Sivridis, J. Pastorek, C.C.Wykoff, K.C. Gatter, et al., Expression of hypoxia-inducible carbonic anhydrase-9 relates to angiogenic pathways and independently to poor outcome in non-small cell lung cancer, Cancer Res. 61 (21) (Nov 1 2001) 7992–7998.Google Scholar
  169. C.A. Brewer, S.Y. Liao, S.P.Wilczynski, S. Pastorekova, J. Pastorek, J. Zavada, et al., A study of biomarkers in cervical carcinoma and clinical correlation of the novel biomarker MN, Gynecol. Oncol. 63 (3) (Dec 1996) 337–344.Google Scholar
  170. J.R. Turner, R.D. Odze, C.P. Crum, M.B. Resnick, MN antigen expression in normal, preneoplastic, and neoplastic esophagus: a clinicopathological study of a new cancer-associated biomarker, Hum. Pathol. 28 (6) (Jun 1997) 740–744.Google Scholar
  171. T. Klatte, A.S. Belldegrun, A.J. Pantuck, The role of carbonic anhydrase IX as amolecular marker for transitional cell carcinoma of the bladder, BJU Int. 101 (Suppl. 4) (Jun 2008) 45–48.Google Scholar
  172. S.K. Chia, C.C. Wykoff, P.H. Watson, C. Han, R.D. Leek, J. Pastorek, et al., Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma, J. Clin. Oncol. 19 (16) (Aug 15 2001) 3660–3668.Google Scholar
  173. J. Saarnio, S. Parkkila, A.K. Parkkila, K. Haukipuro, S. Pastorekova, J. Pastorek, et al., Immunohistochemical study of colorectal tumors for expression of a novel transmembrane carbonic anhydrase, MN/CA IX, with potential value as a marker of cell proliferation, Am. J. Pathol. 153 (1) (Jul 1998) 279–285.Google Scholar
  174. S.W. Choi, J.Y. Kim, J.Y. Park, I.H. Cha, J. Kim, S. Lee, Expression of carbonic anhydrase IX is associated with postoperative recurrence and poor prognosis in surgically treated oral squamous cell carcinoma, Hum. Pathol. 39 (9) (Sep 2008) 1317–1322.Google Scholar
  175. J.L. Roh, K.J. Cho, G.Y. Kwon, C.H. Ryu, H.W. Chang, S.H. Choi, et al., The prognostic value of hypoxiamarkers in T2-staged oral tongue cancer, Oral Oncol. 45 (1) (Jan 2009) 63–68.Google Scholar
  176. L.R. Oliveira, A. Ribeiro-Silva, Prognostic significance of immunohistochemical biomarkers in oral squamous cell carcinoma, Int. J. Oral Maxillofac. Surg. 40 (3) (Mar 2011) 298–307.Google Scholar
  177. A.W. Eckert, M.H. Lautner, A. Schutze, H. Taubert, J. Schubert, U. Bilkenroth, Coexpression of hypoxia-inducible factor-1alpha and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients, Histopathology 58 (7) (Jun 2011) 1136–1147.Google Scholar
  178. Y. Kondo, K. Yoshikawa, Y. Omura, A. Shinohara, Y. Kazaoka, J. Sano, et al., Clinicopathological significance of carbonic anhydrase 9, glucose transporter-1, ki-67 and p 53 expression in oral squamous cell carcinoma, Oncol. Rep. 25 (5) (May 2011) 1227–1233.Google Scholar
  179. E.J. Bowman, A. Siebers, K. Altendorf, Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells, Proc. Natl. Acad. Sci. U. S. A. 85 (21) (Nov 1988) 7972–7976.Google Scholar
  180. M. Huss, O. Vitavska, A. Albertmelcher, S. Bockelmann, C.Nardmann, K. Tabke, et al., Vacuolar H(+)-ATPases: intra- and intermolecular interactions, Eur. J. Cell Biol. 90 (9) (Sep 2011) 688–695.Google Scholar
  181. M. Muroi, N. Shiragami, K. Nagao, M. Yamasaki, A. Takatsuki, Folimycin (concanamycin A), a specific inhibitor of V-ATPase, blocks intracellular translocation of the glycoprotein of vesicular stomatitis virus before arrival to the Golgi apparatus, Cell Struct. Funct. 18 (3) (Jun 1993) 139–149.Google Scholar
  182. R.M. Wiedmann, K. von Schwarzenberg, A. Palamidessi, L. Schreiner, R. Kubisch, J. Liebl, et al., The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of endocytic activation of the rho-GTPase Rac1, Cancer Res. 72 (22) (Nov 15 2012) 5976–5987.Google Scholar
  183. J.P. Mattsson, K. Vaananen, B. Wallmark, P. Lorentzon, Omeprazole and bafilomycin, two proton pump inhibitors: differentiation of their effects on gastric, kidney and bone H(+)-translocating ATPases, Biochim. Biophys. Acta 1065 (2) (Jun 18 1991) 261–268.Google Scholar
  184. Y. Wang, S.J. Li, J. Pan, Y. Che, J. Yin, Q. Zhao. Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis. Biochemical and Biophysical Research Communications, Volume 412, Issue 2, 26 August 2011, Pages 353–359.Google Scholar
  185. R.C. Thomas, R.W. Meech. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurons. Nature, 299 (1982), pp. 826–828.Google Scholar
  186. I.S. Ramsey, M.M. Moran, J.A. Chong, D.E. Clapham. A voltage-gated proton-selective channel lacking the pore domain. Nature, 440 (2006), pp. 1213–1216.Google Scholar
  187. M. Sasaki, M. Takagi, Y. Okamur. A voltage sensor-domain protein is a voltage-gated proton channel. Science, 312 (2006), pp. 589–592.Google Scholar
  188. R.A. Clark, K.G. Leidal, D.W. Pearson, W.M. Nauseef. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system. J. Biol. Chem., 262 (1987), pp. 4065–4074.Google Scholar
  189. D. Morgan, V.V. Cherny, R. Murphy, B.Z. Katz, T.E. DeCoursey. The pH dependence of NADPH oxidase in human eosinophils. J. Physiol., 569 (2005), pp. 419–431.Google Scholar
  190. T.E. DeCoursey. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev., 83 (2003), pp. 475–579.Google Scholar
  191. Yifan Wang, Shu Jie Li, Xingye Wu, Yongzhe Che, and Qiang Li. Clinicopathological and Biological Significance of Human Voltage-gated Proton Channel Hv1 Protein Overexpression in Breast Cancer. JOURNAL OF BIOLOGICAL CHEMISTRY. APRIL 20, 2012•VOLUME 287•NUMBER 17. PP 13877–13888.Google Scholar
  192. Deri Morgan, Patrick McIntire, Vladimir Cherny, Susan Smith, Boris Musset, Thomas DeCoursey. Proton Channels are Present in Cell Membranes of the Breast Cancer Cell Line MDA MB 231 and Affect Recovery from an Acid Load. Biophys. J. 108, Issue 2, Supplement 1, p 587a, 27 January 2015.Google Scholar
  193. Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol Renal Physiol 278: F13–F28.Google Scholar
  194. Papadopoulos MC, Saadoun S. Key roles of aquaporins in tumor biology. Biochim Biophys Acta. Volume 1848, Issue 10, Part B, October 2015, Pages 2576–2583. (Special issue: Membrane Channels and Transporters in Cancers).Google Scholar
  195. Jian Wang, Li Feng, Zhitu Zhu, Minghuan Zheng, Diane Wang, Zhihong Chen and Hongzhi Sun. Aquaporins as diagnostic and therapeutic targets in cancer: How far we are? Journal of Translational Medicine (2015) 13:96.Google Scholar
  196. Saadoun S, Papadopoulos MC, Davies DC, Bell BA, Krishna S. Increased aquaporin 1 water channel expression in human brain tumours. Br J Cancer. 2002; 87:621–3.Google Scholar
  197. Guan G, Dong Z, Sun K. Correlation between the expression of aquaporin 1 and the micro-angiogenesis in laryngeal carcinoma. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2009; 23:219-21.Google Scholar
  198. Nico B, Ribatti D. Role of aquaporins in cell migration and edema formation in human brain tumors. Exp Cell Res. 2011; 317:2391-6.Google Scholar
  199. Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA. Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry. 2002a; 72:262-5.Google Scholar
  200. Warth A, Simon P, Capper D, Goeppert B, Tabatabai G, Herzog H et al.. Expression pattern of the water channel aquaporin-4 in human gliomas is associated with blood-brain barrier disturbance but not with patient survival. J Neurosci Res. 2007; 85:1336-46.Google Scholar
  201. Hoque MO, Soria JC, Woo J, Lee T, Lee J, Jang SJ et al.. Aquaporin 1 is overexpressed in lung cancer and stimulates NIH-3 T3 cell proliferation and anchorage-independent growth. Am J Pathol. 2006; 168:1345-53.Google Scholar
  202. Moon C, Soria JC, Jang SJ, Lee J, Obaidul HM, Sibony M et al.. Involvement of aquaporins in colorectal carcinogenesis. Oncogene. 2003; 22:6699-703.Google Scholar
  203. Yin T, Yu S, Xiao L, Zhang J, Liu C, Lu Y et al.. Correlation between the expression of aquaporin 1 and hypoxia-inducible factor 1 in breast cancer tissues. J Huazhong Univ Sci Technolog Med Sci. 2008; 28:346-8. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  204. Mobasheri A, Airley R, Hewitt SM, Marples D. Heterogeneous expression of the aquaporin 1 (AQP1) water channel in tumors of the prostate, breast, ovary, colon and lung: a study using high density multiple human tumor tissue microarrays. Int J Oncol. 2005; 26:1149-58. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  205. Yang JH, Shi YF, Chen XD, Qi WJ. The influence of aquaporin-1 and microvessel density on ovarian carcinogenesis and ascites formation. Int J Gynecol Cancer. 2006; 16 Suppl 1:400-5. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  206. Hara-Chikuma M, Verkman AS. Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol Cell Biol. 2008; 28:326-32. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  207. Liu S, Zhang S, Jiang H, Yang Y, Jiang Y. Co-expression of AQP3 and AQP5 in esophageal squamous cell carcinoma correlates with aggressive tumor progression and poor prognosis. Med Oncol. 2013; 30:636. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  208. Guo X, Sun T, Yang M, Li Z, Li Z, Gao Y. Prognostic value of combined aquaporin 3 and aquaporin 5 overexpression in hepatocellular carcinoma. Biomed Res Int., 2013:206525.Google Scholar
  209. Kafe H, Verbavatz JM, Cochand-Priollet B, Castagnet P, Vieillefond A. Collecting duct carcinoma: an entity to be redefined? Virchows Arch. 2004; 445:637-40. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  210. Kusayama M, Wada K, Nagata M, Ishimoto S, Takahashi H, Yoneda M et al.. Critical role of aquaporin 3 on growth of human esophageal and oral squamous cell carcinoma. Cancer Sci. 2011; 102:1128-36.Google Scholar
  211. Xie Y, Wen X, Jiang Z, Fu HQ, Han H, Dai L. Aquaporin 1 and aquaporin 4 are involved in invasion of lung cancer cells. Clin Lab. 2012; 58:75-80. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  212. Niu D, Kondo T, Nakazawa T, Kawasaki T, Yamane T, Mochizuki K et al.. Differential expression of aquaporins and its diagnostic utility in thyroid cancer. PLoS One. 2012; 7:e40770.Google Scholar
  213. Kang SK, Chae YK, Woo J, Kim MS, Park JC, Lee J et al.. Role of human aquaporin 5 in colorectal carcinogenesis. Am J Pathol. 2008; 173:518-25. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  214. Chae YK, Kang SK, Kim MS, Woo J, Lee J, Chang S et al.. Human AQP5 plays a role in the progression of chronic myelogenous leukemia (CML). PLoS One. 2008; 3:e2594. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  215. Zhang Z, Chen Z, Song Y, Zhang P, Hu J, Bai C. Expression of aquaporin 5 increases proliferation and metastasis potential of lung cancer. J Pathol. 2010; 221:210-20. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  216. Yan C, Yang J, Shen L, Chen X. Inhibitory effect of Epigallocatechin gallate on ovarian cancer cell proliferation associated with aquaporin 5 expression. Arch Gynecol Obstet. 2012; 285:459-67. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  217. Watanabe T, Fujii T, Oya T, Horikawa N, Tabuchi Y, Takahashi Y et al.. Involvement of aquaporin-5 in differentiation of human gastric cancer cells. J Physiol Sci. 2009; 59:113-22. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  218. Lacroix L, Lazar V, Michiels S, Ripoche H, Dessen P, Talbot M et al.. Follicular thyroid tumors with the PAX8-PPARgamma1 rearrangement display characteristic genetic alterations. Am J Pathol. 2005; 167:223-31. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  219. Tan G, Sun SQ, Yuan DL. Expression of the water channel protein aquaporin-9 in human astrocytic tumours: correlation with pathological grade. J Int Med Res. 2008; 36:777-82. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  220. Yang JH, Yan CX, Chen XJ, Zhu YS. Expression of aquaglyceroporins in epithelial ovarian tumours and their clinical significance. J Int Med Res. 2011; 39:702-11. PubMed Abstract| Publisher Full Text OpenURL.Google Scholar
  221. Jablonski EM, Mattocks MA, Sokolov E, Koniaris LG, Hughes FJ, Fausto N et al.. Decreased aquaporin expression leads to increased resistance to apoptosis in hepatocellular carcinoma. Cancer Lett. 2007; 250:36-46.Google Scholar
  222. Wang W, Li Q, Yang T, Bai G, Li D, Li Q et al.. Expression of AQP5 and AQP8 in human colorectal carcinoma and their clinical significance. World J Surg Oncol. 2012; 10:242.Google Scholar
  223. Shi YH, Rehemu N, Ma H, Tuokan T, Chen R, Suzuke L. Increased migration and local invasion potential of SiHa cervical cancer cells expressing Aquaporin 8. Asian Pac J Cancer Prev. 2013;14(3):1825-8.Google Scholar
  224. Shi Z, Zhang T, Luo L, Zhao H, Cheng J, Xiang J, Zhao C. Aquaporins in human breast cancer: identification and involvement in carcinogenesis of breast cancer. J Surg Oncol. 2012 Sep 1;106(3):267-72.Google Scholar
  225. Sébastien Bonnet, Stephen L. Archer, Joan Allalunis-Turner, Alois Haromy, Christian Beaulieu, Richard Thompson, Christopher T. Lee, Gary D. Lopaschuk, Lakshmi Puttagunta, Sandra Bonnet, Gwyneth Harry, Kyoko Hashimoto, Christopher J. Porter, Miguel A. Andrade, Bernard Thebaud, Evangelos D. Michelakis. A Mitochondria-K + Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth. Cancer Cell, Volume 11, Issue 1, January 2007, Pages 37–51.Google Scholar
  226. D.R. Plas, C.B. Thompson. Cell metabolism in the regulation of programmed cell death. Trends Endocrinol. Metab., 13 (2002), pp. 75–78.Google Scholar
  227. J.W. Kim, C.V. Dang. Multifaceted roles of glycolytic enzymes. Trends Biochem. Sci., 30 (2005), pp. 142–150.Google Scholar
  228. R.L. Elstrom, D.E. Bauer, M. Buzzai, R. Karnauskas, M.H. Harris, D.R. Plas, H. Zhuang, R.M. Cinalli, A. Alavi, C.M. Rudin, C.B. Thompson. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res., 64 (2004), pp. 3892–3899.Google Scholar
  229. J.G. Pastorino, J.B. Hoek, N. Shulga. Activation of glycogen synthase kinase 3β disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res., 65 (2005), pp. 10545–10554.Google Scholar
  230. Maldonado EN, Lemasters JJ.. 2014 ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect. Mitochondrion (2014) 19(Pt A):78–84.Google Scholar
  231. Dejean LM, Martinez-Caballero S, Kinnally KW.. Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis? Cell Death Differ (2006) 13:1387–95.Google Scholar
  232. Simon DN, Rout MP. Cancer and the nuclear pore complex. Adv Exp Med Biol (2014) 773:285–307.Google Scholar
  233. Stephen M. Madamba, Kevin N. Damri, Laurent M. Dejean, and Pablo M. Peixoto. Mitochondrial Ion Channels in Cancer Transformation. Front Oncol. 2015; 5: 120.Google Scholar
  234. Pavlov EV, Priault M, Pietkiewicz D, Cheng EH, Antonsson B, Manon S, Korsmeyer SJ, Mannella CA and Kinnally KW (2001). A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J. Cell. Biol. 155: 725–731.Google Scholar
  235. Guo L, Pietkiewicz D, Pavlov EV, Grigoriev SM, Kasianowicz JJ, Dejean LM, Korsmeyer SJ, Antonsson B and Kinnally KW (2004) Effects of cytochrome c on the mitochondrial apoptosis-induced channel MAC. Am.J. Physiol. Cell Physiol. 286: C1109–C1117.Google Scholar
  236. Martinez-Caballero S, Dejean LM and Kinnally KW (2004) Some amphiphilic cations block the mitochondrial apoptosis-induced channel, MAC. FEBS Lett. 568: 35–38.Google Scholar
  237. Dejean LM, Martinez-Caballero S, Kinnally KW. Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis? Cell Death Differ. 2006 Aug;13(8):1387-95. Epub 2006 May 5.Google Scholar
  238. Goldin N, Arzoine L, Heyfets A, Israelson A, Zaslavsky Z, Bravman T, et al. Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene (2008) 27:4636–43.10.1038/onc.2008.108.Google Scholar
  239. Rostovtseva TK, Bezrukov SM.. VDAC inhibition by tubulin and its physiological implications. Biochim Biophys Acta (2012) 1818:1526–35.10.1016/j.bbamem.2011.11.004.Google Scholar
  240. Maldonado EN, Sheldon KL, Dehart DN, Patnaik J, Manevich Y, Townsend DM, et al. Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin. J Biol Chem (2013) 288:11920–9.10.1074/jbc.M112.433847.Google Scholar
  241. Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB.. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal (2012) 16:1295–322.10.1089/ars.2011.4414.Google Scholar
  242. Yang Y, Karakhanova S, Werner J, Bazhin AV. Reactive oxygen species in cancer biology and anticancer therapy. Curr Med Chem (2013) 20:3677–92.10.2174/0929867311320999165.Google Scholar
  243. Vento MT, Zazzu V, Loffreda A, Cross JR, Downward J, Stoppelli MP, et al. Praf2 is a novel Bcl-xL/Bcl-2 interacting protein with the ability to modulate survival of cancer cells. PLoS One (2010) 5:e15636.10.1371/journal.pone.0015636.Google Scholar
  244. Quinn BA, Dash R, Azab B, Sarkar S, Das SK, Kumar S, et al. Targeting Mcl-1 for the therapy of cancer. Expert Opin Investig Drugs (2011) 20:1397–411.10.1517/13543784.2011.609167.Google Scholar
  245. Arbel N, Ben-Hail D, Shoshan-Barmatz V.. Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J Biol Chem (2012) 287:23152–61.10.1074/jbc.M112.345918.Google Scholar
  246. Delsite R, Kachhap S, Anbazhagan R, Gabrielson E, Singh KK.. Nuclear genes involved in mitochondria-to-nucleus communication in breast cancer cells. Mol Cancer (2002) 1:6.10.1186/1476-4598-1-6.Google Scholar
  247. Rasmussen AK, Chatterjee A, Rasmussen LJ, Singh KK.. Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae. Nucleic Acids Res (2003) 31:3909–17.10.1093/nar/gkg446.Google Scholar
  248. Miceli MV, Jazwinski SM.. Nuclear gene expression changes due to mitochondrial dysfunction in ARPE-19 cells: implications for age-related macular degeneration. Invest Ophthalmol Vis Sci (2005) 46:1765–73.10.1167/iovs.04-1327.Google Scholar
  249. Singh KK, Kulawiec M, Still I, Desouki MM, Geradts J, Matsui S.. Inter-genomic cross talk between mitochondria and the nucleus plays an important role in tumorigenesis. Gene (2005) 354:140–6.10.1016/j.gene.2005.03.027.Google Scholar
  250. Kulawiec M, Safina A, Desouki MM, Still I, Matsui S, Bakin A, et al. Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biol Ther (2008) 7:1732–43.10.4161/cbt.7.11.6729.Google Scholar
  251. Porporato PE, Payen VL, Perez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, et al. A mitochondrial switch promotes tumor metastasis. Cell Rep (2014) 8:754–66.10.1016/j.celrep.2014.06.043.Google Scholar
  252. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature (2011) 476:341–5.10.1038/nature10234.Google Scholar
  253. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R.. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature (2011) 476:336–40.10.1038/nature10230.Google Scholar
  254. Peixoto PM, Dejean LM, Kinnally KW. The therapeutic potential of mitochondrial channels in cancer, ischemia-reperfusion injury, and neurodegeneration. Mitochondrion (2012) 12:14–23.10.1016/j.mito.2011.03.003.Google Scholar
  255. Leanza L, Biasutto L, Manago A, Gulbins E, Zoratti M, Szabo I. Intracellular ion channels and cancer. Front Physiol (2013) 4:227.10.3389/fphys.2013.00227.Google Scholar
  256. Leanza L, Zoratti M, Gulbins E, Szabo I.. Mitochondrial ion channels as oncological targets. Oncogene (2014) 33:5569–81.10.1038/onc.2013.578.Google Scholar
  257. Plötz M1, Gillissen B, Hossini AM, Daniel PT, Eberle J. Disruption of the VDAC2-Bak interaction by Bcl-x(S) mediates efficient induction of apoptosis in melanoma cells. Cell Death Differ. 2012 Dec;19(12):1928-38.Google Scholar
  258. Asmarinah Asmarinah Agnieszka Paradowska-Dogan Ria Kodariah Budiana Tanuhardja Przemyslaw Waliszewski Chaidir Arif Mochtar Yuli Budiningsih Wolfgang Weidner Elvira Hinsch. Expression of the Bcl-2 family genes and complexes involved in the mitochondrial transport in prostate cancer cells. Int. J. Oncology, 2014, 45: 1489-1496.Google Scholar
  259. Reina S, Palermo V, Guarnera A, Guarino F, Messina A, Mazzoni C, De Pinto V (Jul 2010). “Swapping of the N-terminus of VDAC1 with VDAC3 restores full activity of the channel and confers anti-aging features to the cell”. FEBS Letters 584 (13): 2837–44.Google Scholar
  260. Eduardo N. Maldonado, Kely L. Sheldon‖, David N. DeHart, Jyoti Patnaik, Yefim Manevich, Danyelle M. Townsend, Sergey M. Bezrukov, Tatiana K. Rostovtseva‖ and John J. Lemasters. Voltage-dependent Anion Channels Modulate Mitochondrial Metabolism in Cancer Cells. REGULATION BY FREE TUBULIN AND ERASTIN*. J. Biol. Chem., 2013, 288: 11920-11929.Google Scholar
  261. Chandra D, Choy G, Daniel PT, Tang DG. Bax-dependent regulation of Bak by voltage-dependent anion channel 2. J Biol Chem. 2005;280:19051–19061.Google Scholar
  262. Taha, T.A., Mullen, T.D. and Obeid, L.M. (2006). “A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death”. Biochim. Biophys. Acta 1758 (12): 2027–36.Google Scholar
  263. Rapaport D. (2005). How does the TOM complex mediate insertion of precursor proteins into the mitochondrial outer membrane? J. Cell Biol. 171, 419–423.Google Scholar
  264. Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Salem AF, Tsirigos A, Lamb R, et al. Mitochondria “fuel” breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle (2012) 11:4390–401.  https://doi.org/10.4161/cc.22777.
  265. Handa N, Kishishita S, Morita S, Akasaka R, Jin Z, Chrzas J, et al. Structure of the human Tim44 C-terminal domain in complex with pentaethylene glycol: ligand-bound form. Acta Crystallogr D Biol Crystallogr (2007) 63:1225–34.  https://doi.org/10.1107/s0907444907051463.
  266. Bonora M, Pinton P. The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front Oncol (2014) 4:302.  https://doi.org/10.3389/fonc.2014.00302.
  267. Rasola A, Bernardi P. The mitochondrial permeability transition pore and its adaptive responses in tumor cells. Cell Calcium (2015).  https://doi.org/10.1016/j.ceca.2015.03.004.
  268. Kimberly G. Norman, Jeffrey A. Canterc, Mingjian Shia, Ginger L. Milned, Jason D. Morrowd, James E. Sligh. Cyclosporine A suppresses keratinocyte cell death through MPTP inhibition in a model for skin cancer in organ transplant recipients. Mitochondrion, Volume 10, Issue 2, March 2010, Pages 94–101.Google Scholar
  269. N Tajeddine, L Galluzzi, O Kepp, E Hangen, E Morselli, L Senovilla, N Araujo, G Pinna, N Larochette, N Zamzami, N Modjtahedi, A Harel-Bellan and G Kroemer. Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene (2008) 27, 4221–4232;  https://doi.org/10.1038/onc.2008.63.
  270. de La Motte Rouge T, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T et al. (2007). A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 67: 6253–6262.Google Scholar
  271. Claudio Hetz, Pierre-Alain Vitte, Agnes Bombrun, Tatiana K. Rostovtseva∥, Sylvie Montessuit, Agnes Hiver, Matthias K. Schwarz, Dennis J. Church, Stanley J. Korsmeyer, Jean-Claude Martinou, and Bruno Antonsson. Bax Channel Inhibitors Prevent Mitochondrion-mediated Apoptosis and Protect Neurons in a Model of Global Brain Ischemia. The JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, VOL. 280, NO. 52, pp. 42960–42970.Google Scholar
  272. Vidyaramanan Ganesan, Timothy Walsh, Kai-Ti Chang, and Marco Colombini. The Dynamics of Bax Channel Formation: Influence of Ionic Strength. Biophysical J., Volume 103, August 2012, 483–491.Google Scholar
  273. Siskind LJ, Mullen TD, Romero Rosales K, Clarke CJ, Hernandez-Corbacho MJ, Edinger AL, et al. The BCL-2 protein BAK is required for long-chain ceramide generation during apoptosis. J Biol Chem (2010) 285:11818–26.  https://doi.org/10.1074/jbc.m109.078121.
  274. Chipuk JE, McStay GP, Bharti A, Kuwana T, Clarke CJ, Siskind LJ, et al. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell (2012) 148:988–1000.  https://doi.org/10.1016/j.cell.2012.01.038.
  275. Egle A, Harris AW, Bath ML, O’Reilly L, Cory S. VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood (2004) 103:2276–83.  https://doi.org/10.1182/blood-2003-07-2469.
  276. Swanson PJ, Kuslak SL, Fang W, Tze L, Gaffney P, Selby S, et al. Fatal acute lymphoblastic leukemia in mice transgenic for B cell-restricted bcl-xL and c-myc. J Immunol (2004) 172:6684–91.  https://doi.org/10.4049/jimmunol.172.11.6684.
  277. Meijerink JP, Van Lieshout EM, Beverloo HB, Van Drunen E, Mensink EJ, Macville M, et al. Novel murine B-cell lymphoma/leukemia model to study BCL2-driven oncogenesis. Int J Cancer (2005) 114:917–25.Google Scholar
  278. Pavlov EV, Priault M, Pietkiewicz D, Cheng EH, Antonsson B, Manon S, et al. A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol (2001) 155:725–31.  https://doi.org/10.1083/jcb.200107057.
  279. Goping IS, Gross A, Lavoie JN, Nguyen M, Jemmerson R, Roth K, et al. Regulated targeting of BAX to mitochondria. J Cell Biol (1998) 143:207–15.  https://doi.org/10.1083/jcb.143.1.207.
  280. Gross A, Jockel J, Wei MC, Korsmeyer SJ. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J (1998) 17:3878–85.  https://doi.org/10.1093/emboj/17.14.3878.
  281. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell (2006) 9:351–65.  https://doi.org/10.1016/j.ccr.2006.03.027.
  282. Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer (2008) 8:121–32.  https://doi.org/10.1038/nrc2297.
  283. Teijido O, Dejean L. Upregulation of Bcl2 inhibits apoptosis-driven BAX insertion but favors BAX relocalization in mitochondria. FEBS Lett (2010) 584:3305–10.  https://doi.org/10.1016/j.febslet.2010.07.002.
  284. Gautier F, Guillemin Y, Cartron PF, Gallenne T, Cauquil N, Le Diguarher T, et al. Bax activation by engagement with, then release from, the BH3 binding site of Bcl-xL. Mol Cell Biol (2011) 31:832–44.  https://doi.org/10.1128/mcb.00161-10.
  285. Renault TT, Teijido O, Antonsson B, Dejean LM, Manon S. Regulation of Bax mitochondrial localization by Bcl-2 and Bcl-x(L): keep your friends close but your enemies closer. Int J Biochem Cell Biol (2013) 45:64–7.  https://doi.org/10.1016/j.biocel.2012.09.022.
  286. Tarek A. Taha, Thomas D. Mullen, and Lina M. Obeid. A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. Biochim Biophys Acta. 2006 Dec; 1758(12): 2027–2036.Google Scholar
  287. Radin NS. Killing tumours by ceramide-induced apoptosis: a critique of available drugs. Biochem J. 2003;371:243–56.Google Scholar
  288. Hannun YA. Sphingolipid second messengers: tumor suppressor lipids. Adv Exp Med Biol. 1997;400A:305–12.Google Scholar
  289. Samy A. F. Morad & Myles C. Cabot. Ceramide-orchestrated signalling in cancer cells. Nature Reviews Cancer 13, 51-65 (January 2013)|  https://doi.org/10.1038/nrc3398.
  290. Ashrafuzzaman, Md. Designing aptamer based drug molecules to bind to various apoptotic proteins and construction of an Aptamer Drug Bank. Biochemistry Department, King Saud University, Saudi Arabia, 2016 (ongoing project).Google Scholar
  291. A. Rasola, P. Bernardi. Mitochondrial permeability transition in Ca(2 +)-dependent apoptosis and necrosis. Cell Calcium, 50 (2011), pp. 222–233.Google Scholar
  292. C. Camello-Almaraz, P.J. Gomez-Pinilla, M.J. Pozo, P.J. Camello. Mitochondrial reactive oxygen species and Ca2 + signaling. Am. J. Physiol. Cell Physiol., 291 (2006), pp. C1082–C1088.Google Scholar
  293. A.J. Kowaltowski, N.C. de Souza-Pinto, R.F. Castilho, A.E. Vercesi. Mitochondria and reactive oxygen species. Free Radic. Biol. Med., 47 (2009), pp. 333–343.Google Scholar
  294. L. Leanza, L. Biasutto, A. Manago, E. Gulbins, M. Zoratti, I. Szabo. Intracellular ion channels and cancer. Front. Physiol., 4 (2013), p. 227.Google Scholar
  295. D.B. Zorov, M. Juhaszova, S.J. Sollott. Mitochondrial ROS-induced ROS release: an update and review. Biochim. Biophys. Acta, 1757 (2006), pp. 509–517.Google Scholar
  296. D.B. Zorov, M. Juhaszova, S.J. Sollott. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 94 (2014), pp. 909–950.Google Scholar
  297. I. Szabo, J. Bock, H. Grassme, M. Soddemann, B. Wilker, F. Lang, M. Zoratti, E. Gulbins. Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proc. Natl. Acad. Sci. U. S. A., 105 (2008), pp. 14861–14866.Google Scholar
  298. L. Leanza, B. Henry, N. Sassi, M. Zoratti, K.G. Chandy, E. Gulbins, I. Szabo. Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cells. EMBO Mol. Med., 4 (2012), pp. 577–593.Google Scholar
  299. L. Leanza, L. Trentin, K.A. Becker, F. Frezzato, M. Zoratti, G. Semenzato, E. Gulbins, I. Szabo. Clofazimine, Psora-4 and PAP-1, inhibitors of the potassium channel Kv1.3, as a new and selective therapeutic strategy in chronic lymphocytic leukemia. Leukemia, 27 (2013a), pp. 1782–1785.Google Scholar
  300. Arcangeli, A.; Crociani, O.; Lastraioli, E.; Masi, A.; Pillozzi, S.; Becchetti, A. Targeting Ion Channels in Cancer: A Novel Frontier in Antineoplastic Therapy. Current Medicinal Chemistry, Volume 16, Number 1, January 2009, pp. 66-93(28).Google Scholar
  301. T Bose, A Cieślar-Pobuda and E Wiechec. Role of ion channels in regulating Ca2 + homeostasis during the interplay between immune and cancer cells. Cell Death and Disease (2015) 6, e1648;  https://doi.org/10.1038/cddis.2015.23.
  302. Lang F, Stournaras C. Ion channels in cancer: future perspectives and clinical potential. Philos Trans R Soc Lond B Biol Sci 2014; 369: 20130108.Google Scholar
  303. TSENG C.-Y., ASHRAFUZZAMAN MD., MANE J., KAPTY J., MERCER J., and TUSZYNSKI J. (2011). Entropic fragment based approach to aptamer design. Chem. Biol. Drug Design 78,1–13.Google Scholar
  304. Md Ashrafuzzaman, Chih-Yuan Tseng, Janice Kapty, John R. Mercer, and Jack A. Tuszynski. A Computationally Designed DNA Aptamer Template with Specific Binding to Phosphatidylserine. Nucleic Acid Ther. 2013 Dec 1; 23(6): 418–426.Google Scholar
  305. Ashrafuzzaman, Md.; Tuszynski, J. Regulation of Channel Function Due to Coupling with a Lipid Bilayer. Journal of Computational and Theoretical Nanoscience, Volume 9, Number 4, April 2012a, pp. 564-570.Google Scholar
  306. Garcia-Calvo M, Leonard RJ, Novick J, Stevens SP, Schmalhofer W, Kaczorowski GJ et al. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem 1993; 268: 18866–18874.| PubMed| CAS|.Google Scholar
  307. Helms LM, Felix JP, Bugianesi RM, Garcia ML, Stevens S, Leonard RJ et al. Margatoxin binds to a homomultimer of K(V)1.3 channels in Jurkat cells. Comparison with K(V)1.3 expressed in CHO cells. Biochemistry 1997; 36: 3737–3744.| Article| PubMed| ISI|.Google Scholar
  308. Koshy S, Wu D, Hu X, Tajhya RB, Huq R, Khan FS et al. Blocking KCa3.1 channels increases tumor cell killing by a subpopulation of human natural killer lymphocytes. PloS One 2013; 8: e76740.| Article| PubMed|.Google Scholar
  309. Buraei Z, Schofield G, Elmslie KS. Roscovitine differentially affects CaV2 and Kv channels by binding to the open state. Neuropharmacology 2007; 52: 883–894.| Article| PubMed| ISI| CAS|.Google Scholar
  310. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997; 243: 527–536.| Article| PubMed| ISI| CAS|.Google Scholar
  311. Lastraioli E, Guasti L, Crociani O, Polvani S, Hofmann G, Witchel H et al. herg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res 2004; 64: 606–611.| Article| PubMed| ISI| CAS|.Google Scholar
  312. Pillozzi S, Brizzi MF, Balzi M, Crociani O, Cherubini A, Guasti L et al. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia 2002; 16: 1791–1798.| Article| PubMed| ISI| CAS|.Google Scholar
  313. Pillozzi S, Brizzi MF, Bernabei PA, Bartolozzi B, Caporale R, Basile V et al. VEGFR-1 (FLT-1), beta1 integrin, and hERG K + channel for a macromolecular signaling complex in acute myeloid leukemia: role in cell migration and clinical outcome. Blood 2007; 110: 8–0.| Article|.Google Scholar
  314. Shao XD, Wu KC, Hao ZM, Hong L, Zhang J, Fan DM. The potent inhibitory effects of cisapride, a specific blocker for human ether-a-go-go-related gene (HERG) channel, on gastric cancer cells. Cancer Biol Ther 2005; 4: 295–301.| Article| PubMed| ISI| CAS|.Google Scholar
  315. Millward MJ, Cantwell BM, Munro NC, Robinson A, Corris PA, Harris AL. Oral verapamil with chemotherapy for advanced non-small cell lung cancer: a randomised study. Br J Cancer 1993; 67: 1031–1035.| Article| PubMed| ISI| CAS|.Google Scholar
  316. Yohem KH, Clothier JL, Montague SL, Geary RJ, Winters AL 3rd, Hendrix MJ et al. Inhibition of tumor cell invasion by verapamil. Pigment Cell Res 1991; 4: 225–233.Google Scholar
  317. Lefranc F, Kiss R. The sodium pump alpha1 subunit as a potential target to combat apoptosis-resistant glioblastomas. Neoplasia 2008; 10: 198–206.Google Scholar
  318. Van Quaquebeke E, Simon G, Andre A, Dewelle J, El Yazidi M, Bruyneel F et al. Identification of a novel cardenolide (2’’-oxovoruscharin) from Calotropis procera and the hemisynthesis of novel derivatives displaying potent in vitro antitumor activities and high in vivo tolerance: structure-activity relationship analyses. J Med Chem 2005; 48: 849–856.| Article| PubMed| ISI|.Google Scholar
  319. Carrithers MD, Chatterjee G, Carrithers LM, Offoha R, Iheagwara U, Rahner C et al. Regulation of podosome formation in macrophages by a splice variant of the sodium channel SCN8A. J Biol Chem 2009; 284: 8114–8118.| Article| PubMed| ISI|.Google Scholar
  320. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 2005; 11: 5381–5389.| Article| PubMed| ISI| CAS|.Google Scholar
  321. Schwab A, Reinhardt J, Schneider SW, Gassner B, Schuricht B. K (+) channel-dependent migration of fibroblasts and human melanoma cells. Cell Physiol Biochem 1999; 9: 126–132.| Article| PubMed| ISI| CAS|.Google Scholar
  322. Innamaa A, Jackson L, Asher V, Van Shalkwyk G, Warren A, Hay D et al. Expression and prognostic significance of the oncogenic K2P potassium channel KCNK9 (TASK-3) in ovarian carcinoma. Anticancer Res 2013; 33: 1–8.Google Scholar
  323. Ashrafuzzaman, Md., Tseng, C.-Y. DNA aptamers for Bcl 2 and BAX proteins, 2016a, unpublished.Google Scholar
  324. Ashrafuzzaman, Md. DNA aptamers for ceramides, 2016b, unpublished.Google Scholar
  325. Frede J, Fraser SP, Oskay-Ozcelik G, Hong Y, Ioana Braicu E, Sehouli J et al. Ovarian cancer: Ion channel and aquaporin expression as novel targets of clinical potential. Eur J Cancer 2013; 49: 2331–2344.| Article| PubMed| ISI|.Google Scholar
  326. Ji C, Cao C, Lu S, Kivlin R, Amaral A, Kouttab N et al. Curcumin attenuates EGF-induced AQP3 up-regulation and cell migration in human ovarian cancer cells. Cancer Chemother Pharmacol 2008; 62: 857–865.| Article| PubMed| ISI| CAS|.Google Scholar
  327. Lee MH, Choi BY, Kundu JK, Shin YK, Na HK, Surh YJ. Resveratrol suppresses growth of human ovarian cancer cells in culture and in a murine xenograft model: eukaryotic elongation factor 1A2 as a potential target. Cancer Res 2009; 69: 7449–7458.| Article| PubMed| ISI|.Google Scholar
  328. Isbilen B, Fraser SP, Djamgoz MB. Docosahexaenoic acid (omega-3) blocks voltage-gated sodium channel activity and migration of MDA-MB-231 human breast cancer cells. Int J Biochem Cell Biol 2006; 38: 2173–2182.| Article| PubMed| ISI|.Google Scholar
  329. Yan C, Yang J, Shen L, Chen X. Inhibitory effect of Epigallocatechin gallate on ovarian cancer cell proliferation associated with aquaporin 5 expression. Arch Gynecol Obstet 2012; 285: 459–467.Google Scholar
  330. Roberta Peruzzo, Lucia Biasutto, Ildikò Szabò, Luigi Leanza. (2016) Impact of intracellular ion channels on cancer development and progression. European Biophysics Journal 45 (7):685–707.Google Scholar
  331. Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell 144:646–674.Google Scholar
  332. Litan A, Langhans SA (2015) Cancer as a channelopathy: ion channels and pumps in tumor development and progression. Front Cell Neurosci 9:86.Google Scholar
  333. Djamgoz MB, Onkal R (2013) Persistent current blockers of voltage-gated sodium channels: a clinical opportunity for controlling metastatic disease. Recent Pat Anticancer Drug Discov 8:66–84.Google Scholar
  334. Andersen AP, Moreira JM, Pedersen SF (2014) Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci 369:20130098.Google Scholar
  335. Leanza L, Zoratti M, Gulbins E, Szabo I (2014) Mitochondrial ion channels as oncological targets. Oncogene 33:5569–5581.Google Scholar
  336. Urrego D et al (2014) Potassium channels in cell cycle and cell proliferation. Philos Trans R Soc Lond B Biol Sci 369:20130094.Google Scholar
  337. Pardo LA, Stühmer W (2014) The roles of K + channels in cancer. Nature Rev Cancer 14:39–48.Google Scholar
  338. Wang Z (2004) Roles of K + channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch 448:274–286.Google Scholar
  339. Hoffmann EK, Lambert IH (2014) Ion channels and transporters in the development of drug resistance in cancer cells. Philos Trans R Soc Lond B Biol Sci 369:20130109.Google Scholar
  340. Munaron L (2015) Systems biology of ion channels and transporters in tumor angiogenesis: An omics view. Biochim Biophys Acta 1848(10 Pt B):2647–56.Google Scholar
  341. Xu H, Martinoia E, Szabo I (2015) Organellar channels and transporters. Cell Calcium 58:1–10.Google Scholar
  342. Chen R., Zeng X., Zhang R., Huang J., Kuang X., Yang J., Liu J., Tawfik O., Thrasher J.B., Li B. Cav1.3 channel alpha1D protein is overexpressed and modulates androgen receptor transactivation in prostate cancers. Urol. Oncol. 2014; 32:524–536.Google Scholar
  343. Rafael E. García-Ferreiro, Daniel Kerschensteiner, Felix Major, Francisco Monje, Walter Stühmer, Luis A. Pardo, (2004) Mechanism of Block of hEag1 K Channels by Imipramine and Astemizole . The Journal of General Physiology 124 (4):301–317.Google Scholar
  344. András Dömötör, Zsanett Peidl, Áron Vincze, Béla Hunyady, János Szolcsányi, László Kereskay, György Szekeres, Gyula Mózsik, (2005) Immunohistochemical distribution of vanilloid receptor, calcitonin-gene related peptide and substance P in gastrointestinal mucosa of patients with different gastrointestinal disorders. InflammoPharmacology 13 (1-3):161–177.Google Scholar
  345. M Hartel, (2006) Vanilloids in pancreatic cancer: potential for chemotherapy and pain management. Gut 55 (4):519–528.Google Scholar
  346. Massimo Lazzeri, Maria Giuliana Vannucchi, Michele Spinelli, Elisa Bizzoco, Patrizia Beneforti, Damiano Turini, Maria-Simonetta Faussone-Pellegrini, (2005) Transient Receptor Potential Vanilloid Type 1 (TRPV1) Expression Changes from Normal Urothelium to Transitional Cell Carcinoma of Human Bladder. European Urology 48 (4):691–698.Google Scholar
  347. María G. Sánchez, Ana M. Sánchez, Beatriz Collado, Sophie Malagarie-Cazenave, Nuria Olea, María J. Carmena, Juan C. Prieto, Inés Díaz-Laviada, (2005) Expression of the transient receptor potential vanilloid 1 (TRPV1) in LNCaP and PC-3 prostate cancer cells and in human prostate tissue. European Journal of Pharmacology 515 (1-3):20–27.Google Scholar
  348. Jianbo Wang, Nozomu Tanji, Tadahiko Kikugawa, Masachika Shudou, Xishuang Song, Masayoshi Yokoyama, (2007) Expression of aquaporin 3 in the human prostate. International Journal of Urology 14 (12):1088–1092.Google Scholar
  349. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, M. J. Thun, (2008) Cancer Statistics, 2008. CA: A Cancer Journal for Clinicians 58 (2):71–96.Google Scholar
  350. Mohamed Ismail, Shwan Ahmed, Christof Kastner, John Davies, (2007) Salvage cryotherapy for recurrent prostate cancer after radiation failure: a prospective case series of the first 100 patients. BJU International 100 (4):760–764.Google Scholar
  351. Jeffrey K. Cohen, Ralph J. Miller, Sharmila Ahmed, Meredith J. Lotz, John Baust, (2008) Ten-Year Biochemical Disease Control for Patients with Prostate Cancer Treated with Cryosurgery as Primary Therapy. Urology 71 (3):515–518.Google Scholar
  352. Andrew A. Gage, John Baust, (1998) Mechanisms of Tissue Injury in Cryosurgery. Cryobiology 37 (3):171–186.Google Scholar
  353. G. M. Preston, T. P. Carroll, W. B. Guggino, P. Agre, (1992) Appearance of Water Channels in Xenopus Oocytes Expressing Red Cell CHIP28 Protein. Science 256 (5055):385–387.Google Scholar
  354. S. Nielsen, B. L. Smith, E. I. Christensen, P. Agre, (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proceedings of the National Academy of Sciences 90 (15):7275–7279.Google Scholar
  355. K. Ishibashi, S. Sasaki, K. Fushimi, S. Uchida, M. Kuwahara, H. Saito, T. Furukawa, K. Nakajima, Y. Yamaguchi, T. Gojobori, (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proceedings of the National Academy of Sciences 91 (14):6269–6273.Google Scholar
  356. Thayne R Larson, David W Rrobertson, Alberto Corica, David G Bostwick, (2000) In vivo interstitial temperature mapping of the human prostate during cryosurgery with correlation to histopathologic outcomes. Urology 55 (4):547–552.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Ashrafuzzaman
    • 1
  1. 1.Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations