General Introduction and Nanoscale View of the Cell

Chapter

Abstract

Interdisciplinary scientific initiatives that focus at understanding of the cell are enormous. It started considerably as early as in seventeenth century when an eminent physicist Robert Hooke discovered the cell. The general or microscopic concepts about cells suggest that a collection of varieties of them construct a body. A living system can be subdivided into various functional sections and its smallest unit is cell what contains even smaller structures and hosts a lot of physical natures, trends, and techniques.

References

  1. Ashrafuzzaman, Md., Tuszynski, J., Membrane Biophysics, Springer (Heidelberg), 2012a, ISSN 1618-7210, ISBN 978-3-642-16104-9 ISBN 978-3-642-16105-6 (eBook),  https://doi.org/10.1007/978-3-642-16105-6.
  2. Wilson, E.B. The Cell in Development and Heredity. 3rd ed. New York: The Macmillan Company; 1925.Google Scholar
  3. Taylor, E.W. E.B. Wilson Lecture: The Cell as Molecular Machine. Mol Biol Cell. 2001 Feb; 12(2): 251–254.Google Scholar
  4. The Project Gutenberg eBook, Micrographia by Robert Hooke, Printed by Jo. Martyn, and Ja. Allestry, Printers to the Royal Society, London (1964).Google Scholar
  5. J.D. Watson and F.H.C. Crick. 1953. Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 171, 737–738.Google Scholar
  6. Md. Ashrafuzzaman, Z. Khan, M. Alanazi, M.S. Alam. 2016. Cell surface binding and lipid interactions behind chemotherapy drug induced ion pore formation in membranes. Submitted.Google Scholar
  7. William H. Grover, Andrea K. Bryan, Monica Diez-Silva, Subra Suresh, John M. Higgins, and Scott R. Manalis. Measuring single-cell density. PNAS, 2011, vol. 108, 10992–10996.Google Scholar
  8. Mrema JE, Campbell GH, Miranda R, Jaramillo AL, Rieckmann KH (1979) Concentration and separation of erythrocytes infected with Plasmodium falciparum by gradient centrifugation. Bull World Health Organ 57:133–138.Google Scholar
  9. Mills JP, et al. (2007) Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci USA 104:9213–9217.Google Scholar
  10. Rodgers GP, Schechter AN, Noguchi CT (1985) Cell heterogeneity in sickle cell disease: Quantitation of the erythrocyte density profile. J Lab Clin Med 106:30–37.Google Scholar
  11. Bertles JF, Milner PF (1968) Irreversibly sickled erythrocytes: A consequence of the heterogeneous distribution of hemoglobin types in sickle-cell anemia. J Clin Invest 47:1731–1741.Google Scholar
  12. Christina L. Lewis, Caelli C. Craig and Andre G. Senecal. Mass and Density Measurements of Live and Dead Gram-Negative and Gram-Positive Bacterial Populations. Appl. Environ. Microbiol. 2014, 80 no. 12 3622–3631.Google Scholar
  13. Parsegian, A. Energy of an Ion crossing a Low dielectric Membrane: solutions to four relevant electrostatic problems. Nature 221, 844–846 (1969).Google Scholar
  14. Md Ashrafuzzaman, M A Lampson, D V. Greathouse, R E. Koeppe II, and O S Andersen. Manipulating lipid bilayer material properties using biologically active amphipathic molecules. J. Phys.: Condens. Matter 18 (2006) S1235–S1255.Google Scholar
  15. Hwang T C, Koeppe R E II and Andersen O S. 2003. Biochemistry 42 13646–58.Google Scholar
  16. Lundbæk J A, Birn P, Tape S E, Toombes G E, Sogaard R, Koeppe R E II, Gruner S M, Hansen A J and Andersen O S. 2005. Mol. Pharmacol. 68 680–9.Google Scholar
  17. Sterratt, D.C. 2014. Goldman-Hodgkin-Katz Equations. Encyclopedia of Computational Neuroscience. Springer, New York. pp 1–3.Google Scholar
  18. Rink, T.J., Jacob, R.: Calcium oscillations in non-excitable cells. Trends Neurosci. 12, 43–46 (1989). PMID: 2469208,  https://doi.org/10.1016/0166-2236(89)90133-1.
  19. Fewtrell, C.: Ca2+ oscillations in non-excitable cells. Annu. Rev. Physiol. 55, 427–454 (1993).Google Scholar
  20. Clapham, D.E.: Calcium signaling. Cell 80, 259–268 (1995).Google Scholar
  21. Berridge, M.J.: Elementary and global aspects of calcium signalling. J. Physiol. 499, 290–306 (1997).Google Scholar
  22. Mahaut-Smith, M.P., Hussain, J.F., Mason, M.J.: De-polarization-evoked Ca2+ release in a non-excitable cell, the rat megakaryocyte. J. Physiol. 515, 385–390 (1999).Google Scholar
  23. Penner, R., Matthews, G., Neher, E. Regulation of calcium influx by second messengers in rat mast cells. Nature 334, 499–504 (1988).Google Scholar
  24. Lewis, R.S., Cahalan, M.D. Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul. 1, 99–112 (1989).Google Scholar
  25. Demaurex, N., Schlegel,W., Varnai, P., Mayr, G., Lew, D.P., Krause, K.H. Regulation of Ca2+ influx in myeloid cells. Role of plasma membrane potential, inositol phosphates, cytosolic free [Ca2+], and filling state of intracellular Ca2+ stores. J. Clin. Invest. 90, 830–839 (1992).Google Scholar
  26. Hodgkin, A.L., Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117 (4), 500–544 (1952). PMID: 12991237.Google Scholar
  27. Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurements of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116 (4), 424–448 (1952). PMID: 14946713.Google Scholar
  28. Mark C. Leake. The physics of life: one molecule at a time. Philos Trans R Soc Lond B Biol Sci. 2013 Feb 5; 368(1611): 20120248.Google Scholar
  29. Y. Ohsumi. Historical landmarks of autophagy research. Cell Research (2014) 24:9–23.Google Scholar
  30. A. Basu and D. Chowdhury. Modeling protein synthesis from a physicist’s perspective: A toy model. Am. J. Phys. 75, 931 (2007).Google Scholar
  31. L. Caniparoli, P. Lombardo. Nonequilibrium stochastic model for tRNA binding time statistics. Phys. Rev. E 89, 012712 (2014).Google Scholar
  32. Han K, Kim J, Choi M. Autophagy mediates phase transitions from cell death to life. Heliyon. 2015 Sep 26; 1(1):e00027.  https://doi.org/10.1016/j.heliyon.2015.e00027.
  33. Szostak JW, Bartel DP, Luisi PL. Synthesizing life. Nature. 2001; 409 (6818):387–390.Google Scholar
  34. Forster A, Church G. Towards synthesis of a minimal cell. Molecular systems biology. 2006; 2(9140d519-fc79-e312-0a8a-bfb7cec33a4e):45.Google Scholar
  35. Stano P, Carrara P, Kuruma Y, Pereira de Souza T, Luisi PL. Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. Journal of Materials Chemistry. 2011; 21(47):18887–18902.Google Scholar
  36. Luisi P, Ferri F, Stano P. Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften. 2006; 93(e975186c-6d35-e5a8-7236-239c98c5ea6f):1–14.Google Scholar
  37. Chiarabelli C, Stano P, Luisi PL. Chemical approaches to synthetic biology. Current opinion in biotechnology. 2009; 20(4):492–497.Google Scholar
  38. Lorenzo Calviello, Pasquale Stano, Fabio Mavelli, Pier Luigi Luisi, and Roberto Marangoni. Quasi-cellular systems: stochastic simulation analysis at nanoscale range. BMC Bioinformatics. 2013; 14(Suppl 7): S7.Google Scholar
  39. Daniel G. Gibson, John I. Glass, Carole Lartigue, Vladimir N. Noskov, Ray-Yuan Chuang, Mikkel A. Algire, Gwynedd A. Benders, Michael G. Montague, Li Ma, Monzia M. Moodie, Chuck Merryman, Sanjay Vashee, Radha Krishnakumar, Nacyra Assad-Garcia, Cynthia Andrews-Pfannkoch, Evgeniya A. Denisova, Lei Young, Zhi-Qing Qi, Thomas H. Segall-Shapiro, Christopher H. Calvey, Prashanth P. Parmar, Clyde A. Hutchison III, Hamilton O. Smith, J. Craig Venter. Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science, 2010, 329: 52–56.Google Scholar
  40. M. Itaya, K. Tsuge, M. Koizumi, K. Fujita. Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc. Natl. Acad. Sci. U.S.A. 102, 15971 (2005).  https://doi.org/10.1073/pnas.0503868102 pmid:16236728.
  41. M. Itaya. An estimation of minimal genome size required for life. FEBS Lett. 362, 257 (1995).  https://doi.org/10.1016/0014-5793(95)00233-y pmid:7729508.
  42. lyde A. Hutchison III, Ray-Yuan Chuang, Vladimir N. Noskov, Nacyra Assad-Garcia, Thomas J. Deerinck, Mark H. Ellisman, John Gill, Krishna Kannan, Bogumil J. Karas, Li Ma, James F. Pelletier, Zhi-Qing Qi, R. Alexander Richter, Elizabeth A. Strychalski, Lijie Sun, Yo Suzuki, Billyana Tsvetanova, Kim S. Wise, Hamilton O. Smith, John I. Glass, Chuck Merryman, Daniel G. Gibson, J. Craig Venter. Design and synthesis of a minimal bacterial genome. Science, 2016, 351:aad6253.  https://doi.org/10.1126/science.aad6253.
  43. Ewen Callaway. ‘Minimal’ cell raises stakes in race to harness synthetic life. Craig Venter’s creation comes as CRISPR gene-editing methods provide alternative ways to tinker with life’s building blocks. Nature, 2016, 531: 557–558.Google Scholar
  44. J. Craig Venter. Multiple personal genomes await. Nature, 2010, 464: 676–677.Google Scholar
  45. Md. Ashrafuzzaman. 2015a. Phenomenology and energetics of diffusion across cell phase states. Saudi J. Biol. Sci., 22, 666–673.Google Scholar
  46. Md. Ashrafuzzaman. 2015b. Diffusion across cell phase states. Biomedical Sciences Today, 1:e4.Google Scholar
  47. Goodsell, D.S. Inside a living cell. Trends Biochem. Sci., 1991, 16 (6): 203–6.Google Scholar
  48. Ashrafuzzaman, M., and J. A. Tuszynski. 2012b. Regulation of channel function due to coupling with a lipid bilayer, J. Comput. Theor. Nanosci. 9: 564–570.Google Scholar
  49. G.L. Nicolson. 2014. The Fluid—Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1838, 1451–1466.Google Scholar
  50. L. J. BEILIN, G. J. KNIGHT, A. D. MUNRO-FAURE, AND J. ANDERSON. The Sodium, Potassium, and Water Contents of Red Blood Cells of Healthy Human Adults. Journal of Clinical Investigation, Vol. 45, No. 11, 1966a.Google Scholar
  51. Beilin, L. J., G. J. Knight, A. D. Munro-Faure, and J. Anderson. The measurement of sodium concentration in human red blood cells. J. Gen. Physiol. 1966b, 50, 61.Google Scholar
  52. Valberg, L. S., J. M. Holt, E. Paulson, and J. Szivek. Spectro-chemical analysis of sodium, potassium, calcium, magnesium, copper, and zinc in normal human erythrocytes. J. dlin. Invest. 1965, 44, 379.Google Scholar
  53. Singer, M. M., H. R. Hoff, S. Fisch, and A. C. De-Graff. Red blood cell potassium. Therapeutic implications. J. Amer. med. Ass. 1964, 187, 24.Google Scholar
  54. Kessler, E., M. R. Levy, and R. L. Allen, Jr. Red cell electrolytes in patients with edema. J. Lab. dlin. Med. 1961, 57, 32.Google Scholar
  55. Daniel P. Schachtman, Robert J. Reid and S.M. Ayling. Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiology, February 1998, vol. 116 no. 2 447–453.Google Scholar
  56. Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344.Google Scholar
  57. Elsevier News. Media contact, Nienke Swankhuisen, Elsevier. 2015. Scientists discover new molecules that kill cancer cells and protect healthy cells. Website: https://www.elsevier.com/about/press-releases/research-and-journals/scientists-discover-new-molecules-that-kill-cancer-cells-and-protect-healthy-cells.
  58. C.R. Wang, J. Nguyen, Q.B. Lu. Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: a new molecular mechanism for reductive DNA damage. J. Am. Chem. Soc., 131 (2009), pp. 11320–11322.Google Scholar
  59. Lu QB. 2010a. Cosmic-ray-driven electron-induced reactions of halogenated molecules adsorbed on ice surfaces: Implications for atmospheric ozone depletion and global climate change. Phys Rep 487:141–167.Google Scholar
  60. Lu QB. 2010b. Effects and applications of ultrashort-lived prehydrated electrons in radiation biology and radiotherapy of cancer. Mutat Res 704:190–199.Google Scholar
  61. J. Nguyen, Y. Ma, T. Luo, R.G. Bristow, D.A. Jaffray, Q.B. Lu. Direct observation of ultrafast electron transfer reactions unravels high effectiveness of reductive DNA damage. Proc. Natl. Acad. Sci. U. S. A., 108 (2011), pp. 11778–11783.Google Scholar
  62. L.Y. Lu, N. Ou, Q.B. Lu. Antioxidant induces DNA damage, cell death and mutagenicity in human lung and skin normal cells. Sci. Rep., 3 (2013), p. 3169 (1–11).Google Scholar
  63. Albanes D, Heinonen OP, Taylor PR, Virtamo J, Edwards BK, Rautalahti M, Hartman AM, Palmgren J, Freedman LS, Haapakoski J, Barrett MJ, Pietinen P, Malila N, Tala E, Liippo K, Salomaa ER, Tangrea JA, Teppo L, Askin FB, Taskinen E, Erozan Y, Greenwald P, Huttunen JK. Alpha-tocopherol and beta-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: effects of base-line characteristics and study compliance. J. Natl. Cancer Inst., 88 (1996), pp. 1560–1570.Google Scholar
  64. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S. Effects of a combination of beta-carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med., 334 (1996), pp. 1150–1155.Google Scholar
  65. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011 Jul 6; 475(7354):106–9.Google Scholar
  66. Qing-Bin Lu, Qin-Rong Zhang, Ning Ou, Chun-Rong Wang, Jenny Warrington. In Vitro and In Vivo Studies of Non-Platinum-Based Halogenated Compounds as Potent Antitumor Agents for Natural Targeted Chemotherapy of Cancers. EBioMedicine, Volume 2, Issue 6, June 2015, Pages 544–553.Google Scholar
  67. Q.B. Lu. Molecular reaction mechanisms of combination treatments of low-dose cisplatin with radiotherapy and photodynamic therapy. J. Med. Chem., 50 (2007), pp. 2601–2604.Google Scholar
  68. Q.B. Lu, S. Kalantari, C.R. Wang. Electron transfer reaction mechanism of cisplatin with dna at the molecular level. Mol. Pharm., 4 (2007), pp. 624–628.Google Scholar
  69. C.R. Wang, A. Hu, Q.B. Lu. Direct observation of the transition state of ultrafast electron transfer reaction of a radiosensitizing drug bromodeoxyuridine. J. Chem. Phys., 124 (2006), p. 241102 (1–4).Google Scholar
  70. C.R. Wang, Q.B. Lu. Real-time observation of a molecular reaction mechanism of aqueous 5-halo-2′-deoxyuridines under UV/ionizing radiation. Angew. Chem. Int. Ed., 46 (2007), pp. 6316–6321.Google Scholar
  71. C.R. Wang, Q.B. Lu. Molecular mechanism of the dna sequence selectivity of 5-halo-2′-deoxyuridines as potential radiosensitizers. J. Am. Chem. Soc., 132 (2010), pp. 14710–14713.Google Scholar
  72. Hiroshi Mizoguchi, Hideo Mori, Tatsuro Fujio, (2007) Escherichia coli minimum genome factory. Biotechnology and Applied Biochemistry 46 (3):157.Google Scholar
  73. Cheryl D. Chun, Oliver W. Liu, Hiten D. Madhani, (2007) A Link between Virulence and Homeostatic Responses to Hypoxia during Infection by the Human Fungal Pathogen Cryptococcus neoformans. PLoS Pathogens 3 (2):e22.Google Scholar
  74. S. J. Singer, G. L. Nicolson, (1972) The Fluid Mosaic Model of the Structure of Cell Membranes. Science 175 (4023):720–731.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations